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Abstract We use runtime verification (RV) to check vari-
ous specifications in a smart apartment. The specifications
can be broken down into three types: behavioral correctness
of the apartment sensors, detection of specific user activi-
ties (known as activities of daily living), and composition
of specifications of the previous types. The context of the
smart apartment provides us with a complex system with a
large number of components with two different hierarchies
to group specifications and sensors: geographically within
the same room, floor or globally in the apartment, and logi-
cally following the different types of specifications. We lever-
age a recent approach to decentralized RV of decentralized
specifications, where monitors have their own specifications
and communicate together to verify more general specifi-
cations. We leverage the hierarchies, modularity and re-use
afforded by decentralized specifications to: (1) scale beyond
existing centralized RV techniques, and (2) greatly reduce
computation and communication costs.
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1 Introduction

Sensors and actuators are used to create “smart” environ-
ments which track the data across sensors and human-
machine interaction. One particular area of interest consists
of homes (or apartments) equipped with a myriad of sen-
sors and actuators, called smart homes [24]. Smart homes
are capable of providing added services to users. These ser-
vices rely on detecting the user behavior and the context of
such activities [19], typically detecting activities of daily liv-
ing (ADL) [58,21] from sensor information. Detecting ADL
allows to optimize resource consumption (such as electric-
ity [1]), improve the quality of life for the elderly [51] and
users suffering from mild impairment [59].

Relying on information from multiple sources and ob-
serving behavior is not just constrained to activities. It is
also used with techniques that verify the correct behavior
of systems. Runtime Verification (RV) [43,49,6,7,8] is a
lightweight formal method which consists in verifying that a
run of a system is correct wrt a specification. The specifica-
tion formalizes the behavior of the system typically in log-
ics (such as variants of Linear Temporal Logic, LTL [55])
or finite-state machines. Based on the provided specifica-
tion, monitors are automatically synthesized to run along-
side the system and verify whether or not the system exe-
cution complies with the specification. RV techniques have
been used for instance in the context of automotive [23] and
medical [50] systems. In both cases, RV is used to verify
communication patterns between components and their ad-
herence to the architecture and their formal specifications.

While RV can be used to check that the devices in a
smart home are performing as expected, we show it can be
extended to monitor ADL, and complex behavior on the ac-
tivities themselves. We identify three classes of specifica-
tions for applying RV to a smart home. The first class per-
tains to the system behavior. These specifications are used to
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check the correct behavior of the sensors, and detect faulty
sensors. Ensuring that the system is behaving correctly is
what is generally checked when performing RV. However, it
is also possible to use RV to verify other specifications. The
second class consists of specifications for detecting ADL,
such as detecting when the user is cooking, showering or
sleeping. The third class pertains to user behavior. These
specifications can be seen as meta-specifications for both
system correctness and ADL, they can include safety speci-
fications such as ensuring that the user does not sleep while
cooking, or ensuring that certain activities are only done un-
der certain conditions.

However, standard RV techniques are not directly suit-
able to monitor the three classes of specifications. This is
mainly due to scalability issues arising from the large num-
ber of sensors, as typically RV techniques rely on a large
formula to describe specifications. Synthesizing centralized
monitors from certain large formulas considered in this pa-
per is not possible using the current tools. Instead, we make
use of RV with decentralized specifications [29,32], as it al-
lows monitors to reference other monitors in a hierarchical
fashion. The advantage of this is twofold. First, it provides
an abstraction layer to relate specifications to each other.
This allows specifications to be organized and changed with-
out affecting other specifications, and even to be expressed
with different specification languages. Second, it leverages
the structure and layout of the devices to organize the hier-
archies. On the one hand, we have a geographical hierarchy
resulting from the spacial structure of the apartment from a
given device, to a room, a floor, or the full apartment. On
the other hand, we have a logical hierarchy defined by the
interdependence between specifications, i.e. ADL, specifi-
cations that use other ADL specifications, and specifications
that combine sensor safety with ADL specifications. For ex-
ample, informally, consider checking two activities: sleep-
ing and cooking, which can be expressed using formulae (g
and @, respectively. A monitor that checks whether the user
is sleeping and cooking requires to check s A . and as
such will replicate the monitoring logic of another moni-
tor that checks s alone, instead of re-using the output of
that monitor. The formula will be written twice, and chang-
ing the formula for detecting sleeping requires changing the
formula for the monitor that checks both specifications.

At this point we mention that RV with decentralized
specifications resembles other RV techniques that distributes
the monitoring process such as decentralized RV for syn-
chronous [12,22,47] or asynchronous [53,17,38] systems,
and predicate detection in distributed systems [54]. While
such approaches do consider monolithic specifications (and
proceed to split them accordingly), they are less restrictive
on the assumptions on the monitoring architecture and com-
munication. It is the previously described setting of RV with

decentralized specifications that allows the approach of this
paper to scale in the context of smart apartments.

Overall, we see our contributions as follows':

- We apply RV with decentralized specifications to analyze
traces of over 36,000 timestamps spanning 27 sensors in a
real smart apartment (Sect. 2.1).

We show how to go beyond system properties, to specify
ADL using RV, and more complex interdependent specifi-
cations defined on up to 27 atomic propositions (Sect. 2.2).

We leverage the hierarchies, modularity and re-use af-
forded by decentralized specifications (Sect. 3) to both
be able to synthesize monitors and to reduce overhead
when monitoring complex interdependent specifications
(Sect. 6.1).

We improve the existing data structures used for monitor-
ing decentralized specifications, to account for large traces
(Sect. 5).

We use RV to effectively monitor ADL and identifying
some insights and limitations inherent to using formal LTL
specifications to determine user behavior (Sect. 6.2).

We elaborate on the advantages of modularity by adapting
parts of the specification to the Activity Recognition with
Ambient Sensing (ARAS) [2] dataset (Sect. 6.3).

This paper extends existing work published in the pro-
ceedings of the the international conference on Runtime Ver-
ification (RV 2018) [31] with the following:

- Providing a more detailed explanation of decentralized
specifications and their dependency hierarchies (Sect. 3.2);

Providing full details on trace generation, sensor polling,
and trace replay using THEMIS (Sect. 4);

Enhancing the existing data structures of [29] to support
large traces, by elaborating on data structures, their opera-
tions, and strategies for garbage collection and lazy evalu-
ation in Sect. 5;

- Extending the evaluation section to include additional days
where the trace is replayed, to illustrate changes in user be-
havior in Sect. 6.2, adding more details for modifying the
specification to improve precision and recall, and also il-
lustrating adaptability to new environments by porting the
specification to the ARAS dataset in Sect. 6.3.

2 Writing Specifications for the Apartment

2.1 Devices and Organization

We consider an actual apartment, with multiple rooms,
where activities are logged using sensors. Ami-
qual4Home [48] is an experimental platform consisting of a
smart apartment, a rapid prototyping platform, and tools for
observing human activity.

1" An artifact [28] that contains data, documentation, and software,
is provided to replicate and extend on the work.
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2.1.1 Overview of Amiqual4Home

The Amiqual4Home apartment is equipped with 219 sen-
sors and actuators spread across 2 floors. Amiqual4Home
uses the OpenHab 6 integration platform for all the sen-
sors and actuators installed. Sensors communicate using the
KNX, MQQT and UPnP protocols sending measurements to
OpenHab over the local network, so as to preserve privacy.
The general layout of the apartment consists of 2 floors:
the ground and first floors. On the ground floor (resp. first
floor), we have the following rooms: entrance, toilet,
kitchen, and livingroom (resp. office, bedroom, and
bathroom). Between the two floors, there is a connecting
staircase. This layout reveals a tree-like geographical hi-
erarchy of components, where we can see the rooms at the
leaves, grouped by floors then the whole apartment. While
in effect all device data is fed to a central observation point,
it is reasonable to consider the hierarchy in the apartment as
a simpler model to consider hierarchies in general, as one
is bound to encounter a hierarchy at a higher level (from
houses, to neighborhoods, to smart cities, etc.). Furthermore,
hierarchies appear when integrating different providers for
devices in the same house.

Reusing the Orange4dHome Dataset

Amiqual4Home has been used to generate multiple datasets
that record all sensor data, this includes an ADL recognition
dataset [48] (ContextAct@A4H), and an energy consump-
tion dataset [25] (Orange4Home). In this paper, we reuse
the dataset from [25]. The case study involved a person liv-
ing in the apartment and following (loosely) a schedule of
activities spread out across the various rooms. The schedule
was set out by the authors of [25]. Figure 1 displays the sug-
gested schedule of activities for Tuesday, Jan 31 2017. This
allows us to nicely reconstruct the schedule from the result
of monitoring the sensors. Furthermore, the person living in
the home provided manual annotations of the activities done,
which helps us assess our specifications. We chose to use the
Orange4Home dataset over the ContextAct@A4H one as it
involves only one person living in the house at a time which
simplifies specifying and validating specifications.

2.1.2 Monitoring Environment

In total, we formalize 22 specifications that make use of up
to 27 sensors, and evaluate them over the course of a full day
of activity in the apartment. That is, we monitor the house
(by replaying the trace) from 07:30 to 17:30 on a given
day, by polling the sensors every 1 second, creating a trace
of a total of 36,000 timestamps. Specifications are elabo-
rated in Sect. 2.2 and expressed as decentralized specifica-
tions [29] (recalled in Sect. 3.2). Traces are replayed using
the THEMIS tool [30] which supports decentralized specifi-
cations and provides a wide range of metrics. We elaborate
on the trace replay in Sect. 4.

2.2 Property Groups

We now express the specifications that describe differ-
ent behaviors of components in the smart apartment.
Specifications can be subdivided into 3 groups: system-
behavior specifications, user-behavior specifications, and
meta-specifications on both system and user behavior. The
considered specifications are listed in Table 1.

2.2.1 System Behavior

The first group of specifications consists in ensuring that the
system behaves as expected. That is, verifying that the sen-
sors are working properly. These properties are the subject
of classical RV techniques [34,16] applied to systems. For
the scope of this case study, we verify light switches as sys-
tem properties. We verify that for a given room ¢, whenever
the switch is toggled, then the light must turn on until the
switch is turned off. We verify the property at two scopes,
for a given room, and the entire apartment. While this prop-
erty appears simple to check, it does highlight issues with
existing centralized techniques applied in a hierarchical way.
We develop the property in Sect. 3.1, and show the issues
in Sect. 3.2.

2.2.2 ADL

The second group of specifications is concerned with defin-
ing the behavior of the user inferred from sensors. The sen-
sors available in the apartment provide us with a wealth of
information to determine the user activities. The list of ac-
tivities of interest is detailed in [46] and includes activities
such as cooking and sleeping. By correctly identifying activ-
ities, it is possible to decide when to interact with the user in
a smart setting [1], provide custom care such as nursing for
the elderly [51], or help users who suffer from mild impair-
ment [59]. Inferring activities done by the user is an interest-
ing problem typically addressed through either data-based
or knowledge-based methods [21]. The first method con-
sists in learning activity models from preexisting large-scale
datasets of users’ behaviors by utilizing data mining and ma-
chine learning techniques. The built models are probabilistic
or statistical activity models such as Hidden Markov Model
(HMM) or Bayesian networks, followed by training and
learning processes. Data-driven approaches are capable of
handling uncertainty, while often requiring large annotated
datasets for training and learning. The second method con-
sists in exploiting prior knowledge in the domain of inter-
est to construct activity models directly using formal logical
reasoning, formal models, and representation. Knowledge-
driven approaches are semantically clear, but are typically
poor at handling uncertainty and temporal information [21].
We elaborate on such limitations in Sect. 6.2. Writing spec-
ifications can be seen as a knowledge-based approach to de-
scribe the behavior of sensors. As such, we believe that run-
time verification is useful to describe an activity as a specifi-
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Fig. 1: Suggested Schedule (Tuesday, Jan 31 2017)

Table 1: Specifications considered in this paper. (*) indicates added ADL specifications. G indicates specification group:

system (S), ADL (A), and meta-specifications (M). |AP |4 (resp.

(|AP|%): atomic propositions needed to specify specification

in decentralized (resp. centralized) specifications. d is the maximum depth of monitor dependencies.

G Scope  Name Description |AP|d |AP|c d
S Room sc_light(z) light switch turns on light (¢ € [0..3]). 2 2 1
M House sc_ok All light switches are ok. 4 2
A Toilet toilet™ Toilet is being used. 1 1 0
A Bathroom sink usage Sink is being used. 1 2 1
A Bathroom shower_usage  Shower is being used. 1 2 1
A Bedroom napping Tenant is sleeping on the bed. 1 1 1
A Bedroom dressing Tenant is dressing, using the closet. 2 3 1
A Bedroom reading Tenant is reading. 3 5 2
A Office office_tv Tenant is watching TV. 1 1 1
A Office computing Tenant is using the computer. 1 1 1
A Kitchen cooking Tenant is cooking food. 2 2 1
A Kitchen washing dishes Tenant is cleaning dishes. 2 3 1
A Kitchen kactivity* Using cupboards and fridge. 4 9 1
A Kitchen preparing Tenant is preparing to cook food. 2 11 2
A Living livingroom_tv  Tenant is watching TV. 2 2 1
A Floor 0 eating Tenant is eating on the table. 2 2 1
M Floor0  actfloor(0) Activity triggered on floor 0. 6 16 3
M Floor1  actfloor(l) Activity triggered on floor 1. 7 11 3
M House acthouse Activity triggered in house 2 27 4
M House notwopeople No 2 simultaneous activities on different floors. 2 27 4
M House restricttv No watching TV for more than 10s. 2 3 3
M House firehazard No cooking while sleeping. 2 3 2

cation over sensor outputs. We formalize a specification for
the following ADL activities described in [25] (see Table 1).
We re-use the traces to verify that our detected activities are
indeed in line with the proposed schedule. Figure 2 displays
the reconstructed schedule after detecting ADL with runtime
verification. Each specification is represented by a monitor
that outputs (with some delay) for every timestamp (second)
verdicts T or L. To do this, the monitor finds the verdict
for a timestamp ¢ then respawns to monitor ¢ + 1. Verdict
T indicates that the specification holds, that is, the activity
is being performed. The reconstructed schedule shows the
eventual outcome of a specification for a given timestamp
ignoring delay. In reality some delay happens based on the
specification itself, and the dependencies on other monitors.

2.2.3 Meta-specifications

Specifications of the last group are defined on top of the
other specifications. That is, we refer to a meta-specification
as a specification that defines the interactions between var-
ious specifications. While one can easily define specifica-
tions by defining predicates over existing ones, such as
checking that the light switch specification holds in all
rooms or whether or not detecting an activity was performed
on a specific floor or globally in the house, we are more in-
terested in specifications that relate to each other. We con-
sider a meta-specification that reduces fire hazards in the
house. In this case, we specify that the tenant should not
cook and sleep at the same time, as this increases the risk of
fire. In addition to mutually excluding specifications, we can
also constrain the behavior of existing specifications. For ex-
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Fig. 2: Detected ADL for Tuesday, Jan 31 2017. Time is in hours starting from 7:30.

ample, we can specify a specification regulating the duration
of watching TV to be at most 10 timestamps.

3 Monitoring the Apartment

We show how we monitor the apartment using decentralized
specifications, while highlighting their advantages.

3.1 Monitor Implementation

To monitor the apartment, we use LTL3 monitors [16].
LTL3 [14,15] is a variant of the standard Linear Tempo-
ral Logic (LTL) [55] giving a semantics to finite traces. An
LTL3 monitor is a complete and deterministic Moore au-
tomaton where states are labeled with the verdicts in a do-
main B3 = {T, L, ?}. Verdicts T and | respectively indi-
cate that the current execution complies and does not com-
ply with the specification, while verdict ? indicates that the
verdict has not been determined yet. Verdicts T and | are
called final, as once the monitor outputs T or L for a given
trace, it cannot output a different verdict for any suffix of that
trace. Using LTL3 monitors for representing specifications
allows us to take advantage of the multiple RV tools that
convert different specification languages to LTL3 monitors.
For our monitoring, we use the THEMIS tool [30] which is
able touse both 1t 12mon [16] and LamaConv [44] to gen-

erate monitors. 1t12mon generates LTL3 monitors from
LTL formulae, while LamaConv supports a wider range
of languages such as Regular Expressions, Omega Regu-
lar Expressions, LTL, LTL with past (pLTL), Regular LTL
(RLTL) and RLTL with past (pRLTL), and Structured As-
sertion Language for Temporal Logic (SALT) [13].

Example 1 (Check light switch) Let us consider property
sc_light(i) (sensor check light): “Whenever a light switch
is triggered in a room ¢ at some timestamp ¢, then the light
must turn on at ¢ + 1 until the switch is turned off again”.
Figure 3a shows the Moore automaton that represents the
property. Starting from ¢ with verdict 7, the automaton ver-
ifies that the property is falsified (as it is a safety property).
That is, upon reaching g- the verdict will be L for all possi-
ble extensions of a trace.

For the scope of this paper and for clarity, we use LTL ex-
tended with two (syntactic) operators, mostly to strengthen
and relax time constraints. We consider the operator even-
tually within t ($<;) which considers a disjunction of next
operators. It is defined as: {<;ap = apVQapVvOQOapV
... O" ap, where ap is an atomic proposition. Intuitively, the
eventually within states that ap holds within a given number
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of timestamps. Operator (<, allows us to relax the time con-
straints for a given atomic proposition. Similarly, we con-
sider the operator globally within t (<) which is the dual

of the previous operator: C<; ap Eap A OapANOQapA
Otap.

Example 2 (Check light switch modalities) The property ex-
pressed in Ex. 1 can be expressed in LTL as: sc_light (i) =
O(si = QO; U—s;)). The property can be modified
with the extra operators relax or constrain the time on the
light. The relaxed property sc_light/(i) = O(s; —
O<3(¢; U=s;)) allows the right-hand side of the implica-
tion to hold within any of the next 3 timestamps instead of
immediately after. The bounded property sc_light” (i) =
O(s; = O<3(¥;)) states that the light is on starting from
the timestamp the switch is turned on and the subsequent
two (for a total of 3). An example of such a property is the
restriction on watching TV for a specific duration (Table 1)

where restricttv & O(tv = O<10-tv).

3.2 Decentralized Specifications

While simple specifications can be expressed with both LTL
and automata, it quickly becomes a problem to scale the for-
mulae or account for hierarchies (see Sect. 3.3). As such, we
use decentralized specifications [29].

Overview.

Decentralized specifications consider a system of multiple
components C = {C;...Cy,}, where the set of all atomic
propositions (noted AP) (i) has a partition over all com-
ponents, i.e., AP = AP; U...U AP, such that Vi,j €
l.n],i # j = AP;N AP; = 0, and (ii) each com-
ponent has at least one atomic proposition to monitor (i.e.,
Vi € [1..n], AP; # ()). Details for assigning sensor infor-
mation as atomic propositions for this case study are pre-
sented in Sect. 4.2. Furthermore, we have a set of monitor
labels AP,ons (called monitor references), that associates
each monitor with a label. For this case study, each specifi-
cation in Table 1 is assigned a monitor labeled by its name.
Each monitor Ay, (Ibl € AP ons) is @ Moore automaton

(detailed in Sect. 3.1) and is assigned to a single compo-
nent. A monitor Aj, assigned to component C; € C uti-
lizes the alphabet AP, = AP; U (APmons \ {1bl}). That
is, it contains the atomic propositions local to the compo-
nent (in AP;), and the references to all dependent monitors
excluding itself (APmons \ {1bl}). A decentralized trace is
a partial function that assigns each component and times-
tamp with an event. A monitor reference is evaluated as if it
were an oracle. That is, to evaluate a monitor reference 1bl
at a timestamp ¢, the monitor referenced (Ayy,)) is executed
starting from the initial state on the trace starting at ¢t. The
atomic proposition 1bl at ¢ takes the value of the final verdict
reached by the monitor.

Example 3 (Decentralized light switch) Figure 3b shows the
decentralized specification for the check light property from
Ex. 1. We have two monitors Agc 15gne, and Ajigns,. They
are respectively attached to the light switch and light bulb
components. In the former, the atomic propositions are ei-
ther related to observations on the component (s;, switch
on), or references to other monitors (light, ). The light switch
monitor first waits for the switch to be on to reach ¢;. In ¢,
at some timestamp ¢, it needs to evaluate reference light, by
running the trace starting from ¢ on monitor Alighti. Mon-
itor Ajignt, then reads the value of /; at ¢ from the trace,
and moves to ¢ or ¢} depending on its value, and sends the
verdict T or L respectively back to monitor Ascflighti. The
returned verdict is associated with the reference light; for
timestamp ¢ allowing monitor Asc,lighti to evaluate its own
transition at t.

Assumptions.

The assumptions of decentralized specifications on the sys-
tem are as follows: no monitors send messages that contain
wrong information; no messages are lost, they are eventually
delivered in their entirety but possibly out-of-order; all com-
ponents share one logical discrete clock marked by round
numbers indicating relevant transitions in the system speci-
fication. While security is a concern in the smart apartment
setting, the first two assumptions are met in this case study
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as the apartment sensor network operates on the local net-
work, and we expect monitors to be deployed by the sensor
providers, and users of the apartment. Furthermore, the last
assumption is also met in the setting of the smart appart-
ment, as all sensors share a global clock. This is evidenced
by the obtained traces from Orange4Home [25].

Hierarchical dependencies.

Decentralized specifications allow us to analyze the depen-
dencies between various monitors, and organize them in
logical hierarchies represented as directed acyclic graphs
(DAGSs). The DAGs help us relate specifications to other
specifications and analyze the inter-dependent behavior of
monitors. We elaborate on the benefits of the hierarchical
dependencies in Sect. 3.3.

Example 4 (Hierarchical dependencies) Figure 4 presents
the dependency DAG of specification preparing. We
can see that specification preparing depends directly
on both specifications kactivity and cooking. Speci-
fication kactivity depends on specifications cubpoard,
sink_water, presence, and fridge_door, as it depends
on the tenant being present in the kitchen, opening or closing
cupboards or the fridge, or using the sink. The later speci-
fications do not depend on other specifications but on di-
rect observations from the components. We note that while
presence is not used in this case study to determine the
cooking activity, since a tenant can start cooking and leave
the kitchen. One could imagine that specifications can share
dependencies, as such the hierarchy is indeed best repre-
sented as a DAG. Let us consider the monitor checking spec-
ification cupboard. Since we have 5 cupboard doors, we
have 5 sensors in total (1 for each door). The monitor ob-
serving the 5 different observations simply checks if one is
open and relays its verdict upwards, transmitting only the
summary of observations instead of the totality. In this ex-
ample, the hierarchy can be seen starting from different sen-
sors on the same component, and expanding geographically
to the different components in the room (kitchen).

3.3 Advantages of Decentralized Specifications
3.3.1 Modularity and Re-use

Monitor references in decentralized specifications allow
specifications writers to modularize behavior. Given that a
monitor represents a specific specification, this same moni-
tor can be re-used to define more complex specifications at a
higher level, without consideration for the details needed for
this specification. This allows specification writers to reason
at various levels about the system specification.

Let us consider the ADL specification cooking (resp.
sleeping) which specifies whether the tenant is cooking
(resp. sleeping) in the apartment. One can reason about the
meta-specification firehazard using both cooking and

sleeping specifications without considering the lower level
sensors that determine these specifications, that is:

firehazard = [J(sleeping = —cooking).
While we can define cooking as:

. def .
cooking = kitchen_presence
AQ<s(kitchen_cooktop V kitchen oven).

Additionally, any specification that requires either
sleeping or cooking specifications can re-use the
verdict outputted by their respective monitors. For example,
specifications actfloor(0) and actfloor(l) require
the verdicts from monitors associated with cooking and
sleeping, respectively, since cooking happens on the
ground floor while sleeping on the first floor. Further-
more, we can disjoin actfloor(0) and actfloor(l) to
easily specify that there is some activity in the house,
acthouse = actfloor(0) V actfloor(1). While spec-
ification acthouse can be seen as a quantified version of
actfloor(i), we can use modular specifications for behav-
ior, for example we can verify the triggering of an alarm in
the house within 5 timestamps of detecting a fire hazard, i.e.
checkalert = firehazard = (<s(firealert).

In addition to providing a higher level of abstraction and
reasoning about specifications, the modular structure of the
specifications present three additional advantages.

1. The first is that sub-specifications can change with-
out affecting the meta-specifications, that is if the sub-
specification cooking is changed (possibly to account
for different sensors), no changes need to be prop-
agated to specifications firehazard, actfloor(0),
acthouse, and checkalert.

2. The second advantage is controlling duplication of com-
putation and communication, as such sensors do not
have to send their observations constantly to all mon-
itors that verify the various specifications. Specifica-
tion cooking requires knowledge from the kitchen
presence sensor, the kitchen cooktop (being enabled)
and the kitchen oven. Without any re-use these three
sensors (presence, cooktop, and oven) need to send
their information to monitors checking: firehazard,
actfloor(0), acthouse, and checkalert.

3. The third advantage is a consequence of modeling ex-
plicitly the dependencies between specifications. This
allows the monitoring to take advantage of such depen-
dencies and place the monitors that depend on each other
closer depending on the hierarchy, either geographically
(i.e., in the same room or floor) or logically (i.e., close to
the monitors of the dependent sub-specifications). Fur-
thermore, knowing the explicit dependencies between
specifications allows the user to choose a placement for
their monitors, adjusting the placement to the system ar-
chitecture. In the case a placement is not possible, it is
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Fig. 4: Dependencies for preparing. * indicates an atomic proposition of a component.

possible to create intermediate specifications that simply
relay verdicts of other monitors, to transitively connect
all components that are not connected.

3.3.2 Abstraction from Implementation

One setback for learning-based techniques to detect ADL is
their specificity to the environment. That is, the training set
is specific to a house layout, user profile (i.e., elderly versus
adults) [45].

Decentralized specifications define modular specifica-
tions that can be composed together to form bigger and
more complex specifications. By using references to mon-
itors, we leave the implementation of the specification to be
specific for the house or user profile. Using our existing ex-
ample, cooking is implemented based on the available sen-
sors in the house, which would change for different houses.
However, the meta-specifications such as firehazard can
be defined independently from the implementation of both
cooking and sleeping.

Furthermore, using monitor references, which are
treated as oracles, opens the door to utilizing existing tech-
niques in the literature based on other formalisms (not based
on automata). That is, as a reference is expected to eventu-
ally evaluate to T or _L, any decision procedure can be incor-
porated to form more complex specifications. For example,
one can use the various machine learning techniques [19,45,
58] to define monitors that detect specific ADLs, then refer-
ence them in order to define more complex specifications.

3.3.3 Scalability

Decentralized specifications allow for a higher level of scal-
ability when writing specifications, and also when mon-
itoring. By using decentralized specifications, we restrict
the atomic propositions of monitors to (i) the local atomic
propositions of the components they are attached to and (ii)
references to other monitors (see Sect. 3.2). This greatly re-
duces the number of atomic propositions to consider when
synthesizing the monitor and reduces its size, as the sub-
specifications are offloaded to another monitor.

For example, let us consider writing specifications us-
ing LTL formulae. The classical algorithm that converts LTL
to Moore automata is doubly exponential in the size of the
formula counted in terms of atomic propositions (to form
events) [16]. Therefore, reducing both the size of the for-

mula and the number of atomic propositions used in the for-
mula helps significantly when synthesizing the monitors, al-
lowing us to scale beyond the limits of existing tools. For
a large formula, and the larger formulas considered in this
paper, it becomes impossible to generate a central monitor
using the existing synthesis techniques. Decentralized spec-
ifications provide a way to manage the large formula by sub-
dividing it into subformulas. The decomposition ensures that
the formula evaluates to the same verdict given the same ob-
servations, at the cost of added delay.

Example 5 (Synthesizing the check light monitor) Recall the
system property sc_light(i) in Ex. 2 responsible for veri-
fying that in a room ¢ a light switch does indeed turn a light
bulb on until it is turned off. We recall the LTL specifica-
tion sc_light(i) = O(s; = O U-s;)). To ver-
ify the property across n rooms of the house, we formu-
late a property sc_ok = /\iE[O..n] sc_light(i). In the case
of a decentralized specification the formula will reference
each monitor in each room, leading to a conjunction of at
n atomic propositions. However, in the case of a central-
ized specification, the specification needs to be written as:
sc_okeent = Nieo..pBsi = O U—s;)), which
is significantly more complex as a formula consisting of 4n
operators (to cover the sub-specification), along n conjunc-
tions, and defined over each sensor and light bulb atomic
propositions (2n). Given that monitor synthesis is doubly
exponential, both 1t12mon [16] and lamaconv [44] re-
quire significant resources and time to generate the minimal
Moore automaton (in our case”, both tools where unable to
generate the monitor for n = 3 after an hour to timeout).

We note that this effect on synthesis can be greatly benefi-
cial in our case as formulae appear smaller than they actu-
ally are. Our usage of the shorthand operators {<; and U<y,
when applied to a formula ¢, results in a new formula where
 appears t times, hence contributing to a much larger ex-
pansion.

3.3.4 Limitations

Decentralized specifications revolve around monitors send-
ing feedback as boolean verdicts. This enables the advan-
tageous scalability and abstraction level when monitoring

2 On an Intel(R) Core(TM) i7-6700HQ CPU, using 16GB RAM,
and running openjdk 1.8.0_172, with 1t12mon 0.0.7.
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smart homes. However, the expressiveness of decentralized
specifications is limited. For instance, contrarily to [53], we
cannot compare values of sensors in different rooms to es-
tablish a verdict based on some function of those values at
a given moment (i.e., power consumption in a given room
exceeds that of another room). We believe that, in the fu-
ture, leveraging stream-based RV approaches (see Sect. 7.3)
will allow monitors to output values in a domain richer than
Boolean.

4 Trace Replay with THEMIS

To perform monitoring we use THEMIS [30] which is a
tool for defining, handling, and benchmarking decentralized
specifications and their monitoring algorithms. For replay-
ing the trace, we perform monitoring by defining a start
time, an end time and a polling interval. For this case study,
for a given date, we use 07:30 as start time, 17:30 as an end
time, and a 1-second polling interval.

We first overview THEMIS in Sect. 4.1. Then, in
Sect. 4.2, we elaborate on the trace format provided in the
public dataset, and our adaptation for replay to perform the
monitoring. In brief, the process consists of extracting each
sensor data converting it to observations (atomic proposi-
tions and verdicts), and passing the observation to a logical
component for multiple related sensors. Later in Sect. 5, we
introduce extra considerations when monitoring large traces.

4.1 THEMIS
Overview.

THEMIS [30] is a tool to facilitate the design, development,
and analysis of decentralized monitoring algorithms; devel-
oped using Java and Aspect]. It consists of a library and
command-line tools. THEMIS provides an API, data struc-
tures, and measures for decentralized monitoring. These
building blocks can be reused or extended to modify exist-
ing algorithms, design new algorithms, and elaborate new
approaches to assess existing algorithms. THEMIS encom-
passes existing approaches [11,22] that focus on presenting
one global formula of the system from which they derive
multiple specifications, and in addition supports any decen-
tralized specification [32].

Monitoring.

THEMIS defines two phases for a monitoring algorithm:
setup and monitor. In the first phase, the algorithm creates
and initializes the monitors, connects them to each other so
they can communicate, and attaches them to components so
they receive the observations generated by components. In
the second phase, each monitor receives observations at a
timestamp based on the component it is attached to. The
monitor can then perform some computation, communicate
with other monitors, abort monitoring or report a verdict.
The two distinct phases separate the monitor generation

(monitor synthesis) problem from the monitoring [29], giv-
ing algorithms the freedom to generate monitors and deploy
them on components, while integrating with existing tools
for monitor synthesis such as [16,44]. The monitors used
in this case study use similar logic than choreography [22],
as they are defined over a shared global clock. All monitors
start monitoring at ¢ = 0. A monitor checks the compliance
of the specification for a given timestamp ¢, which could
take a fixed delay d to check. After reaching the delay at
t + d, the monitor reports the verdict for ¢ to all other moni-
tors that depend on it, and starts monitoring the specification
again for ¢ + 1 (i.e., it respawns). As such, the communica-
tion between monitors consists of sending verdicts for given
timestamps.

4.2 Generating the Trace
4.2.1 Provided Trace

The trace from [25] is given as a database with a table for
each sensor. We extract each table as a csv file for each sen-
sor. The provided sensor data is stored as entries of values
associated with timestamps, representing the changes in the
sensor data across time. Typically, a new entry is provided
whenever a change in the sensor data occurs. The provided
data range over Boolean-like, integer, or real domains.

4.2.2 Generating Atomic Propositions

The sensor data needs to be processed to create observations,
as LTL3 monitors (see Sect. 3.1) operate on atomic propo-
sitions. Each sensor is implemented as an input (Periphery
in THEMIS) to a logical component. For example, for the
shower water, we use both cold and hot water sensors but
define only a single component (“shower water”), from an
RV perspective, “hot” and “cold” are multiple observations
passed to the “shower water” component. To process differ-
ent sensor data, we implemented two peripheries: Sensor-
Bool and SensorThresh. The first periphery parses Boolean
values from the csv file associated with timestamps. The pro-
cessing assigns Boolean values T (resp. L) based on sen-
sor data such as: "ON” (resp. "OFF”), and "OPEN" (resp.
”CLOSED”). The second periphery reads real (double) val-
ues, and returns a Boolean based on whether the number is
below or above a certain threshold. Both peripheries asso-
ciate each atomic proposition with the generated Boolean to
generate an observation.

4.2.3 Synchronizing Traces

The provided dataset only provides sensor updates, that is,
the data only contains timestamps and values for a sensor
when the value changes. Our monitoring strategy, however,
requires polling the devices at given fixed time intervals.
Since the system has a global clock, to synchronize observa-
tions, our periphery implementations synchronize on a date
at the start and an increase (in our case 1 second) and a de-
fault Boolean value for the observation. When polled, the
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periphery returns the default value if nothing is observed yet,
or the last value observed otherwise. The last value observed
is updated when changes occur in the csv file. In short, we
interpolate values between changes to return the oldest value
before a change.

4.2.4 Determining the Polling Rate

We leverage the global clock of the system to evaluate the
specification synchronously for all components. As such, we
need a fixed interval to poll the monitors in order to evalu-
ate the specification, that is, we take the necessary transi-
tion in each of the automata. We refer to this interval as the
polling rate. The polling rate determines the frequency of
evaluation of the specification; the higher the rate, the more
rounds, and the more monitors process and communicate. To
determine the minimal rate, we consider the rate of change
for all sensors involved in the specification. We are inter-
ested in ensuring that no sensor changes twice in between
the evaluation of the specification. To do so, we write a sim-
ple program that processes the trace files for each sensor in
an input specification, to determine the rate of change. List-
ing 1 shows an example output on the 27 sensors used for
ADL detection. It shows the atomic proposition associated
with the sensor, the sensor type, the trace file, the fastest
change rate (min), and the slowest change rate (max), and
whether or not it is skipped. The rates are provided in mil-
liseconds. Then, we aggregate over all sensors by computing
the fastest and slowest. Sensors are not included in the ag-
gregate computation (i.e., skipped) if no change appears in
their entire trace file. In this case, we choose 1 second as our
polling rate, as no sensor will change twice within a second.

5 Consideration for Large Traces

Managing the trace length (36,000) is an issue for the mon-
itoring techniques presented in [29]. Since the associated
monitors rely on eventual consistency [56], in some cases,
they wait for input for the length of the trace, which requires
a lot of memory. This was not an issue for the small traces
(of length 100) used to compare algorithms originally, but
becomes a significantly larger issue when monitoring a real
apartment.

Two data structures are introduced in [29] to support
monitoring decentralized specifications: memory and exe-
cution history encoding (EHE). We briefly review them in
Sect. 5.1 along with their key operations so we can we
present a garbage collection strategy for the memory data
structure in Sect. 5.2 and an expansion strategy for the EHE
in Sect. 5.3. The memory footprint for monitors consists of
the sizes of their memory and EHE. Both our improvements
aim at reducing their size for long traces. Theoretical details
for the data structures and monitoring are in [29].

Note that replaying the large traces, without garbage col-
lection, is not possible as we would run out of memory due

to the sheer size of the trace and the space needed to store
information. The expansion strategy, when used appropri-
ately, further reduces memory consumption for large EHES
(see Sect. 6.1.3).

5.1 Monitoring Data Structures and Their Operations

The data structures memory and EHE operate over atoms,
where an atom is an encoding of atomic propositions. The
encoding used for monitoring the apartment consists of a
pair of timestamp and atomic proposition. For example, the
atom (23, s1), is used to refer to the truth value of switch 1
at timestamp 23.

5.1.1 Memory

The memory buffers all observations the monitor received
from the component it is associated with, and the monitors
it depends on. The memory is a partial function (noted M)
that associates atoms with verdicts. For example, the mem-
ory M = [(23,81) — T,(23,s2) — L] states that at times-
tamp 23, switch 1 was enabled while switch 2 was disabled.
An underlying operation used to perform monitoring is de-
noted by eval, which takes a Boolean expression of atoms,
and a memory. Function eval attempts to rewrite the expres-
sion by replacing the value of the atoms present in the mem-
ory by their associated verdict, then simplifies the expres-
sion (using Boolean simplification). The memory stores all
observations and is used to rewrite expressions when per-
forming monitoring.

Example 6 (eval) For the expression e = (23,s1) V (23, (1)
and memory M = [(23,s1) — T], applying eval(e, M)
will first rewrite e to T V (23, £1), which is then simplified
to T.

5.1.2 Execution History Encoding

We recall from Sect. 3.1 that monitors are Moore automata
that check decentralized traces. Since we are dealing with
partial information due to the decentralized nature of mon-
itors, the EHE encodes the execution of the underlying au-
tomaton, keeping track of potential states when receiving
partial observations. In brief, an EHE can be modeled as a
partial function (Z) that associates a timestamp ¢ and a state
q of the automaton with a boolean expression e. Whenever
e holds (i.e., Z(t,e)), we are sure that the automaton is in
state ¢ at timestamp t. The Boolean expression e is evalu-
ated using the content of the monitor’s memory data struc-
ture using eval. The size of the EHE grows to account for
timestamps and potential reachable states as the system exe-
cutes (as time passes). The main function that extends the
EHE to new timestamps is mov. Function mov takes the
current EHE, along with its last stored timestamp, and an
arbitrary timestamp in the future, and expands the entries by
generating the expressions up to the future timestamp us-
ing the structure of the automaton and reachability. As such,
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Listing 1 Rates of change for sensor data. The highlighted sensors are skipped since their data never change.

livingroom_table SensorBool 28.csv Min:
kitchen_dishwasher SensorThresh 167.csv Min
office_deskplug SensorThresh 119.csv Min
office_tv SensorBool 283.csv Min
livingroom_couch SensorBool 45.csv Min
kitchen_presence SensorBool 269.csv Min
kitchen_cl SensorBool 300.csv Min
kitchen_c2 SensorBool 315.csv Min
kitchen_c3 SensorBool 316.csv Min
kitchen_c4 SensorBool 317.csv Min
kitchen_c5 SensorBool 355.csv Min
kitchen_sink_hotwater SensorThresh 184.csv Min
kitchen_sink_coldwater SensorThresh 189.csv Min
bedroom_closet_door SensorBool 339.csv Min
bedroom_luminosity SensorThresh 120.csv Min
kitchen_cooktop SensorThresh 36.csv Min
bathroom_shower_coldwater SensorThresh 22.csv Min
bathroom_shower_hotwater SensorThresh 201.csv Min
kitchen_fridge_door SensorBool 31l4.csv Min
livingroom_tv SensorBool 282.csv Min
toilet SensorThresh 254 .csv Min
bathroom_sink_coldwater SensorThresh 86.csv Min
bathroom_sink_hotwater SensorThresh 264 .csv Min
kitchen_oven SensorThresh 232.csv Min
bedroom_drawer_1 SensorBool 357.csv Min
bedroom_drawer_2 SensorBool 358.csv Min
bedroom_bed_pressure SensorThresh 349.csv Min

(Detected Rate) Min:

3000 Max: 230704000 (ms) [OK]

: 2190810000 Max: 2190810000 (ms) [SKIP]
6000 Max: 231159000 (ms) [OK]
420000 Max: 343980000 (ms) [OK]

: 3000 Max: 247031000 (ms) [OK]

: 2000 Max: 230702000 (ms) [OK]
1000 Max: 259080000 (ms) [OK]
1000 Max: 431493000 (ms) [OK]
1000 Max: 259095000 (ms) [OK]
1000 Max: 259051000 (ms) [OK]
1000 Max: 779361000 (ms) [OK]
12000 Max: 260085000 (ms) [OK]
12000 Max: 260501000 (ms) [OK]
7000 Max: 605093000 (ms) [OK]
1000 Max: 254250000 (ms) [OK]
7000 Max: 260333000 (ms) [OK]
12000 Max: 345139000 (ms) [OK]
12000 Max: 345066000 (ms) [OK]
1000 Max: 260749000 (ms) [OK]
840000 Max: 344040000 (ms) [OK]
12000 Max: 518222000 (ms) [OK]
12000 Max: 260437000 (ms) [OK]

: 25000 Max: 25000 (ms) [SKIP]

: 2191235000 Max: 2191235000 (ms) [SKIP]

: 1000 Max: 345825000 (ms) [OK]

: 2000 Max: 515617000 (ms) [OK]
1000 Max: 342361000 (ms) [OK]
1000 Max: 779361000 (ms)

to create an EHE Z’ from another one Z containing current
information at timestamp t.,, with information up to times-
tamp teyture, We use Z' = mov(Z, teur, bruture ). Expanding
the EHE when information is missing leads to large expres-
sions in the EHE which require a larger memory to store and
a longer time to simplify. As such, it is important to ensure
that mov is called when sufficient information is present to
resolve the EHE.

5.2 Memory Garbage Collection For Large Traces

We optimized data structure memory (which is used to store
observations) to add garbage collection. To do so we have
created a new implementation (Memorylndexed) that in-
dexes observations by timestamp. When the monitor con-
cludes with a final verdict for timestamp ¢, and respawns to
monitor timestamp ¢ 4 1, all observations associated with a
timestamp lesser than or equal to ¢ are removed from the
memory. That is, the new memory M’ is constrained to
dom(M’) = dom(M) \ {(t",ap) € dom(M) | t"" < ¢}
(where dom indicates the domain of the partial function).
This ensures that older information is discarded as the mon-
itoring moves with time.

5.3 Lazy EHE Expansion

The EHE data structure is designed to be as general as possi-
ble, and keeps expanding while it has not detected the state
the automaton is in. For large trace sizes, this can cause
an EHE to grow quickly to consume all available memory
and prevents monitoring from completion. That is, the mon-
itor expands the EHE using mov, causing the expressions to

grow exponentially [32], when no information is provided
to the monitor.

This is prominently the case when monitoring safety
properties. Safety properties such as p = [(ap) will only
conclude when the value of ap is L. So long as the value
of ap is T, the monitor checking p does not reach a final
verdict, and does not report it to its parent. Consequently, a
monitor that checks a safety property that is never violated,
incurs a delay that is as long as the trace size. One approach
is to limit the expansion of the EHE to a fixed length (as-
suming a fixed maximal delay), and use a sliding window
to maintain the limit. This approach, however, may cause
monitoring not to conclude in cases where monitoring re-
quires more time than that of the window. To solve this issue
and provide the user with more control, we allow the user to
specify the expansion condition for the EHE as an additional
Boolean formula that is determined by communication. This
allows us to expanding the EHE based on the communication
patterns between monitors.

5.3.1 Scope

We recall from Sect. 3.2 that, for a given monitor labeled 1bl,
its alphabet A Py, consists of atomic propositions of depen-
dent monitors and the alphabet of the attached component.
For this enhancement, we consider monitors which only de-
pend on other monitors, i.e., when APy, C AP ons. We
can see, when looking at dependencies in Fig. 4, that most
monitors eventually rely only on lower-level monitors which
themselves rely on component observations. As such, most
high-level specifications for the smart home, and in partic-
ular safety properties (formulated as meta-specifications in
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Table 1), rely on other monitors which evaluate different
specifications, and thus only depend on monitors.

5.3.2 Communication AP

For a monitor that only depends on other monitors, its alpha-
bet consists of monitor references (i.e., AP, € AP mons)-
For each dependent monitor (labeled dep), we create two
atomic propositions, one if the received verdict is T (noted
Taep) and one ifitis L (noted | gcp). The resulting alphabet
is AP = {Tdepz Laep | dep € APipi}. The expansion
condition (noted ¢},2%°") is thus a Boolean expression over

the alphabet AP,
5.3.3 Evaluating the Expansion Condition

To evaluate the added atomic propositions, we define func-
tion resolve which takes as input an expansion condition

sl .
o5, a memory M, and a timestamp ¢ as follows:

resolve (o8, M, t) =
match gpféilgger with

| Taep € AP — eval((t,dep), M) =T

| Laep € AP — eval((t,dep), M) = L
Function resolve performs pattern matching to convert the
communication atomic proposition to an expression capable
of being evaluated using eval, checking if the monitor re-
turned verdict T and L at timestamp ¢ for T gep and Lgep,
respectively. We note that when the atom is not found in the
memory, both T g, and L gep do not hold.

5.3.4 Triggering the Expansion

Given a current time t.,, for which we last expanded the
EHE, we determine the maximum possible expansion for the
EHE by looking for the atom in the memory with the highest
timestamp, noted ¢,,,x. Next, we define function resolved,
which takes as input an expansion condition, a memory, a
current timestamp and a maximum timestamp and generates
the timestamps for which the EHE must be expanded.

resolved (™88 M. teur, tmax) =
{teur <t < tmax | TEsOlve(p'M188T M t) = T}

Finally, we pick the maximum of the timestamps and expand
the EHE accordingly.

Remark 1 (Wildcard Trigger.) It is common to observe a ex-
pansion condition that involves, for a given monitor (labeled
Ibl), all the atoms found in the checked specification. The
expansion condition is then a disjunction of all atoms (i.e.,
Vapea P (ap)). To avoid evaluating such large expres-
sion, particularly when many dependencies exist (for exam-
ple, meta-specifications actfloor(0) and actfloor(1)),
we provide an optimization flag for a monitor to only trigger
expansion upon receiving messages from other monitors.

Example 7 (Combination of safety properties and expan-
sion) Consider the three monitors mg, m; and ms that check
for the following specifications:

- O(—firehazard),

- O(—notwopeople),

- and mg A mj.

We can see that in this case my and m; only output ver-
dicts when the property is falsified. That is, monitor ms
which depends on both, has to normally expand its own
EHE as time passes awaiting information that will only be-
come available when the specification of either is falsified
(i.e., firehazard or notwopeople evaluate to true in either
monitors mgy or my, respectively). As such, we can specify
the expansion condition for monitor my to be L, V Ln,:
so long as no | is communicated from either mg or my, the
EHE is not expanded, as it cannot be falsified.

6 Assessing the Monitoring of the Apartment

Monitoring the smart apartment requires leveraging the in-
terdependencies between specifications to be able to scale,
beyond monitoring system properties, to more complex
meta-specifications (as detailed in Sect. 2.2). We assess us-
ing decentralized specifications to monitor the apartment
by conducting three scenarios. The first scenario (Sect. 6.1)
evaluates the scalability and re-use advantages of using de-
centralized specifications presented in Sect. 3.3 by looking
at the complexity of monitor synthesis, and communication
and computation costs when adding more complex speci-
fications that re-use sub-specifications. In addition, it also
assesses the impact of using lazy expansion, as well as the
overhead of monitoring on a per-monitor basis to account
for realistic deployments. The second scenario (Sect. 6.2)
evaluates the effectiveness of detecting ADL by looking at
various detection measures such as precision and recall. The
third scenario (Sect. 6.3) portrays the advantages of mod-
ularity by (i) adapting specification napping to use differ-
ent sensors without modifying dependencies, and (ii) port-
ing specification firehazard to a completely different en-
vironment (using the ARAS dataset [2]).

6.1 Monitoring Efficiency and Hierarchies
6.1.1 Monitor Synthesis

Table 1 displays the number of atomic propositions refer-
enced by each specification for the decentralized (|APY)
and the centralized (JAP€|) settings. Column d indicates the
maximum depth of the directed acyclic graph of dependen-
cies. We use the depth to assess how many levels of sub-
specifications need to be computed. When d = 0, it indicates
that the specification can be evaluated directly by the moni-
tor placed on the component, while d = 1 indicates that the
monitor has to poll at most 1 monitor for its verdict (which
typically relays the component observations). More gener-
ally, when d = n, it indicates that the specification depends
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on a monitor that has at most depth n— 1. The atomic propo-
sitions indicate either direct references to sensor observa-
tions (in the centralized setting) or references to either sen-
sor observations or dependent monitors (in the decentralized
setting). For certain specifications such as toilet which re-
lies only on the water sensor in the toilet to be detected,
there is no difference between using a centralized or decen-
tralized specification, as it resolves to the observations. Re-
duction becomes more pronounced when specifications re-
use other specifications as sub-specifications. For example,
specification acthouse = actfloor(0) V actfloor(1),
when decentralized, uses only 2 references (for each of the
sub-specifications). However, when expanded, it references
all 27 sensors used to detect activities. Additionally, speci-
fication notwopeople = —(actfloor(0) Aactfloor(1))
would not re-use the sub-specifications if expanded, requir-
ing all sensors again. Henceforth, re-use greatly reduces
the formula size and allows us to synthesize the monitors
needed to check the formulas, as the synthesis algorithm is
doubly exponential as mentioned in Sect. 3.3.

6.1.2 Assessing Re-use and Scalability

Reducing the size of the atomic propositions needed for a
specification not only affects monitor synthesis, but also run-
time performance, as atomic propositions represent the in-
formation needed to determine the specification (Sect. 3.3).
To assess re-use and scalability, we perform two tasks
and gather two measures pertaining to computation and
communication, and present results in Fig. 5. The first
task compares a centralized (SW-C) and a decentralized
(SW-D) version of specification sc_ok presented in Ex-
ample 5 using only 2 rooms. The second task introduces
large meta-specifications on top of the ADL specifica-
tions to check scalability. Firstly, we measure the com-
munication and computation for monitoring ADL spec-
ifications (ADL). Secondly, we introduce specifications
actfloor(0), actfloor(l) and acthouse (ADL+H) as
they require information about all sensors for ADL. Thirdly,
we add specification notwopeople (ADL+H+2), as it re-
uses the same sub-specifications as specification acthouse.
Lastly, we show all measures for all meta-specifications in
Table 1 (ADL+M). We re-use two measures from [29]: the
total number of simplifications the monitors are doing, and
the total number of messages transferred. These measures
are provided directly with THEMIS [30]. The total num-
ber of messages abstracts the communication (#Msgs), as
our messages are of fixed length, they also represent the
total data transferred. The total number of simplifications
(#Simplifications) abstracts the computation done by the
monitors, as they attempt to simplify Boolean expressions
that represent automaton states, which are the basic opera-
tions for maintaining the monitoring data structures in [29].
Both measures are normalized by the number of timestamps

in the execution (36,000). The resulting normalized mea-
sures represent the number of simplifications and messages
per round. We conduct simulations over 10 different days as
the person living in the house behaves slightly differently.
For each day, we execute 5 simulations 3,

Figure 5a shows the normalized number of messages
sent by all monitors. For the first task, we notice that the
number of messages is indeed lower in the decentralized set-
ting, SW-D sends on average 2 messages per timestamp less
than SW-C, which corresponds to the difference in the num-
ber of atomic propositions referenced (6 for SW-D and 8 for
SW-C). For the second task, we notice that on the baseline
for ADL, we observe 24 messages per timestamp, a smaller
number than the sensors count (27). This is because some
ADL like toilet are directly evaluated on the sensor with-
out communicating, and other ADL like preparing, re-use
other ADL specifications like kactivity. By introducing
the 3 meta-specifications stating that an activity occurred on
a floor or globally in the apartment, the number of messages
per round only increases by 15. This also coincides with
the number of atomic propositions for the specifications (6
for actfloor(0), 7 for actfloor(1), and 2 for acthouse)
as those monitors depend in total on 15 other monitors to
relay their verdicts. This costs much less than polling 16
sensors to determine actfloor(0), 11 sensors to determine
actfloor(1l), and 27 (atotal of 54) to determine acthouse.
To verify this, we notice that the addition of notwopeople
(ADL+H+2) that needs information from all 27 sensors,
only increases the total number of messages per timestamp
by 2. The specification notwopeople reuses the verdicts of
the two monitors associated with each actfloor specifi-
cation. After adding all the meta-specifications (ADL+M),
the total number of messages per timestamp is 46, whihc is
less than the number needed to verify adding actfloor, and
acthouse in a centralized setting (54). We notice a similar
effect for computation (Fig. 5b).

6.1.3 Impact of Lazy EHE Expansion

Figure 6 shows the maximum size of the EHE data structure
obtained in a single run when using default wildcard trig-
gers and custom triggers. For this scenario, we simulated
a run for each optimization profile for 10 different days.
The maximum size of an EHE presents us with the worst
case memory footprint needed to hold the EHE*. We recall
from Sect. 5.3, that wildcard triggers expand the EHE only
when receiving messages from other monitors, while custom
triggers designate specific expressions tailored for monitors
based on their specification.

3 The 95% confidence interval error was within 1% for the different
runs for a single day

4 Considering average EHE size in general would not be informative
as the unbounded LTL operators are on the few meta specifications
(particularly for safety).
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Fig. 5: Scalability of communication and computations in decentralized specifications (95% confidence interval error bars).

15000

10724

10275 104%

100%

10000

3201
31%

5000

Maximum EHE Size Obtained in a Single Run

None Wildcard Trigger
Optimization Profile

Custom Trigger

Fig. 6: Impact of lazy expansion on the size of EHE with
wildcard and custom triggers. The value is the mean across
traces from 10 different days with the 95% confidence in-
terval, the dashed error bar on the left is the minimum and
maximum size.

We observe that simply using the wildcard triggers does
not necessarily lead to reducing the EHE size. Since wait-
ing on communication can incur additional delay for pro-
cessing EHE. However, when the triggers are relevant to the

specification, we observe a decrease in worst-case EHE size,
resulting in a EHE that is 31% of the non-optimized size.

6.1.4 Individual Monitor Performance

While observing the aggregate information about the entire
simulation provides insights on advantages of using decen-
tralized specifications, monitors are effectively deployed on
devices, and their overhead is important to realistically as-
sess if such deployment is reasonable. This section presents
a per-monitor assessment of overhead for both runtime,
memory and communication.

To assess each monitor performance we execute a sim-
ulation for 10 different days and record the performance
of each monitor per round (that is 36,000 entries per day).
We report the results in Table 2. Runtime is recorded for
each monitor as the time it took to execute its monitoring
step. Memory is measured by measuring the size of the EHE
based on the expressions it contains, their length and the
number of bytes needed to encode them. This approach is
more accurate than attempting to use the JVM memory func-
tions as garbage collection interferes heavily with memory
measures for specific monitors. Communication is measured
by observing messages that are sent and received by the
monitor at a given round. Recall, that the message carries
a verdict, and all messages have the same constant message
size (needed to encode the monitor ID and a Boolean). For
all metrics we gather the mean, a 95% confidence error mar-
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Table 2: Average performance for 10 different days of individual monitors: runtime, memory, and communication (number
of incoming/outgoing messages). Value in a cell contains: mean + 95% confidence interval error (maximum value observed).

Name Runtime (ms) Size (B) Incoming Outgoing

toilet 1.9 £0.03 (635) 27 +0 27 0 (0 1 2
sink_usage 2.0 £0.02 (593) 50 +0.16 (161) 1 (3 1 (5
shower_usage 2.1 £0.02 (596) 138 £0.17 (173) 1 (3 1 @
napping 1.8 +£0.02 (638) 114 £0.18 (167) 1 (3 3 (81)
dressing 1.9 £0.02 (636) 90 +0.06 (287) 2 (6) 2 (12)
reading 34 £+£0.02 (639) 316 £0.61 (5,294) 3 (31 1 (32)
office_tv 2.2 £0.03 (637) 33 +0 (33) 0 (0) 1 ©2
computing 2.1 £0.02 (637) 90 +£0.14 (137) 1 @3 1 (5
cooking 2.0 £0.02 (637) 79 +£0.07 (245) 2 (6) 3 (21)
washing dishes 2.0 £0.02 (596) 95 +0.09 (299) 2 (5 1 %
kactivity 3.6 £0.02 (621) 502 £0.76 (727) 4 (10) 1 (5
preparing 24 +£0.02 (639) 130 £0.06 (185) 2 (10) 1 ®
livingroom tv 1.8 £0.02 (412) 93 +0.10 (339) 2 (5 2 (10)
eating 2.6 +£0.02 (635) 174 +£0.22 (231) 2 (6) 1 (8
actfloor(0) 2.5 £0.02 (636) 93 +£0.23 (703) 6 (20) 2 (16)
actfloor(1) 3.3 £0.02 (638) 280 +0.55 (1299) 7 (57) 2 (52)
acthouse 2.5 £0.02 (635) 158 £0.32 (927) 2 (28) 0 (0
notwopeople 2.3 +£0.02 (636) 134 +£0.18 (339) 2 (28) 0 (O
restricttv 2.2 £0.02 (635) 131 £0.24 (675) 2 (15) 0 (0

gin’, and the peak value. The peak value is important as it
allows to give a worst-case assessment which corresponds
to the highest resource consumption for the monitor to be
deployed on an IoT device.

We observe that the computation is in the order of a few
milliseconds at any given timestamp. Note that the sampling
rate of the simulation is 1s, even at the worst-case (639ms),
the performance is still acceptable for realistic deployment.
It is important to note that THEMIS schedules monitors to
run in parallel using all cores resources. Since monitors run
in parallel, they may interfere with other monitors. However,
our results give a general idea about the realistic deployment
of such monitors on the devices.

Memory usage for monitors varies with delays imposed
by specifications (using temporal operators) or dependen-
cies on other specifications. For monitors operating directly
at the sensor level, such as toilet and office_tv, the
memory consumption of the EHE is quite low (27 and
33 bytes respectively), and stable, since no delay is intro-
duced that causes their EHE to expand. Monitors with more
complex dependencies and specifications, such as reading,
actfloor(i), may exhibit large sizes of EHE in the worst-
case, as information may arrive all at once after being de-
layed by the dependent specifications. While the memory
footprint is still acceptable (~5KB), these monitors are also
typically deployed on larger devices as they are tasked with
aggregating more complex information about a given room,
floor or the entire house.

Communication patterns follow the dependencies be-
tween monitors on average. On average monitors receive a

5 This is omitted for communication as it was close to 0 for all mon-
itors, since communication is stable.

number of messages equivalent to the number of other mon-
itors they depend on, and send on average a number of mes-
sages equivalent to the number of other monitors that depend
on them. Due to delays imposed by the specification and
dependencies, monitors often have to wait to find verdicts
for several timestamps. when resolving after not reaching a
verdict for some time, some “’burst” behavior may be seen
where monitors send a large number of messages all at once
to notify those that depend on them of all the verdicts for
the elapsed timestamps. This can be minimized in the future
by appending a large message per recipient with all verdicts
instead of sending smaller ones, for each timestamp.

6.2 ADL Detection using RV
6.2.1 Measurements

Table 3 displays the effectiveness of using RV to detect all
ADL specifications on the trace of three days with different
schedules. To assess the effectiveness, we compared with
the provided self-annotated data from [25], where the user
annotated the start and end of each activity. We measure
precision, recall and F1 (the geometric mean of precision
and recall). To measure precision, we consider a true posi-
tive when the verdict T of a monitor for a given timestamp
fell indeed in the self-annotated interval for the activity. To
measure recall, we measure the proportion of the intervals
for which the monitors have determined T (using RV). This
approach is more fine-grained than the approach used in [48]
where the precision and recall are computed for the start and
end of intervals.

6.2.2 Results

The effectiveness of detection depends highly on the spec-
ification. Our approach performs well for the specifica-
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Table 3: Precision, Recall, and F1 scores of monitoring all ADL specifications on three days with different schedules.

Tuesday, Jan 31 2017

Monday, Feb 20 2017

Tuesday, Feb 21 2017

Specification Precision Recall F1 Precision Recall F1 Precision Recall F1
computing 0.98 099 099 094 099 096 099 099 0.99
office_tv 1.00 0.80 0.89 1.00 094 097 -
cooking 0.88 0.88 0.88  0.90 093 092 -
shower_usage 1.00 0.50 0.67 - 1.00 0.63 0.77
washing_dishes 1.00 047 064 093 0.63 0.75 -
livingroom_tv 1.00 0.43 0.60 - 1.00 047 0.64
dressing 1.00 041 0.58 1.00 031 0.47 -
toilet™ 1.00 0.18 0.30 - 0.75 024 0.36
sink usage 1.00 0.13 0.23 1.00 024 035 0.003 0.16 0.01
eating 0.61 035 044  0.70 0.73  0.71 -
napping 0.43 095 060 038 094 054 -
preparing 0.23 077 035 021 0.79 0.34 -
reading 0.37 0.04 0.06 0.02 0.10 0.03 -

tions computing, cooking, office_tv, as it exhibits high
precision and high recall. The second group of specifica-
tions contains specifications such as shower_usage, and
livingroom_tv. It exhibits high precision but medium re-
call, that is, we were able to determine around 40 to 50% of
all the timestamps where the specifications held according
to the person annotating, without any false positives. The
third group is similar to the second group but has very low
recall (13-18%) and contains the specifications toilet and
sink usage. We notice that for sink usage specific user
behavior can throw it off, as seen for the trace of Feb 21,
we elaborate on the limitations in the next paragraph. The
fourth group, which includes the specifications napping
and preparing, shows high recall but a high rate of false
positives. And finally, specification reading is not properly
detected, as it has a high rate of false positives and covers
almost no annotated intervals.

6.2.3 Limitations of RV for Detecting ADL

The limitations of using RV to detect ADL are due to the
modeling. As mentioned in Sect. 2.2, RV can be seen as a
knowledge-based approach to activity detection, as such it
suffers from similar weaknesses and limitations [21]. The
activity is described as a rigid formal specification over the
sensor data, and this has two consequences. Firstly, since
RV relies purely on sensor data, activities which cannot be
inferred from existing sensors will be poorly detected or not
detected at all. This is the case for reading, as there are no
sensors to indicate that the tenant is reading. We infer read-
ing by checking that the light is on in the room and no other
specified activity holds. Secondly, given that specifications
are rigid, we expect the user to behave exactly as specified
for the activity to be detected, any minor deviation results
in the activity not being detected (as seen on Feb 21). To il-
lustrate this point, the specification computing relies on the
power consumption of the plug in the office. Had the ten-

ant been charging his phone instead of computing, the recall
would have suffered greatly. Another great example of this
is the shower_usage specification, that is captured by in-
specting the water usage of the shower. The time the tenant
spends getting into the shower and out of the shower will
not be considered, which greatly impacts recall. The above
issues are further compounded by the annotation being car-
ried out by a person. The annotator can for example take a
few seconds to annotate some events which could impact re-
call, especially for short intervals of activity. However, even
with the inherent limitations of using knowledge-based ap-
proaches, our observed groups and results fall within the ex-
pected range, of knowledge-based approaches such as [48],
and also have similar effectiveness as model-based SVM ap-
proaches such as [20]. We elaborate on how the introduced
modularity from decentralized specifications can alleviate
some of these issues in Sect. 6.3.

6.3 Specification Adaptation for ADL Detection

Decentralized specifications introduce numerous advantages
(see Sect. 3.3) for monitoring hierarchical systems that can
change. We illustrated in Sect. 6.1 the scalability of decen-
tralized specifications with hierarchies. Decentralized spec-
ifications allows specifications to be written with references
to other specifications. The references allow specifications
to be modular, changing the referenced specification is trans-
parent with no modification to the specifications that depend
on it. In this section, we illustrate the advantages of modu-
larity in two cases. In the first case, we improve the detec-
tion of the activity napping by adding relevant sensors. The
change only requires changing the monitor for napping,
and no change is necessary for the remaining dependent
specifications. In the second case, we apply the specifica-
tion firehazard and all its dependencies on a completely
different environment using the ARAS dataset [2].



Bringing Runtime Verification Home

17

Table 4: Modifying the decentralized specification to im-
prove detection, and adapt to new environment.

(a) Refining napping using the bedroom sensors: bed pressure (weight),

presence (pres), and light (£).

Formula Precision Recall F1
O<2s5(weight) 0.43 0.95 0.60
O<s(weight) 0.43 0.99 0.60
O<3(weight) 0.43 1.0 0.60
O<s(pres Aweight)  0.34 0.14 020
O<3(—¢ A weight) 1.00 0.97 0.99

(b) Modifications to detect firehazard in ARAS.

Specification Formula

preparing {(<g(mkdrawer V m_fridge V m_cupboard)
cooking preparing

beds bedl V bed2

beds’ bedl A bed2

napping O<25(beds)

firehazard napping — —cooking

6.3.1 Improving Activity Detection

We modify the specification napping to better capture the
activity. This requires no change to specifications that de-
pend on napping. Table 4a shows the changes in precision
and recall, for various versions of the specification napping.
We modify the formula to relax the time constraints on the
output of the bed pressure sensor. We notice, that while this
could slightly improve recall (0.95 to 1), it does not trans-
late to any precision improvement (it remains at 0.43). We
explore using additional sensors in the room to capture the
specification better. Using the presence sensor proves to be
detrimental as it reduces precision to 0.34 and recall to 0.14.
This is reasonable, as the presence sensor is a motion de-
tector, and when someone is sleeping there may be no mo-
tion at all. However, people typically tend to turn the lights
off when sleeping. Using the additional light sensor to de-
tect lights are off, helps us increase precision to 1 and re-
call to 0.99. One could see that the effect of ADL detection
is behavior specific, a tenant that sleeps with lights on will
have undetected sleep using our specification. Being able to
change to specific parts of the specification without impact-
ing the rest of the it provides the flexibility to tune the ADL
detection to specific users and behaviors.

6.3.2 Adapting to New Environments

In Sect. 2.2 we mentioned that ADL can be challenging as
the detection of the specification does not only depend on
the user behavior, but also on the environment in which it
is monitored. In the context of learning techniques, using
information learned from one environment to apply it to de-
tection of ADL in other environments is discussed in [45].

Since decentralized specifications provide both a hierarchi-
cal and modular approach to designing specifications, it is
possible to adapt specifications to new environment, by only
changing the relevant parts or dependencies, and reason-
ing at the appropriate level. For instance, while specifica-
tions specifying ADL may change depending on the sensors
and user behavior, meta-specifications do not necessarily
change. We adapt specification firehazard and all its de-
pendencies in the ARAS [2] dataset. The ARAS dataset fea-
tures contact, pressure, distance, and light sensors, recording
the interactions of two tenants with the sensors over a period
of 30 days.

Table 4b shows the changes in the decentralized specifi-
cation compared with that of Amiqual4Home found in Ap-
pendix A. For activity preparing, we follow a similar pat-
tern, looking at the usage of cupboards, fridge, and kitchen
drawers. Thus, we adapt the formula to reflect the available
sensors in the kitchen. However, the ARAS dataset does
not provide any electricity sensors for appliances, nor any
way to detect heat being turned on. As such it is impossi-
ble to detect cooking using any sensors. Since we cannot
tell preparing and cooking apart, we define cooking to
simply be equivalent to preparing. Notice how in this case,
we inverted the dependency from Fig. 4 (in ARAS, cooking
depends on preparing). The ARAS dataset records the be-
havior of rwo people, instead of just one. As such, activity
napping needs to be adjusted for the two beds. There are
two ways to do so, the first assumes either one of the ten-
ants is napping (beds), and the second assumes both are
napping simultaneously (beds’). We notice that the meta-
specification firehazard remains unchanged. However, it
has two different interpretations. If we use beds, then it is
possible to trigger firehazard when one tenant is cooking
while the other is sleeping. We verify that, and notice that
it is indeed falsified in 8 days (7, 9, 16, 17-19, 24, 27). Us-
ing beds’, allows us to only capture firehazard when both
tenants are sleeping. It is then possible to refer napping to
allnapping and anynapping, then using firehazard on
allnapping, which would apply in both scenarios.

6.3.3 Discussion

We see that modularity provides several advantages. It al-
lows us to make local change to specifications that do not
need to be propagated upwards. It also makes it possible to
generalize and abstract the specification to adapt to multi-
ple environments. Decentralized specifications allow speci-
fications to be written in a modular and adaptable fashion,
allowing specifications to be adapted to target changes in
user behavior and environment. It can be seen much like
component-based design [57], which separate the imple-
mentation of each component in software, from its interac-
tion with other components.
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7 Related Work

We present similar or useful techniques for detecting ADL
in a smart apartment that use log analysis and complex event
processing. Then, we present techniques from stream-based
RV that can be extended for monitoring smart apartments.

7.1 ADL Detection Using Log Analysis

Detecting ADL can be performed using trace analysis tools.
The approach in [48] defines parametric events using Model
Checking Language (MCL) [52] based on the modal mu-
calculus (inspired by temporal logic and regular expres-
sions). Traces are read and transformed into actions, then
actions are matched against the specifications to determine
locations in the trace that match ADL. Five ADL (sleep,
using toilets, cooking, showering, and washing dishes) are
specified and checked in the same smart apartment as our
work. While this technique is able to detect ADL activi-
ties, it amounts to checking traces offline, and a high level
of post-processing is required to analyze the data. In [10],
the authors describe an approach for log analysis at very
large scale. The specification is expressed using Metric First
Order Temporal Logic (MFOTL), and logs are expressed
as a temporal structure. The authors develop a MapReduce
monitoring algorithm to analyze logs generated by more
than 35,000 computers, producing approximately 1 TB of
log data each day. While this approach is designed for dis-
tributed systems, does not map dependencies, and works of-
fline, it could be used to process and monitor rich specifica-
tions over sensor data seen as log files.

7.2 ADL Detection Using Complex Event Processing

Reasoning at a much higher level of abstraction than sensor
data, the approach in [42] attempts to detect ADL by ana-
lyzing the electrical consumption in the household. To do
so, it employs techniques from Complex Event Processing
(CEP), in which data is fed as streams and processed using
various functions to finally output a stream of data. In this
work, the ADL detection is split into two phases, one which
detects peaks and plateaus of the various electrical devices,
and the second phase uses those to indicate whether or not
an appliance is being used. This illustrates a transformation
from low-level data (sensor signal) to a high-level abstrac-
tion (an appliance is being used). The use of CEP for de-
tecting ADL is promising, as it allows for similar scalability
and abstraction. However, CEP’s model of named streams
makes it hard to analyze the specification formally, making
little distinction between specification and implementation
of the monitoring logic.

7.3 ADL Detection Using Runtime Verification

Similarly to CEP but focusing on Boolean verdicts, various
stream-based RV techniques have been elaborated such as
LOLA [26] which are used to verify correctness properties
for synchronous systems such as the PCI bus protocol and a

memory controller. A more recent approach uses the Tempo-
ral Stream-Based Specification Language (TeSSLa) to ver-
ify embedded systems using FPGAs [27]. Stream-based RV
is particularly fast and effective for verifying lengthy para-
metric traces. However, it is unclear how these approaches
handle monitor synthesis for a large number of components
and account for the hierarchy in the system.

7.4 Discussion

Stream-based systems such as stream-based RV [18,40] and
CEP are bottom-up. Data in streams is eventually aggre-
gated into more complex information and relayed to a higher
level. Decentralized specifications also support top-down
approaches, which would increase the efficiency of moni-
toring large and hierarchical systems. To illustrate the point,
consider the decentralized specification in Fig. 3b. In the au-
tomaton Asc,lighti, the evaluation of the dependent monitor
A, only occurs when reaching ¢, so long as the automa-
ton is in gp, no interaction with the dependent monitor is
necessary. This top-down feedback can be used to naturally
optimize dependencies and increase efficiency. Because of
the oracle-based implementation of decentralized specifica-
tions, it is possible to integrate any monitoring reference that
eventually returns a verdict. One could imagine integrat-
ing other stream-based monitors or even data-driven ADL
detection approaches. The integration works both ways, as
monitors can be considered a (blocking) stream of verdicts
for the other techniques.

8 Conclusion and Future Work

8.1 Conclusion

Monitoring a smart apartment presents RV with interesting
new problems as it requires a scalable approach that is com-
positional, dynamic, and able to handle a multitude of de-
vices. This is due to the hierarchical structure imposed by
either limited communication capabilities of devices across
geographical areas or the dependencies between various
specifications. Attempting to solve such problems with cen-
tralized specifications is met with several obstacles at the
level of monitor synthesis techniques (as we are presented
with large formulae), and also at the level of monitoring
as one needs to model interdependencies between formulae
and re-use the sub-specifications used to build more com-
plex specifications. We illustrate how decentralized specifi-
cations tackle such systems by explicitly modeling of inter-
dependencies between specifications. Furthermore, we illus-
trate monitoring specifications that detect ADL in addition
to system properties and even more specifications defined
over both types of specifications.

8.2 Future Work

We believe that the use of decentralized specifications could
be further extended to bring monitoring closer to data (col-
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lected on sensors), and make RV a suitable verification tech-
nique for edge computing. One challenge of the case study
was to determine the correct sampling period for monitor to
operate. Further investigation is required to layout the trade-
offs between the sampling period, communication overhead,
and energy consumption. Also, decentralization is only sup-
ported by specifications based on the standard (point-based)
LTL3 semantics. We believe that the use and decentraliza-
tion of richer specification languages are desirable. For in-
stance, we consider (i) using a counting semantics able to
compute the number of steps needed to witness the satisfac-
tion or violation of a specification [5] (ii) using techniques
allowing to deal with uncertainty (e.g., in case of message
loss) [9] (iii) using spatio-temporal specifications (e.g. [41])
to reason on physical locations in the house, and (iv) using
a quantitative semantics possibly with time [4]. Finally, we
consider using runtime enforcement [33,37,36] techniques
(especially those for timed specifications [35,39]) to guar-
antee system properties and improve safety in the house
(e.g., disabling cooking equipment whenever specification
firehazard is violated). This requires to define the foun-
dations for decentralized runtime enforcement on the theo-
retical side, and provide houses and monitors with actuators
on the practical side.
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A List of Properties

Table 5 shows all property definitions used in this case study.
We ommitted the smaller monitors that are trivial such as
m_kitchen_cupboard which is a disjunction of all cupboard doors
observations in the kitchen.
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Table 5: Definitions of the specifications used in the case study. A specification with name prefixed with m_ is such that the
corresponding monitor is directly deployed on the component.

Name

Formula

sc_light(z)
sc_ok

O(switch, = O(light; U —switch;), i € [0..3]

i€[0..3] sc_light(i)

m_toilet
sink_usage

m_bathroom_sink water

shower_usage

toilet_water

O<3(m_bathroom_sink water)
bathroom_sink_cold V bathroom_sink_hot
O<2(m_bathroom_shower_water)

napping O<25(m_bedroom_bed_pressure)

dressing O <4(m_bedroom_closet_door V m_bedroom drawers))

reading m_bedroom_light A {<4(—dressing A —napping)

office_tv O<sz(moffice tv)

computing O<3(moffice deskplug)

cooking O<5(mkitchen_cooktop V mkitchen_ oven)

washing dishes Q<3 (mkitchen dishwasher V m_kitchen_sink water)

kactivity m_kitchen presence A O<s(mXkitchen_sink water Vv
m_kitchen fridgedoor V m_kitchen_cupboard)

preparing kitchen activity A —cooking

livingroom_tv
eating

O<s(mlivingroom tv A m_livingroom_couch)
—m kitchen presence A O<g(m_livingroom_table)

actfloor(0) cooking V preparing V eating V washing dishes V livingroom_tv V
m_toilet

actfloor(l) computingVdressingVnappingVoffice tvVreadingVshower_usageV
sink_usage

acthouse actfloor(0) V actfloor(1)

notwopeople —(actfloor(0) A actfloor(1l))

restricttv_office
restricttv_living

restricttv
firehazard

officetv = (<10(—office_tv)
livingroom tv = {<1o(—livingroom_tv)
restricttv_living A restricttv_office
napping — —cooking
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