
Monitoring Distributed Component-Based Systems

Yliès Falcone1 , Hosein Nazarpour2, Saddek Bensalem2, and Marius Bozga2

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Verimag, 38000 Grenoble, France

FirstName.LastName@univ-grenoble-alpes.fr

Abstract. We monitor asynchronous distributed component-based systems with
multi-party interactions. We consider independent components whose interac-
tions are managed by several distributed schedulers. In this context, neither a
global state nor the total ordering of the executions of the system is available at
runtime. We instrument the system to retrieve local events from the local traces
of the schedulers. Local events are sent to a global observer which reconstructs
on-the-fly the set of global traces that are compatible with the local traces, in
a concurrency-preserving fashion. The set of compatible global traces is repre-
sented in the form of an original lattice over partial states, such that each path of
the lattice corresponds to a possible execution of the system.

1 Introduction

Component-based design consists in constructing complex systems using a set of
predefined components. Each component is an atomic entity with some actions and
interfaces. Components communicate and interact with each other through their inter-
faces. The behavior of a component-based system with multiparty interactions (CBS) is
defined according to the behavior of each component as well as their interactions. Each
interaction is a set of simultaneously executed actions of the existing components [9].
In the distributed setting, for efficiency reasons, the execution of the interactions is
distributed among several independent schedulers. Schedulers and components are in-
terconnected (e.g., networked physical locations) and work together as a whole unit to
meet some requirements. The execution of a multi-party interaction is then achieved by
sending/receiving messages between the schedulers and the components [3].

Verification techniques can ensure the correctness of a distributed CBS. Runtime
Verification (cf. [30,1,18]) consists in verifying the executions of the system against the
desired properties. We consider properties referring to the global states of the system
which can not be projected nor checked on individual components. In the following,
we point out the problems that one encounters when monitoring distributed CBSs. We
use neither a global clock nor a shared memory. This makes the execution of the sys-
tem more dynamic and parallel by avoiding synchronization to take global snapshots,
which would go against the distribution of the verified system. However, it complicates
the monitoring problem because no component of the system can be aware of the global
trace. Since the execution of interactions is based on sending/receiving messages, com-
munications are asynchronous and delays in the reception of messages are inevitable.
Moreover, the absence of ordering between the execution of the interactions in different

https://orcid.org/0000-0002-0114-0641

2 Y. Falcone et al.

schedulers makes the actual execution trace not observable. Our goal is to allow for the
verification of distributed CBSs by formally instrumenting them to observe their global
behavior while preserving their performance and behavior.

Our main contribution is an approach for the monitoring of distributed CBSs w.r.t.
specifications referring to the global states of the system. First, we define a monitor-
ing hypothesis that permits to rely on an abstract semantic model of distributed CBSs
that encompasses a variety of distributed (component-based) systems. Our model only
relies on the semantics of CBS, given in terms of Labeled Transition Systems (LTSs),
thus it is not bound to any CBS framework. In a distributed CBS, due to the parallel
executions in different schedulers (i) events (i.e., actions changing the state of the sys-
tem) are not totally ordered, and (ii) the actual execution trace of a distributed system
can not be obtained. Although each scheduler is aware of its local events, to evaluate
the global behavior, it is necessary to find a set of possible ordering of the events of
all schedulers, that is, the set of compatible execution traces. In our setting, schedulers
do not communicate together but only communicate with their own associated com-
ponents. Indeed, what makes the actions of different schedulers to be causally related
is only the shared components, which are involved in several multi-party interactions
managed by different schedulers. In other words, the executions of two actions managed
by two schedulers and involving a shared component are definitely causally related, be-
cause each execution requires the termination of the other execution in order to release
the shared component. To account for existing causalities among events, we (i) employ
vector clocks to define the ordering of events, (ii) compose each scheduler with a con-
troller to compute the correct vector clock of each generated event, (iii) compose each
shared component with a controller to resolve the causality, and (iv) introduce a cen-
tralized algorithm that executes on a global observer to reconstruct a set of compatible
execution traces that could possibly happen in the system with respect to the received
events. We represent the set of compatible traces using a computation lattice tailored for
CBSs. Such a computation lattice consists of a set of partially connected nodes. Created
nodes are partial states and become global states during monitoring. Any path of the lat-
tice projected on a scheduler represents the corresponding local partial trace according
to that scheduler (soundness). All possible global traces are recorded (completeness).

An extended version of this paper with more details and proofs is available in [29].

2 Preliminaries and Notations

Sequences For a finite set E, a sequence s containing elements of E is formally defined
by a total function s : I → E where I is either the integer interval [0 . . n] for some
n ∈ N, or N itself (the set of natural numbers). Given a set of elements E, e1 · e2 · · · en
is a sequence or a list of length n over E, where ∀i ∈ [1 . . n] . ei ∈ E. The empty
sequence is noted ϵ or [], depending on the context. The set of (finite) sequences over E
is noted E∗. E+ is defined as E∗ \ {ϵ}. The length of a sequence s is noted length(s).
We define s(i) as the ith element of s and s(i · · · j) as the factor of s from the ith to
the jth element; and s(i · · · j) = ϵ, if i > j. We define function last : E+ → E
as last(e) = s(length(s)). For an infinite sequence s = e1 · e2 · e3 · · ·, we define
s(i · · ·) = ei · ei+1 · · · as the suffix of s from index i onwards. An n-tuple is an ordered
list of n elements, where n ∈ N. The ith element of tuple t is denoted by t[i].

Monitoring Distributed Component-Based Systems 3

Labeled transition systems (LTS) Labeled Transition Systems (LTSs) are used to de-
fine the semantics of CBSs. An LTS is a 3-tuple (State,Lab,Trans) where State is a
non-empty set of states, Lab is a set of labels, and Trans ⊆ State×Lab×State is the
transition relation. A transition (q, a, q′) ∈ Trans means that the LTS can move from
state q to state q′ by consuming label a; we say that a is enabled in q. We abbreviate
(q, a, q′) ∈ Trans by q

a−→Trans q
′ or by q

a−→ q′ when clear from context. Moreover,
relation Trans is extended to its reflexive and transitive closure in the usual way and
we allow for regular expressions over Lab to label moves between states: if expr is a
regular expression over Lab (i.e., expr denotes a subset of Lab∗), q

expr−−−→ q′ means
that there exists one sequence of labels in Lab matching expr such that the system can
move from q to q′.

Vector Clock Mattern and Fidge’s vector clocks [20,27] are a more powerful exten-
sion of Lamport’s scalar logical clocks [23], i.e., strongly consistent with the order-
ing of events. In a distributed system with a set of schedulers {S1, . . . , Sm}, VC =
{(c1, . . . , cm) | ∀j ∈ [1 . .m] . cj ∈ N} is the set of vector clocks, such that vector clock
vc ∈ VC is a tuple of m scalar (initially zero) values c1, . . . , cm locally stored in each
scheduler Sj ∈ {S1, . . . , Sm} where ∀k ∈ [1 . .m] . vc[k] = ck holds the latest (scalar)
clock value scheduler Sj knows about scheduler Sk ∈ {S1, . . . , Sm}. A unique vec-
tor clock is associated each event in the system ([27], Sec. 7). For two vector clocks
vc1 and vc2, max(vc1, vc2) is a vector clock vc3 such that ∀k ∈ [1 . .m] . vc3[k] =
max(vc1[k], vc2[k]). Moreover two vector clocks can be compared together such that
vc1 < vc2 ⇐⇒ ∀k ∈ [1 . .m] . vc1[k] ≤ vc2[k] ∧ ∃z ∈ [1 . .m] . vc1[z] < vc2[z].

Happened-before relation [23] Relation ↣ on the set of system events is the smallest
relation satisfying the following three conditions: (1) If a and b are events in the same
scheduler, and a comes before b, then a ↣ b. (2) If a is the sending of a message by
one scheduler and b is the reception of the same message by another scheduler, then
a ↣ b. (3) If a ↣ b and b ↣ c then a ↣ c. Two distinct events a and b are said to be
concurrent if a ↣̸ b and b ↣̸ a. Vector clocks are strongly consistent with happened-
before relation. That is, for two events a and b with associated vector clocks vca and
vcb respectively, vca < vcb ⇐⇒ a ↣ b.

Computation lattice [27] A computation lattice is represented as a directed graph with
m (i.e., number of schedulers executed in distributed manner) axes. Each axis is dedi-
cated to the state evolution of a scheduler. A computation lattice expresses all the pos-
sible traces. A computation lattice L is a pair (N,↣), where N is the set of nodes (i.e.,
global states) and ↣ is the happened-before relation among the nodes.

3 Distributed CBS

We describe our assumptions on CBSs by providing them with a general semantics.
The exact model and the system behavior are unknown. The architecture, the behav-
iors of the components and the schedulers, and the association between schedulers and
components can be obtained by several techniques such as the ones in [10,7]. Our mon-
itoring framework is independent from the technique used to obtain the system and its
implementation. Inspiring from conformance-testing theory [32], we refer to this as the
monitoring hypothesis.

4 Y. Falcone et al.

3.1 Semantics

The system is composed of components in a set B =
{
B1, . . . , B|B|

}
and sched-

ulers in a set S =
{
S1, . . . , S|S|

}
. Each component Bi is endowed with a set of actions

Act i. Joint actions, aka multi-party interactions, involve the execution of actions on
several components. An interaction is a non-empty subset of ∪|B|

i=1Act i and we denote
by Int the set of interactions in the system. At most one action of each component is
involved in an interaction: ∀a ∈ Int .|a ∩ Act i|≤ 1. In addition, each component Bi

has internal actions modeled as a unique action βi. Schedulers coordinate the execution
of interactions and ensure that each multi-party interaction is jointly executed (Def. 2).

We assume some functions from the system architecture.

– Function inv : Int → 2B\{∅} indicates the components involved in an interaction.
Moreover, we extend function inv to internal actions by setting inv(βi) = i, for any
βi ∈

{
β1, . . . , β|B|

}
. Interaction a ∈ Int is a joint action if and only if |inv(a)|≥ 2.

– Function mng : Int → S indicates the scheduler managing an interaction: for an
interaction a ∈ Int mng(a) = Sj if a is managed by scheduler Sj .

– Function scp : S → 2B \ {∅} indicates the set of components in the scope of a
scheduler s.t. ∀j ∈ [1 . .|S|] . scp(Sj) =

⋃
a′∈{a∈Int | mng(a)=Sj}

inv(a′).

We describe the behavior of components, schedulers, and their composition.

Definition 1 (Behavior of a component). The behavior of a component B is an LTS
(QB ,ActB ∪ {βB} ,→B) s.t.:

– QB is the set of states which has a partition
{
Qr

B , Q
b
B

}
, where Qr

B (resp. Qb
B) is

the so-called set of ready (resp. busy) states,
– ActB is the set of actions, and βB is the internal action,
– →B⊆

(
Qr

B ×ActB ×Qb
B

)
∪
(
Qb

B × {βB} ×Qr
B

)
is the set of transitions.

The set of ready (resp. busy) states Qr
B (resp. Qb

B) is the set of states s.t. the component
is ready (resp. not ready) to perform an action. Component B (i) has actions in set
ActB , which are possibly shared with some of the other components, (ii) has an internal
action βB s.t. βB ̸∈ ActB which models internal computations of component B, and
(iii) alternates moving from a ready state to a busy state and from a busy state to a
ready state. Note that busy states permit the modelling of distributed (decentralized)
execution of components: after an interaction, components stay in busy states until the
internal computation related to the interaction terminates (after which they get ready
for the next interaction and so on). The state of components is only modified by their
internal actions; other actions are dedicated to synchronisation.

We assume that each component Bi ∈ B is defined by the LTS (QBi
,ActBi

∪
{βBi

} ,→Bi
) where QBi

has a partition
{
Qr

Bi
, Qb

Bi

}
of ready and busy states.

Definition 2 (Behavior of a scheduler). The behavior of a scheduler S is an LTS
(QS ,ActS ,→S) s.t.:

– QS is the set of states,

Monitoring Distributed Component-Based Systems 5

– ActS = ActγS∪ActβS is the set of actions, where ActγS = {a ∈ Int | mng(a) = S}
and ActβS = {βi | Bi ∈ scp(S)},

– →S⊆ QS ×ActS ×QS is the set of transitions.

ActγS ⊆ Int is the set of interactions managed by S, and ActβS is the set of internal
actions of the components involved in an action managed by S.

In the following, we assume that each scheduler Sj ∈ S is defined by the LTS
(QSj

,ActSj
,→Sj

) where ActSj
= ActγSj

∪ ActβSj
; as per Def. 2. The coordination

of interactions of the system i.e., the interactions in Int , is distributed among sched-
ulers. Actions of schedulers consist of interactions of the system. Since one scheduler
is associated with each interaction, schedulers manage disjoint sets of interactions (i.e.,
∀Si, Sj ∈ S . Si ̸= Sj =⇒ ActγSi

∩ ActγSj
= ∅). Intuitively, when a scheduler exe-

cutes an interaction, it triggers the execution of the associated actions on the involved
components. Moreover, when a component executes an internal action, it triggers the
execution of the corresponding action on the associated schedulers and also sends the
updated state of the component to the associated schedulers, that is, the component
sends a message including its current state to the schedulers. Note, by construction,
schedulers are always ready to receive such a state update.

Remark 1. Since components send their updated states to the associated schedulers, the
current state of a scheduler contains the last state of each component in its scope.

Definition 3 (Shared component). Bs = {B ∈ B | |{S ∈ S | B ∈ scp(S)|≥ 2}}.

A shared component is in the scope of more than one scheduler. Thus, the execution of
its actions are managed by more than one scheduler. The global execution of the system
can be described as the parallel execution of interactions managed by the schedulers.

Definition 4 (Global behavior). The system behavior is the LTS (Q,GAct ,→) where:

– Q ⊆ ⊗|B|
i=1 Qi×

⊗|S|
j=1 QSj

is the set of states consisting of the states of schedulers
and components,

– GAct ⊆ 2Int ∪
⋃|B|

i=1{βi} \ {∅} is the set of possible global actions of the system
consisting of either several interactions and/or several internal actions (several
interactions can be executed concurrently by the system),

– →⊆ Q × GAct × Q is the transition relation defined as the smallest set abiding
by the following rule. A transition is a move from state (q1, . . . , q|B|, qs1 , . . . , qs|S|)
to state (q′1, . . . , q

′
|B|, q

′
s1 , . . . , q

′
s|S|

) on global actions in set α ∪ β, where α ⊆
Int and β ⊆ ⋃|B|

i=1 {βi}, noted (q1, . . . , q|B|, qs1 , . . . , qs|S|)
α∪β−−−→ (q′1, . . . , q

′
|B|,

q′s1 , . . . , q
′
s|S|

), whenever the following conditions hold:
C1: ∀i ∈ [1 . . |B|] .|(α ∩Act i) ∪ ({βi} ∩ β) |≤ 1,
C2: ∀a ∈ α . (∃Sj ∈ S .mng(a) = Sj)

=⇒
(
qsj

a→Sj
q′sj ∧ ∀Bi ∈ inv(a) . qi

a∩Acti−−−−→Bi
q′i

)
,

C3: ∀βi ∈ β . qi
βi−→Bi

q′i ∧ ∀Sj ∈ S . Bi ∈ scp(Sj) . qsj
βi−→Sj

q′sj ,
C4: ∀Bi ∈ B \ inv(α ∪ β) . qi = q′i,
C5: ∀Sj ∈ S \mng(α) . qsj = q′sj .

6 Y. Falcone et al.

where functions inv and mng are extended to sets of interactions and internal actions.

The system components execute according to the schedulers decisions.

– C1 states that a component performs at most one execution step at a time. Executed
global actions (α∪β) contains at most one interaction involving each component.

– Condition C2 states that whenever an interaction a managed by scheduler Sj is ex-
ecuted, a is enabled in Sj and the corresponding action (in a ∩ Act i) is enabled in
each component involved in this interaction.

– Condition C3 states that internal actions are executed whenever they are enabled in
the corresponding components. Schedulers are aware of internal actions of compo-
nents in their scope. This results in transferring the updated state to the schedulers.

– Conditions C4 and C5 state that the components and the schedulers not involved in
an interaction remain in the same state.

Remark 2. The operational description of a CBS is usually more detailed. The execu-
tion of conflicting interactions in schedulers needs first to be authorized by a conflict-
resolution module which guarantees that two conflicting interactions are not executed
at the same time. Moreover, schedulers follow the (possible) priority rules among the
interactions, i.e., in the case of two or more enabled interactions (interactions, which
are ready to be executed by schedulers), those with higher priority are allowed to be ex-
ecuted. Since we only deal with execution traces, we assume that these are correct w.r.t.
the conflicts and priorities. Therefore, defining the other modules is out of our scope.
Moreover, schedulers could interact together as part of some coordination protocol, but
our model does not account for it.

Definition 5 (Monitoring hypothesis). The behavior of the CBS under scrutiny can be
modeled as an LTS as per Def. 4.

3.2 Traces

Running the system produces a trace. Intuitively, a trace is the sequence of traversed
states of the system, from some initial state and following the transition relation of the
LTS of the system. For the sake of simplicity and for our monitoring purposes, the states
of schedulers are irrelevant in the trace and thus we restrict the system states to states
of the components.

We consider a CBS consisting of a set B of components (as per Def. 1) and a set S
of schedulers (as per Def. 2) with the global behavior as per Def. 4.

Definition 6 (Trace). A trace is a sequence (q01 , . . . , q
0
|B|) ·(α0∪β0) ·(q11 , . . . , q1|B|) · · ·

(qk1 , . . . , q
k
|B|) · · ·, s.t. q01 , . . . , q

0
|B| are the initial states of components B1, . . . , B|B| and

∀i ∈ [0 . . k − 1] .(qi1, . . . , q
i
|B|)

αi∪βi

−−−−→ (qi+1
1 , . . . , qi+1

|B|), where → is the transition
relation of the global system and scheduler states are discarded.

Since a trace t has partial states where at least one component is busy with its internal
computation, t is referred to as a partial trace. Although the partial trace of the system
exists, it is not observable because it would require a perfect observer having simultane-
ous access to the states of the components. Introducing such an observer in the system

Monitoring Distributed Component-Based Systems 7

would require all components to synchronize, and would defeat the purpose of building
a distributed system. Instead, we shall instrument the system to observe the sequence
of states through schedulers.

In the sequel, we consider a partial trace t = (q01 , . . . , q
0
|B|)·(α0∪β0)·(q11 , . . . , q1|B|) · · ·,

as per Def. 6. Each scheduler Sj ∈ S, observes a local partial trace sj(t) which consists
in the sequence of state-evolutions of the components it manages.

Definition 7 (Observable local partial-trace). The local partial-trace sj(t) observed
by scheduler Sj is defined on the partial trace t as follows:

– sj

((
q01 , . . . , q

0
|B|

))
=

(
q01 , . . . , q

0
|B|

)
, and

– sj (t · (α ∪ β) · q) =
{
t if Sj /∈ mng(α) ∧ (inv(β) ∩ scp(Sj) = ∅)
t · γ · q′ otherwise

where
• q =

(
q1, . . . , q|B|

)
,

• γ = (α ∩ {a ∈ Int | mng(a) = Sj}) ∪ (β ∩ {βi | Bi ∈ scp(Sj)})

• q′ = (q′1, . . . , q
′
|B|) with q′i =

 last(sj(t))[i] if Bi ∈ inv(γ) ∩ scp(Sj),
qi if Bi ∈ inv(γ) ∩ scp(Sj),
? otherwise (Bi ̸∈ scp(Sj)).

We assume that the initial system state is observable by all schedulers. An interac-
tion a ∈ Int is observable by scheduler Sj if Sj manages the interaction (i.e., Sj ∈
mng(a)). Moreover, an internal action βi, i ∈ [1 . .|B|], is observable by scheduler Sj

if Bi is in the scope of Sj . The state observed after an observable interaction or internal
action consists of the states of components in the scope of Sj , i.e., a state (q1, . . . , q|B|)
where qi is the new state of component Bi if Bi ∈ scp(Sj) and ? otherwise.

4 Efficient Construction of the Computation Lattice

We define how a global observer constructs on-the-fly a computation lattice rep-
resenting the possible global traces compatible with the local partial-traces observable
by schedulers. Since schedulers do not interact directly, the execution of an interac-
tion by one scheduler seems to be concurrent with the execution of all interactions by
other schedulers. Nevertheless, if scheduler Sj manages interaction a and scheduler
Sk manages interaction b s.t. a shared component Bi ∈ Bs is involved in a and b,
i.e., Bi ∈ inv(a) ∩ inv(b), the execution of interactions a and b are causally related.
In other words, there exists only one possible ordering of a and b and they could not
have been executed concurrently. Ignoring the actual ordering of a and b would result
in retrieving inconsistent global states (i.e., states that do not belong to the system). To
find out the actual ordering and obtain the local partial-traces, one needs instrument-
ing the system by adding controllers to the schedulers and to the shared components.
Each time a scheduler executes an interaction, the involved components are notified by
the scheduler to execute their corresponding actions. Moreover, the controller of the
scheduler updates its local clock and notifies the controller of the shared components
involved in the interaction by sending its vector clock. Whenever a shared component
executes its internal action β, schedulers with the shared component in their scope are

8 Y. Falcone et al.

notified by receiving the updated state. Moreover, the vector clock stored in the con-
troller of the shared component is sent to the controller of the associated schedulers.
Consequently, schedulers with a shared component in their scope exchange their vector
clocks through the shared component. Such an instrumentation is described in [29] but
omitted for space reasons.

Intuitively, for scheduler Sj , the execution of an interaction (labeled by a vector
clock), or notification by the internal action of a component which the execution of its
latest action has been managed by scheduler Sj , is defined as an event of scheduler Sj .
For a partial trace t, the sequence of events of scheduler Sj is denoted by event(sj(t)).

4.1 Computation Lattice

The computation lattice is represented implicitly using vector clocks. The construc-
tion mainly performs the two following operations: (i) creations of new nodes and (ii)
updates of existing nodes in the lattice. The observer receives two sorts of events: events
related to the execution of an interaction in Int , referred to as action events, and events
related to internal actions referred to as update events. (Recall that internal actions carry
the state of the component that has performed the action – the state is transmitted to the
observer by the controller that is notified of this action. See Sec. 3). Hence, the set of
action events is defined as Ea = Int × VC with VC the set of vector clocks, and the
set of update events is defined as Eβ = ∪i∈[1,|B|] ({βi} ×Qi). Action events lead to
the creation of new nodes in the direction of the scheduler emitting the event while up-
date events complete the information in the nodes of the lattice related to the state of
the component related to the event. The set of all events is E = Eβ ∪ Ea. Since the
received events are not totally ordered (because of communication delay), we construct
the computation lattice based on the vector clocks attached to the received events. Note,
we assume that the events received from a scheduler are totally ordered.

We first adapt the notion of computation lattice to CBSs.

Definition 8 (Computation lattice). A computation lattice L is a tuple (N, Int ,),
where:

– N ⊆ Ql × VC is the set of nodes, with VC the set of vector clocks and Ql =⊗|B|
i=1

(
Qr

i

⋃{
⊥j

i

∣∣∣ Sj ∈ S ∧Bi ∈ scp(Sj)
})

,
– Int is the set of multi-party interactions as defined in Sec. 3.1,
– = {(η, a, η′) ∈ N × Int ×N | a ∈ Int ∧ η ↣ η′ ∧ η.state

a−→ η′.state},

where is the extended happened-before relation, which is labeled by the set of multi-
party interactions and η.state refers to the state of node η.

Intuitively, a computation lattice consists of a set of partially connected nodes, where
each node is a pair, consisting of a system state and a vector clock. A system state
consists of the states of all components. The state of a component is either a ready
state or a busy state (as per Def. 1). We represent a busy state of component Bi, by
⊥j

i which shows that component Bi is busy to finish its latest action which has been
managed by scheduler Sj . A computation lattice L initially consists of an initial node
initL = (init , (0, . . . , 0)), where init is the initial state of the system and (0, . . . , 0)
is a vector clock where all the clocks associated with the schedulers are zero. The set

Monitoring Distributed Component-Based Systems 9

of nodes of L is denoted by L.nodes , and for a node η = (q, vc) ∈ L.nodes , η.state
denotes q and η.clock denotes vc. If (i) the event of node η happened before the events
of node η′, that is η′.clock > η.clock and η ↣ η′, and (ii) the states of η and η′

follow the global behavior of the system (Def. 4) in the sense that the execution of
an interaction a ∈ Int from the state of η brings the system to the state of η′, that is
η.state

a−→ η′.state , then in the computation lattice it is denoted by η a η′ or by
η η′ when clear from context.

Two nodes η and η′ of the computation lattice L are said to be concurrent if neither
η.clock > η′.clock nor η′.clock > η.clock . For two concurrent nodes η and η′ if there
exists a node η′′ s.t. η′′ η and η′′ η′, then node η′′ is said to be the meet of η
and η′ denoted by meet(η, η′,L) = η′′.

4.2 Intermediate Operations

We consider a computation lattice L (Def. 8). A received event either modifies L or
is kept for later in a queue. Action events extend L using operator extend (Def. 9), and
update events update the existing nodes of L by adding the missing state information
into them using operator update (Def. 12). By extending the lattice with new nodes, one
needs to further complete the lattice by computing the joins of created nodes (Def. 11)
with existing ones to complete the set of possible global states and traces.
Extension of the lattice We define a function to extend a node of the lattice with an
action event which takes as input a node and an action event and outputs a new node.

Definition 9 (Node extension). Given a node η = (q, vc) ∈ Ql × VC and an action
event e = (a, vc′) ∈ Ea, function extend : (Ql ×VC)×Ea → Ql ×VC is defined as

follows: extend(η, e) =


(q′, vc′) if ∃j ∈ [1 . .|S|] .(vc′[j] = vc[j] + 1∧

∀j′ ∈ [1 . .|S|] \ {j} . vc′[j′] = vc[j′])

undefined otherwise ;

with ∀i ∈ [1 . .|B|] . q′[i] =
{
⊥k

i if Bi ∈ inv(a),where k = mng(a).index ,

q[i] otherwise.

Node η is said to be extendable by event e if extend(η, e) is defined. Node η = (q, vc)
represents a global state of the system and extensibility of η by action event e = (a, vc′)
means that from the global state q, scheduler Sj = mng(a), could execute interaction
a. State ⊥k

i indicates that component Bi is busy and being involved in a global action
which has been executed (managed) by scheduler Sk for k ∈ [1 . .|S|].

We say that L is extendable by action event e if there exists a node η ∈ L.nodes s.t.
extend(η, e) is defined.

Property 1. ∀e ∈ Ea .|{η ∈ L.nodes | ∃η′ ∈ Ql ×VC . η′ = extend(η, e)}|≤ 1.

Property 1 states that for any action event e, there exists at most one node in the lattice
for which function extend is defined (meaning that L can be extended by event e from
that node). We define a relation between two vector clocks to distinguish the concurrent
execution of two interactions s.t. both could happen from a specific global system state.

Definition 10 (Relation JL). JL = {(vc, vc′) ∈ VC ×VC | ∃! k ∈ [1 . .|S|] . vc[k] =
vc′[k] + 1∧∃! l ∈ [1 . .|S|] . vc′[l] = vc[l] + 1∧∀j ∈ [1 . .|S|] \ {k, l} . vc[j] = vc′[j]}.

10 Y. Falcone et al.

For two vector clocks vc and vc′ to be in JL, they should agree on all but two clock
values related to two schedulers of indexes k and l. On one index, the value of one
vector clock is equal to the value of the other vector clock plus 1, and the converse on
the other index. Intuitively, (η.clock , η′.clock) ∈ JL means that η and η′ are associated
with two concurrent events (caused by the execution of two interactions managed by
different schedulers) that both could happen from a unique global system state, which
is the meet of η and η′ (see Property 2).

Property 2. ∀η, η′ ∈ L.nodes . (η.clock , η′.clock) ∈ JL ⇒ meet(η, η′,L) ∈ L.nodes .

The join of two nodes is defined as follows.

Definition 11 (Join node). For two nodes η, η′ ∈ L.nodes s.t. (η.clock , η′.clock) ∈
JL, the join of η and η′, denoted by join(η, η′,L) = η′′, is the node defined as follows:
– ∀i ∈ [1 . .|B|] . η′′.state[i] ={

η.state[i] if η.state[i] ̸= ηm.state[i],

η′.state[i] otherwise;

– η′′.clock = max(η.clock , η′.clock);

where ηm = meet(η, η′,L).
According to Property 2, for two nodes η and η′ in relation JL, their meet node exists
in the lattice. The state of the join of η and η′ is defined by comparing their states
and the state of their meet. Since two nodes in relation JL are concurrent, the state
of component Bi for i ∈ [1 . .|B|] in nodes η and η′ is either equal to the state of
component Bi in their meet, or only one of the nodes η and η′ has a state different from
their meet (components can not be both involved in two concurrent executions). The
join node of two nodes η and η′ takes into account the latest changes of the state of
the nodes η and η′ compared to their meet. Note that join(η, η′,L) = join(η′, η,L),
because join is defined for nodes whose clocks are in relation JL.
Update of the lattice We define a function to update a node of the lattice which takes
as input a node and an update event and outputs the updated version of the input node.

Definition 12 (Node update). Given a node η = ((q1, . . . , q|B|), vc) and an update
event e = (βi, q

′
i) ∈ Eβ with i ∈ [1 . .|B|], which is sent by scheduler Sk with k ∈

[1 . .|S|], function update : (Ql ×VC)× Eβ → Ql ×VC is defined as follows:

update(η, e) = ((q1, . . . , qi−1, q
′′
i , qi+1, . . . , q|B|), vc), with q′′i =

{
q′i if qi = ⊥k

i ,

qi otherwise.

An update event (βi, q
′
i) contains an updated state of some component Bi. By updating

a node η in the lattice with an update event, which is sent from scheduler Sk, we update
the partial state associated to η by adding the state information of that component, if the
state of component Bi associated to node η is ⊥k

i . Intuitively it means that a busy state
resulting of the execution of an action managed by scheduler Sk can only be replaced
by a ready state sent by Sk. Updating node η does not modify vc.
Buffering events The reception of an action or update event might not always lead to
extending or updating the current computation lattice. Due to communication delay, an
event which has happened before another event might be received later by the observer.
It is necessary for the construction of the lattice to use events in a specific order. Events

Monitoring Distributed Component-Based Systems 11

not in the desired order must be kept in a waiting queue to be used later. For example,
such a situation occurs when receiving action event e s.t. function extend is not defined
over e and none of the existing nodes of the lattice. Event e must be kept in the queue
until obtaining another configuration of the lattice in which function extend is defined.
Moreover, an update event e′ referring to an internal action of component Bi is kept in
the queue if there exists an action event e′′ in the queue s.t. component Bi is involved in
e′′, because we can not update the nodes of the lattice with an update event associated
to an execution, which is not yet taken into account in the lattice.

Definition 13 (Queue κ). A queue of events is a finite sequence of events in E. More-
over, for a non-empty queue κ = e1 · e2 · · · er, remove(κ, e) = κ(1 · · · z − 1) · κ(z +
1 · · · r) with e = ez ∈ {e1, e2, . . . , er}. Moreover, events in the queue are picked up in
the same order as they have been stored in the queue (FIFO queue).

4.3 Algorithms for Constructing the Computation Lattice

We define an algorithm based on the above definitions to construct the computa-
tion lattice based on the received events. The algorithm consists of a main procedure
(see Algorithm 1) and several sub-procedures. The algorithm defines and uses a lattice
(Def. 8, global variable L) and a queue (Def. 13, global variable κ).

For an action event e ∈ Ea with e = (a, vc), e.action denotes interaction a and
e.clock denotes vector clock vc. For an update event e ∈ Eβ with e = (βi, qi), e.index
denotes index i.

After the reception of each event e from a controller of a scheduler, MAKE(e) =
MAKE(e, false) is called. In the sequel, we describe each procedure.

Algorithm 1 MAKE

Global variables: L initialized to initL,
κ initialized to ϵ,
V initialized to (0, . . . , 0).

1: procedure MAKE(e, from-queue)
2: if e ∈ Ea then
3: ACTIONEVENT(e, from-queue)
4: else if e ∈ Eβ then
5: UPDATEEVENT(e, from-queue)
6: end if
7: end procedure

MAKE (Algorithm 1) Procedure MAKE
takes two parameters as input: an event e
and a boolean variable from-queue . Pa-
rameters e and from-queue vary based
on the type of event e. Boolean vari-
able from-queue is true when the in-
put event e is picked up from the queue
and false otherwise (i.e., event e is re-
ceived from a controller of a sched-
uler). Procedure MAKE uses two sub-
procedures, ACTIONEVENT and UPDA-

TEEVENT. MAKE updates the global variables.

ACTIONEVENT (Algorithm 2) Procedure ACTIONEVENT takes as input an action
event e and a boolean parameter. Procedure ACTIONEVENT modifies global variables
L and κ. ACTIONEVENT has a local boolean variable named lattice-extend , which is
true when an input action event could extend the lattice (i.e., the current computation
lattice is extendable by the input action event) and false otherwise. By iterating over the
existing nodes, ACTIONEVENT checks if there exists a node η in L.nodes s.t. function
extend is defined over event e and node η (Def. 9). If such a node η is found, ACTION-
EVENT creates the new node extend(η, e), adds it to the set of the nodes of the lattice,
invokes procedure MODIFYQUEUE, and stops iteration. Otherwise, ACTIONEVENT in-
vokes procedure MODIFYQUEUE and terminates. In the case of extending the lattice by

12 Y. Falcone et al.

a new node, it is necessary to create the (possible) join nodes. To this end, in Line 15
procedure JOINS is called to evaluate the current lattice and create the join nodes. For
optimization purposes, REMOVEEXTRANODES is then called to eliminate unnecessary
nodes that represent past system states. After making the join nodes and (possibly) re-
ducing the size, if the input action event is not picked from the queue, ACTIONEVENT
invokes procedure CHECKQUEUE in Line 18, otherwise it terminates.

Algorithm 2 ACTIONEVENT

1: procedure ACTIONEVENT(e, from-queue)
2: lattice-extend ← false

3: for all η ∈ L.nodes do
4: if ∃η′ ∈ Ql ×VC . η′ = extend(η, e) then
5: L.nodes← L.nodes ∪ {η′}
6: MODIFYQUEUE(e, from-queue, true)
7: lattice-extend ← true

8: break
9: end if

10: end for
11: if ¬ lattice-extend then
12: MODIFYQUEUE(e, from-queue, false)
13: return
14: end if
15: JOINS()
16: REMOVEEXTRANODES()
17: if ¬ from-queue then
18: CHECKQUEUE()
19: end if
20: end procedure

UPDATEEVENT (Algorithm 3)
Recall that an update event
e contains the state update
of some component Bi with
i ∈ [1, n] (e.index = i).
UPDATEEVENT takes as in-
put an update event e and a
boolean value associated with
parameter from-queue . UPDA-
TEEVENT modifies global vari-
ables L and κ. First, UPDA-
TEEVENT checks the events in
the queue. If there exists an ac-
tion event e′ in the queue s.t.
component Bi is involved in
e′.action , UPDATEEVENT adds
update event e to the queue us-
ing MODIFYQUEUE and termi-
nates. Indeed, one can not up-
date the nodes of the lattice with

an update event associated to an execution, which is not yet taken into account in the
lattice. If no action event in the queue concerns component Bi, UPDATEEVENT updates
all the nodes of the lattice (Lines 8-10) according to Def. 12. Finally, the input update
event is removed from the queue if it is picked from the queue, using MODIFYQUEUE.

MODIFYQUEUE takes as input an event e and boolean variables from-queue and
event-is-used . Procedure MODIFYQUEUE adds (resp. removes) event e to (resp. from)
queue κ. If event e is picked up from the queue (i.e., from-queue = true) and e is used
in the algorithm to extend or update the lattice (i.e., event-is-used = true), event e is
removed from the queue. Moreover, if event e is not picked up from the queue and it is
not used in the algorithm, event e is stored in the queue.

JOINS extends L in such a way that all the possible joins have been created. First,
procedure JCOMPUTE is invoked to compute relation JL (Def. 10) among the existing
nodes of the lattice and then creates the join nodes and adds them to the set of the nodes.
Then, after the creation of the join of two nodes η and η′, (η.clock , η′.clock) is removed
from JL. It is necessary to compute JL again after the creation of joins, because new
nodes can be in JL. This process terminates when JL is empty.

Monitoring Distributed Component-Based Systems 13

JCOMPUTE computes relation JL by pairwise iteration over all the nodes of the lattice
and checks if the vector clocks of any two nodes satisfy the conditions in Def. 10. The
pair of vector clocks satisfying the above conditions are added to JL.

Algorithm 3 UPDATEEVENT

1: procedure UPDATEEVENT(e, from-queue)
2: for all e′ ∈ κ do
3: if e′ ∈ Ea ∧ e.index ∈ inv(e′.action)

then
4: MODIFYQUEUE(e, from-queue, false)
5: return
6: end if
7: end for
8: for all η ∈ L.nodes do
9: η ← update(η, e)

10: end for
11: MODIFYQUEUE(e, from-queue, true)
12: end procedure

CHECKQUEUE recalls the events
stored in the queue e ∈ κ and then
executes MAKE(e, true), to check
whether the conditions for taking
them into account to update the lat-
tice hold. CHECKQUEUE checks
the events in the queue until none
of the events in the queue can be
used either to extend or to up-
date the lattice. To this end, before
checking queue κ, a copy of queue
κ is stored in κ′, and after iterat-
ing all the events in queue κ, the al-
gorithm checks the equality of cur-

rent queue and the copy of the queue before checking. If the current queue κ and copied
queue κ′ have the same events, it means that none of the events in queue κ has been used
(thus removed), therefore the algorithm stops checking the queue again by breaking the
loop. Note, when the algorithm is iterating over the events in the queue, i.e., when the
value of variable from-queue is true, it is not necessary to iterate over the queue again
(Algorithm 2, Line 17).

REMOVEEXTRANODES removes the extra nodes of the lattice. Since our online al-
gorithm is used for runtime monitoring purposes, each node n represents the evaluation
of system execution up to node n. Hence, the nodes which reflect the state of the system
in the past are not valuable for the runtime monitor. For this, after extending the lattice
by an action event, procedure REMOVEEXTRANODES is called to eliminate some (pos-
sibly existing) nodes of the lattice. A node in the lattice can be removed if the lattice
no longer can be extended from that node. Having two nodes of the lattice η and η′ s.t.
every clock in the vector clock of η′ is strictly greater than the respective clock of η, one
can remove node η. This is due to the fact that the algorithm never receives an action
event which could have extended the lattice from η where the lattice has already took
into account the occurrence of an event which has greater clock stamps than η.clock .

5 Properties of the Constructed Lattice

We give the properties of the lattice constructed in the previous section.

5.1 Insensitivity to Communication Delay

Algorithm MAKE can be defined over a sequence of events received by the observer
ζ = e1 · e2 · e3 · · · ez ∈ E∗ by applying it sequentially from e1 to ez with the initial
lattice initL and an empty queue.

14 Y. Falcone et al.

Proposition 1 (Insensitivity to the reception order). ∀ζ, ζ ′ ∈ E∗,∀Sj ∈ S . ζ ↓Sj
=

ζ ′ ↓Sj
=⇒ MAKE(ζ) = MAKE(ζ ′), where ζ ↓Sj

is the projection of ζ on scheduler
Sj which results the sequence of events generated by Sj .

Proposition 1 states that different ordering of the events does not affect the output result
of Algorithm MAKE. Note, Proposition 1 assumes that all events in ζ and ζ ′ can be dis-
tinguished. For a sequence of events ζ ∈ E∗, MAKE(ζ).lattice denotes the constructed
computation lattice L by algorithm MAKE.

5.2 Correctness of Lattice Construction

Computation lattice L has a frontier node, which is the node with the greatest vector
clock. A path of the constructed computation lattice L is a sequence of causally related
nodes of the lattice, starting from the initial node and ending up in the frontier node.

Definition 14 (Set of the paths of a lattice). The set of the paths of a constructed
computation lattice L is Π(L) =

{
η0 · α1 · η1 · α2 · η2 · · ·αz · ηz | η0 = initL ∧∀r ∈

[1 . . z] .
(
ηr−1

αr ηr ∨ (∃N ⊆ L.nodes . ηr−1 = meet(N,L) ∧ ηr = join(N,L) ∧

∀η ∈ N . ηr−1
aη

η ∧ αr =
⋃

η∈N aη)
)}

, where the notions of meet and join are
naturally extended to a set of nodes.

A path is a sequence of nodes s.t. for each pair of adjacent nodes either (i) the prior node
and the next node are related according to or (ii) the prior and the next node are the
meet and the join of a set of existing nodes respectively. A path from a meet node to the
associated join node represents an execution of a set of concurrent interactions.

At runtime, the execution of such a system produces a partial trace t = q0 · (α1 ∪
β1) · q1 · (α2 ∪ β2) · · · (αk ∪ βk) · qk which consists of partial states and global actions
(Def. 6). Due to the occurrence of concurrent interactions and internal actions, each
partial trace can be represented as a set of compatible and possible partial traces.

Definition 15 (Compatible partial-traces of a partial trace). The set of all com-
patible partial-traces of partial trace t is P(t) = {t′ ∈ Q · (GAct · Q)∗ | ∀j ∈
[1 . .|S|], t′ ↓Sj

= t ↓Sj
= sj(t)}.

Trace t′ is compatible with trace t if the projection of both t and t′ on scheduler Sj , for
j ∈ [1 . .|S|], results the local trace of scheduler Sj . In a partial trace, for each global
action which consists of several concurrent interactions and internal actions of differ-
ent schedulers, one can define different ordering of those concurrent interactions, each
of which represents a possible execution of that global action. Consequently, several
compatible partial-traces can be encoded from a partial trace.

Note that two compatible traces with only difference in the ordering of their internal
actions are considered as a unique compatible trace. Two compatible traces of a partial
trace differ if they have different ordering of interactions.

For monitoring purposes we need to represent the run of the system by a sequence of
global states (recall that we consider properties over global states). For this, we extend
the technique in [28], to define a function which takes as input a partial trace of the
distributed system (i.e., a sequence of partial states) and outputs an equivalent global
trace in which all the internal actions (β) are removed from the trace and instead the

Monitoring Distributed Component-Based Systems 15

updated state after each internal action is used to complete the states of the partial trace.

Definition 16 (Function refine R). Function R : Q · (GAct ·Q)∗ −→ Q · (Int ·Q)∗

is defined as R(init) = init and:

R(σ · (α ∪ β) · q) =


R(σ) · α · q if β = ∅,
map [x 7→ upd(q, x)] (R(σ)) if α = ∅,
map [x 7→ upd(q, x)] (R(σ) · α · q) otherwise;

with upd : Q×(Q∪2Int) −→ Q∪2Int defined as: upd((q1, . . . , q|B|), α) = α, and

upd
(
(q1, . . . , q|B|), (q

′
1, . . . , q

′
|B|)

)
= (q′′1 , . . . , q

′′
|B|), where ∀k ∈ [1 . . |B|], q′′k = qk

if (qk /∈ Qb
k) ∧ (q′k ∈ Qb

k) and q′k otherwise.

Function R uses the state after internal actions in order to update the partial states using
function upd.

By applying function R to the set of compatible partial-traces P(t), we obtain a
new set of global traces, which is (i) equivalent to P(t) (according to [28], Def. 7), (ii)
internal actions are discarded in the presentation of each global trace and (iii) contains
maximal global states that can be built with the information contained in the partial
states observed so far. In Sec. 3.2 (Def. 7) we define

{
s1(t), . . . , s|S|(t)

}
, the set of

observable local partial-traces of the schedulers obtained from partial trace t. From each
local partial-trace we can obtain the sequences of events generated by the controller
of each scheduler, s.t. the set of all the sequences of the events is {event(s1(t)), . . . ,
event(s|S|(t))} with event(sj(t)) ∈ E∗ for j ∈ [1 . .|S|].

In the following, we define the set of all possible sequences of events that could be
received by the observer.

Definition 17 (Events ordering). Considering partial trace t, the set of all possible
sequences of events that could be received by the observer is Θ(t) = {ζ ∈ E∗ | ∀j ∈
[1 . .|S|] . ζ ↓Sj

= event(sj(t))}.

Events are received by the observer in any order compatible with the local events of
schedulers.

Proposition 2 (Soundness). Given a partial trace t as per Def. 6, we have:
∀ζ ∈ Θ(t),∀π ∈ Π(MAKE (ζ) .lattice),∀j ∈ [1 . .|S|] . π ↓Sj

= R(sj(t)).

Proposition 2 states that the projection of all paths in the lattice on a scheduler Sj for
j ∈ [1 . .|S|] results in the refined local partial-trace of scheduler Sj . The following
proposition states the correctness of the construction in the sense that applying Algo-
rithm MAKE to a sequence of observed events (i.e., ζ ∈ Θ) at runtime, results a com-
putation lattice which encodes a set of the sequences of global states, s.t. each sequence
represents a global trace of the system.

Proposition 3 (Completeness). Given a partial trace t as per Def. 6, we have:
∀ζ ∈ Θ(t),∀t′ ∈ P(t),∃!π ∈ Π

(
MAKE (ζ) .lattice

)
. π = R(t′).

π is said to be the associated path of the compatible partial-trace t′. Applying algorithm
MAKE to any sequence of events constructs a computation lattice whose set of paths
consists on all the compatible global traces.

Figure 1 depicts an overview of our approach.

16 Y. Falcone et al.

Unobservable Global Trace t

Local Partial-Traces

Distributed CBS

Sequence of
Partially-Ordered

Events

Online Algortihm

Algorithm 1

Lattice L

•

•

•
•

•

•

•

•

•

•

•

•

Observable Local Partial-Traces

Local Partial-Trace S1(t)
Local Partial-Trace S|S|(t)

Local Events

Transformation Instrumented
Distributed CBS

Set of paths of L
Π

Set of Compatible Global Traces
P(t)

(Soundness)(Completeness)
Proposition 2Proposition 3

≡ Def. 14

Fig. 1: Overview of the construction of the computation lattice.

6 Related Work
The problem of reconstructing a global behavior from local observations/behaviors

has been investigated in several settings. In the setting of choreographies, the approach
in [25] reconstructs global graphs from (local) communicating finite-state machines.
More recently, in the setting of program replay, the approach in [24] introduces causal-
consistent replay to record the execution of a concurrent program and reproduce a mis-
behavior as well as its causes inside a debugger.

In the following, we focus our comparison on the research efforts that contributed
to the distribution of the monitoring process. The approaches in [4,15,12,14] define al-
gorithms for decentralized monitoring for distributed systems with a global clock. In
comparison, we target asynchronous distributed CBSs with a partial-state semantics,
where global states are not available at runtime. Hence, instead of having a global trace
at runtime, we deal with a set of compatible partial traces which could have happened
at runtime. The approach in [5] detects and analyzes synchronous distributed systems
faults in a centralized manner using local LTL properties evaluated with local traces.
In our setting, global properties can not be projected and checked on individual com-
ponents nor on individual schedulers. Thus, local traces can not be directly used for
verifying properties. In [31], the authors designed a method for monitoring safety prop-
erties in distributed systems relying on the existing communication among processes.
Compared to [31], our algorithm is sound, in the sense that we reconstruct the behavior
of the distributed system based on all possible partial-traces of the distributed system.
In our work, each trace could have happened as the actual trace of the system, and could
have generated the same events. The approach in [26] monitors LTL properties on fi-
nite executions of a distributed system. In comparison, our approach is tailored to and
leverages the structure of CBSs; traces are defined over partial states and are obtained
from a generic semantic model of CBSs.

There are several approaches dedicated to the monitoring of CBSs: [13,21] for the
correctness of reconfigurations of Fractal [11] components, [17] and [28] for the run-
time verification of functional properties on respectively sequential and multi-threaded
BIP [2] CBSs, [8] for the runtime checking of local behaviors specified as quantitative
properties. However, these approaches do not handle fully concurrent components and
they either assume a global clock or a shared memory. This is for instance the case with
our previous work on monitoring multithreaded CBSs [28] where we assume a global
clock shared by the threads used to execute the components.

Monitoring Distributed Component-Based Systems 17

7 Conclusions

Conclusions. We present a technique that enables the monitoring on distributed CBSs,
where the interactions are partitioned among a set of distributed schedulers. Each sched-
uler is in charge of execution of a subset of interactions. The execution of each inter-
action triggers the actions of the components involved in the interaction. Our technique
consists in (i) transforming the system to generate events associated to partial trace lo-
cal to each scheduler, (ii) synthesizing a centralized observer which collects the local
events of all schedulers (iii) reconstructing on-the-fly the possible orderings of the re-
ceived events which forms a computation lattice. Our technique leverages the nature
of distributed CBSs in that it uses components shared by several interactions to infer
causality relations between events. The constructed lattice encodes exactly the compat-
ible global traces: each could have occurred as the actual execution. We implemented
our monitoring approach in a tool which executes in parallel with the distributed system
and takes as input the events generated from each scheduler and outputs the evaluated
computation lattice. Our experimental results, omitted for space reasons, show that even
for traces with thousands of events, the lattice size remains reasonable.

Future Work. The first extension of this work is to define how to use the computa-
tion lattice for efficiently evaluating properties at runtime. Moreover, we plan to de-
centralize the runtime monitors so that the satisfaction or violation of specifications
can be detected by local monitors alone using decentralized monitoring techniques
from [6,15,14] and decentralization/projection techniques for CBSs in [22,8]. By dis-
tributing the monitors, we indeed decrease the load of monitoring process on a single
entity. Another possible direction is to extend the proposed framework for timed com-
ponents and timed specifications as presented in [33]. Finally, we plan to go beyond
simple monitoring to allow components to react to errors by defining runtime enforce-
ment [19] approaches for concurrent CBSs. For this, we plan extending our runtime
enforcement approach [16] defined in the sequential setting to the multithreaded and
distributed settings.

Acknowledgment. The authors thank the reviewers for their helpful comments.
The authors acknowledge the support from the H2020-ECSEL-2018-IA call – Grant

Agreement number 826276 (CPS4EU), the European Union’s Horizon 2020 research
and innovation programme - Grant Agreement number 956123 (FOCETA), from the
French ANR project ANR-20- CE39-0009 (SEVERITAS), the Auvergne-Rhône-Alpes
research project MOAP, and LabEx PERSYVAL- Lab (ANR-11-LABX-0025-01) fund-
ed by the French program Investissement d’avenir.

18 Y. Falcone et al.

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory and Ad-
vanced Topics, Lecture Notes in Computer Science, vol. 10457, pp. 1–33. Springer (2018)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.: Rigorous
component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)

3. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and implementation for
systems with interaction and priority. In: Formal Techniques for Networked and Distributed
Systems - FORTE, 2008. pp. 116–133 (2008)

4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des. 48(1-2),
46–93 (2016), https://doi.org/10.1007/s10703-016-0253-8

5. Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed reactive
systems. In: Proceedings of the Australian Software Engineering Conference (ASWEC’06).
p. 243–252. IEEE (2006)

6. Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: FM 2012: Formal Methods -
18th International Symposium. pp. 85–100 (2012)

7. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Optimized distributed implementation of
multiparty interactions with restriction. Sci. Comput. Program. 98, 293–316 (2015)

8. Bistarelli, S., Martinelli, F., Matteucci, I., Santini, F.: A formal and run-time framework
for the adaptation of local behaviours to match a global property. In: Kouchnarenko, O.,
Khosravi, R. (eds.) Formal Aspects of Component Software - 13th International Conference,
FACS 2016, Besançon, France, October 19-21, 2016, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 10231, pp. 134–152 (2016)

9. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In:
International Conference on Concurrency Theory. pp. 508–522 (2008)

10. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation of
component-based models with priorities. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fis-
chmeister, S. (eds.) Proceedings of the 11th International Conference on Embedded Soft-
ware, EMSOFT 2011, part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei,
Taiwan, October 9-14, 2011. pp. 59–68. ACM (2011)

11. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The FRACTAL component
model and its support in java. Softw. Pract. Exp. 36(11-12), 1257–1284 (2006)

12. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with a global
clock. Formal Methods Syst. Des. 49(1-2), 109–158 (2016)

13. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic reconfigura-
tions of components. In: Barbosa, L.S., Lumpe, M. (eds.) Proceedings of the 7th International
Workshop on Formal Aspects of Component Software (FACS 2010). LNCS, vol. 6921, pp.
200–217. Springer (2010)

14. El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized specifications: Semantics,
properties, analysis, and simulation. ACM Trans. Softw. Eng. Methodol. 29(1), 1:1–1:57
(2020)

15. Falcone, Y., Cornebize, T., Fernandez, J.: Efficient and generalized decentralized monitoring
of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) Formal Techniques for Dis-
tributed Objects, Components, and Systems - 34th IFIP WG 6.1 International Conference,
FORTE 2014, Held as Part of the 9th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8461, pp. 66–83. Springer (2014)

16. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based systems
with formal and sound recovery. Int. J. Softw. Tools Technol. Transf. 19(3), 341–365 (2017)

https://doi.org/10.1007/s10703-016-0253-8

Monitoring Distributed Component-Based Systems 19

17. Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.: Runtime verification of
component-based systems in the BIP framework with formally-proved sound and complete
instrumentation. Software and System Modeling 14(1), 173–199 (2015)

18. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

19. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory and Ad-
vanced Topics, Lecture Notes in Computer Science, vol. 10457, pp. 103–134. Springer
(2018)

20. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial ordering (1987)
21. Kouchnarenko, O., Weber, J.: Adapting component-based systems at runtime via policies

with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) Formal Aspects of Com-
ponent Software - 10th International Symposium, FACS 2013, Nanchang, China, October
27-29, 2013, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8348, pp.
234–253. Springer (2013)

22. Kouchnarenko, O., Weber, J.: Decentralised evaluation of temporal patterns over component-
based systems at runtime. In: Lanese, I., Madelaine, E. (eds.) Formal Aspects of Component
Software - 11th International Symposium, FACS 2014, Bertinoro, Italy, September 10-12,
2014. Lecture Notes in Computer Science, vol. 8997, pp. 108–126. Springer (2014)

23. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

24. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics for message
passing concurrent programs. Fundam. Informaticae 178(3), 229–266 (2021)

25. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical chore-
ographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015. pp. 221–232. ACM (2015)

26. Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asynchronous dis-
tributed systems. Université Libre de Bruxelles, Tech. Rep (2006)

27. Mattern, F.: Virtual time and global states of distributed systems. Parallel and Distributed
Algorithms 1(23), 215–226 (1989)

28. Nazarpour, H., Falcone, Y., Bensalem, S., Bozga, M.: Concurrency-preserving and sound
monitoring of multi-threaded component-based systems: theory, algorithms, implementa-
tion, and evaluation. Formal Aspects of Computing pp. 1–36 (2017)

29. Nazarpour, H., Falcone, Y., Jaber, M., Bensalem, S., Bozga, M.: Monitoring distributed
component-based systems. ArXiv e-prints (2017)

30. Runtime Verification: http://www.runtime-verification.org (2001-2021)
31. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in

distributed systems. In: Proceedings of the 26th International Conference on Software Engi-
neering. pp. 418–427. IEEE Computer Society (2004)

32. Tretmans, J.: A formal approach to conformance testing. In: Protocol Test Systems, VI, Pro-
ceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test systems.
pp. 257–276 (1993)

33. Triki, A., Combaz, J., Bensalem, S.: Optimized distributed implementation of timed
component-based systems. In: Formal Methods and Models for Codesign (MEMOCODE),
2015 ACM/IEEE International Conference on. pp. 30–35. IEEE (2015)

	Monitoring Distributed Component-Based Systems

