ON THE MONITORING OF DECENTRALIZED SPECIFICATIONS

Yliés Falcone
(www.ylies.fr)

IST Austria, 3 October 2019

Univ. Grenoble Alpes, Inria, CNRS, Laboratoire d’Informatique de Grenoble, France

P d
UNIVERSITE 7 ‘
& Grenoble LA —
= Alpes NV ENTEURS 0UMONDE NUHERIGUE LI G

Based on joint recent work with Antoine El-Hokayem to appear in ACM TOSEM
and some earlier work with Andreas Bauer and Cristian Colombo in Springer FMSD.

www.ylies.fr
https://ist.ac.at/en/home/
https://www.univ-grenoble-alpes.fr
https://inria.fr
http://www.cnrs.fr
http://www.liglab.fr
https://tosem.acm.org
https://tosem.acm.org

(DECENTRALIZED) MONITORING

(Decent.) Monitoring
000

MONITORING (AKA RUNTIME VERIFICATION) < OVERVIEW

- Lightwelight verification technique.
- Checks whether a run of a program conforms to a specification.
(Incomplete, as opposed to exhaustive verification techniques.)

- Specification is formalized.
- Monitors are synthesized and integrated to observe the system.
- Monitors determine a verdict in Bg = {T, L, 7}:
. T (true): run complies with specification
. L (false): run does not comply with specification
7 (undetermined): verdict cannot be determined yet

specification

Monitor

Y. Falcone, On the Monitoring of Decentralized Specifications

run ——>| verdicts

(Decent.) Monitoring
000

MONITORING < SYSTEM ABSTRACTION

1. Components (C)

2. Atomic propositions (AP)

3. Observations/Events (AP — By, possibly partial)

4. Trace: a sequence of events for each component (N — C — AP — By)

Example

1. {co, c1} (Temp sensor + Fan)

2. {tiow, tmed; bhigh, terit, fan} (e.g., terit “temperature critical”)

3. {{tiow; 1), (fan, L)} — “temperature is low and fan is not on”
0 co = {{tiows T)s (bmeds L),...} 0+ c; — {(fan, L)}

b | 1—cp = {(tmed, 1),---} 1—c¢ — {(fan, L)}
2= co > {(thign, T),...} 2+ ¢ = {{fan, T)}

{(tiow, T), (fan, L), ...} - {{tmea, 1), (fan, L), ...} - {{tnign, 1), (fan, T),...}

Y. Falcone, On the Monitoring of Decentralized Specifications 2

(Decent.) Monitoring
ooe

MONITORING USING AUTOMATA < EXAMPLE
1. At t =1, from qq:

“Fan must always be turned on

when temperature is high” 11 Observe thigh | T
fan | L
“bhigh b fan A thigh
high =ty 1
12 Eval |— b
high | T

2. At t =2, from ¢;:
thigh | T
fan | L

21 Observe

fan A —tpign | L
22 Eval| fan A tpign
—fan | T

G(thigh —> Xfan)

F

Monitoring this property requires a central observation point!

Y. Falcone, On the Monitoring of Decentralized Specifications 3

(Decent.) Monitoring

{ Jele}

DECENTRALIZED MONITORING < PROBLEM STATEMENT

- General setting
- C={co,..., cp}: components
- AP = APyU...U AP, : atomic propositions, partitioned by C
- no central observation point
- but monitors attached to components

- Issues in decentralized monitoring:

- partial views of AP — unknown global state
- partial execution of the automaton (evaluation)
- communication between monitors

APq AP; AP,

My M; M,

Y. Falcone, On the Monitoring of Decentralized Specifications

(Decent.) Monitoring
000

DECENTRALIZED MONITORING < PROBLEM STATEMENT
- General setting
- Issues in decentralized monitoring:
- partial views of AP — unknown global state
- partial execution of the automaton (evaluation)
- communication between monitors
- Existing approaches:

- based on LTL rewriting — unpredictability of monitor performance
- all monitors check the same specification — inefficiency

Monitoring specification
over AP efficiently?

Y. Falcone, On the Monitoring of Decentralized Specifications 4

(Decent.) Monitoring
ceo

GOALS

’ Define a methodology of design and evaluation of decentralized monitoring ‘

1. Aim for predictable behavior

- Move from LTL — Automata.
- Common ground to compare existing (and future) strategies.

2. Separate monitor synthesis from monitoring strategies.

- Centralized specification — Decentralized specification.
- Monitorability of a decentralized specification.
- Define a general decentralized monitoring algorithm.

* Extend tooling support for the design methodology.

* Ensure reproducibility.

Y. Falcone, On the Monitoring of Decentralized Specifications 5

(Decent.) Monitoring
ooe

(Decentralized) Monitoring

Monitoring with EHEs

Monitoring Decentralized Specifications
The THEMIS Approach

Experiments

Bringing Runtime Verification Home

Conclusions

Y. Falcone, On the Monitoring of Decentralized Specifications 5

MONITORING WITH EHES

EHE
©00

EXECUTION HISTORY ENCODING <> INFORMATION AS ATOMS
* Encode the execution as a datastructure that
- supports flexibility when receiving partial information
- is insensitive to the reception order of information
- has predictable size and operations
- Atomic propositions — Atoms
- Allow algorithms to add data to observations (enc : AP — Atoms).
- Ordering information (timestamp, round number, vector clock ete).
- Monitors store Atoms in their Memory
- Monitors need to evaluate Expr 4,oms
- rewrite using Memory
- simplify using Boolean logics (much easier than simplification for LTL)

Expr pgtoms X Mem — Bg
eval(expr, M) = simplify (rw(ezpr, M))
eval((L, thigh) A (2, fan), [(1, thign) — L]) = L A (2,fan) = L

Y. Falcone, On the Monitoring of Decentralized Specifications 6

EHE
0e0

EXECUTION HISTORY ENCODING — AUTOMATA EXECUTION

- EHE is a partial function:
Z:Nx Qa— Exprgioms
I(t, q) = expr

- For a given timestamp ¢

- The automaton is in state ¢ iff

- eval(ezpr, M) =T

Z(2, g0) = [(1, thign) A (2, thign)]

vV [<1, thigh> A (<2, fan> A —\<2, thigh>)]

eval(I(27 qO)v [<17 thigh> = J—D

= eval(—(2, tnign),...) =7

fan A thigh

thigh

- EHE is constructed recursively & lazily (as needed and on-the-fly) using A.

Y. Falcone, On the Monitoring of Decentralized Specifications 7

EHE
ooe

EXECUTION HISTORY ENCODING — CONSTRUCTION

7% = mov([0 — qo — T],0,2)

—a N\ —b T
aVb
- —

qo
qo

N[N R | o] ~+
2

Y. Falcone, On the Monitoring of Decentralized Specifications

EHE

e0

EXECUTION HISTORY ENCODING < PROPERTIES

1. Soundness (provided that observations can be totally ordered)

- For the same trace, EHE and A report the same state.
— They find the same verdict.

2. Strong Eventual Consistency
- We can merge EHEs by disjoining (V) each entry (t, ¢).
- V is commutative, associative and idempotent.
— EHE is a state-based replicated data-type (CvRDT) [Shapiro].
— Monitors that exchange their EHE find the same verdict.
— Can monitor centralized specification shared with multiple monitors.

3. Predictable size

- The EHE encodes all potential and past states, as needed.
- The more we keep track of potential states, the bigger the size.
— We can assess algorithms by how they manipulate the EHE.

Y. Falcone, On the Monitoring of Decentralized Specifications

EHE
oe

EXECUTION HISTORY ENCODING <> ANALYSIS

- Information delay (9):

- expanded timestamps with
no state determined;

- potential states to keep
track of.

- Size of expressions grows with
each move beyond t.

- Size of one expression S(t)
t >t

S(t) =1QI x (S(t' = 1) + L)
=0(/Ql").

- Size of EHE:
=0 (5% 1QI x Lx|Q°).

)

Y. Falcone, On the Monitoring of Decentralized Specifications

t+1

t42

t+4

do
q1

9 Q-1
qo

9Q1-1

do
q1

7Ql-1

U

U

€10
€11
|Q
€1(1Ql-1)
€20

19
€2(1Ql-1)

€50
€51

19

é(lQl-1)

MONITORING DECENTRALIZED SPECIFICATIONS

Decentralized Specifications
0

DECENTRALIZED SPECIFICATIONS

- A single automaton — Set of automata/monitors (Mons).

- Each monitor is associated with a component (£ : Mons — C).

- Set of references to monitors (atomic propositions) (A Prons)

- The transition labels of an automaton m € Mons are restricted to:

- Atomic propositions local to the attached component (L£(m)).
- References to other monitors.

“thigh fan A thign
thlgh “thigh thieh my A thigh
fan
- ~Q@
my A “thigh —my —fan

A() T T Al
(Temp) @D @D (Fan)

Y. Falcone, On the Monitoring of Decentralized Specifications 1

Decentralized Specifications

DECENTRALIZED SPECIFICATIONS — EVALUATING REFERENCES/SEMANTICS
0 n n+1 n+m-—1
- = =nun
| -y ="
[1,n—1] —m;
~Q Q@Y
oty n:mjy— L
A,
[n,n+m — 1]
@ Q@
A

*x Managing buffering and potential states using EHE.

Y. Falcone, On the Monitoring of Decentralized Specifications 12

Decentralized Specifications
°

PROPERTIES OF DECENTRALIZED SPECIFICATIONS < MONITORABILITY

- Monitorability: “Is a given specification monitorable?”

- Non-monitorable = monitors will never yield a verdict

- [Pnueli] For any (finite) trace ¢, does there exist a continuation ¢ s.t. ¢- ¢ yields
a final verdict?

- Monitorability of automata: are all states co-reachable to states labeled
by final verdicts?

- Necessary & sufficient
- Decidable in O(|Q| + |4]) time (quadratic in | Q| worst-case).

- Decentralized specification: needs to account for dependencies.
1. Every automaton must be monitorable; and
2. Graph of monitor dependencies has no cycle.
3. Decidable: cycle detection (monitor dependency graph, DFS/SCC)
4. This is (only) a sufficient condition.
(boolean simplification can eliminate dependencies: sV m;)

Y. Falcone, On the Monitoring of Decentralized Specifications

Decentralized Specifications
°

GENERAL MONITORING ALGORITHM <> OVERVIEW

- Generalizes existing algorithms for decentralized monitoring of
LTL /automata specifications.

- 2 stages: setup and monitoring.

1. Setup (Deploy)

11 Analyze and convert the specification as necessary.
1.2 Create monitors and assign them a specification.

() The monitor handles encoding of AP and Memory.

1.3 Attach monitors to components.

2. Monitoring

21 Wait to receive observations from attached component.
2.2 Recelve messages (EHE or verdicts) from monitors.

2.3 Process observations and messages (update the local EHE).

2.4 Communicate with other monitors.

Y. Falcone, On the Monitoring of Decentralized Specifications

THE THEMIS APPROACH

THEMIS
o

THEMIS — OVERVIEW
Java and AspectJ implementation (5,700 LOC).
- Library: all necessary building blocks to develop, simulate, instrument, and
execute decentralized algorithms.
- Command-line tools: basic functionality to generate traces, execute a
monitoring run and execute a full experiment (multiple parametrized runs).

Design y 9
\

| Design |

Design a monitoring algorithm

\

s

{ Instru-)) .
(LSty Metrics are automatically

\ ment) . .
Tnstr \ L instrumented using Aspect.J J
Analyze \\—:—:/
ment Ve \
/ Use THEMIS tools to execute
| Execute S
one or more monitoring run(s)

Create or re-use metrics.

, NG Measures are stored

| Analyze ; in a database for

\ .

\ postmortem analysis
Execute A\

Y. Falcone, On the Monitoring of Decentralized Specifications 15

THEMIS
L Je]

Setup

1| Map<Integer, ? extends Monitor> 1
— setup() { 2
2 config.getSpec().put(”root”, 3
& Convert.makeAutomataSpec(4
4 config.getSpec().get("root”))); 5
5 Map<Integer, Monitor> mons = new 6
< HashMap<Integer, Monitor>(); 7
6 Integer i = 0; 8
7 for(Component comp 9
—s config.getComponents()) { 10
8 MonMigrate mon = new 11
— MonMigrate(i); 12

9 attachMonitor(comp, mon);
10 mons.put(i, mon); 13
11 i++; 14
12 } 15
13 return mons; 16
14|} 17
18
19
20
21
22

Y. Falcone, On the Monitoring of Decentralized Specifications

Monitor

void monitor(int t, Memory<Atom> observations)
throws ReportVerdict, ExceptionStopMonitoring {
m.merge(observations);
if(receive()) isMonitoring = true;
if(isMonitoring) {
if(!observations.isEmpty())
ehe.tick();
boolean b = ehe.update(m, -1);
if(b) {
VerdictTimed v = ehe.scanVerdict();
if(v.isFinal())
throw new
< ReportVerdict(v.getVerdict(), t);
ehe.dropResolved();
}
int next = getNext();
if(next !'= getID()) {
Representation toSend =
send(next, new
< RepresentationPacket(toSend));
isMonitoring = false;

ehe.sliceLive();

}
4
}

THEMIS

o]]

EXAMPLES < METRICS

1|void setupRun(MonitoringAlgorithm alg) {

2| addMeasure(new Measure(”msg num”,”Msgs”,0L,Measures.addLong));
3|}

4| after(Integer to, Message m) : Commons.sendMessage(to, m) {
update(”msg_num” , 1L);

9]

6|}

1 SELECT alg, comps, avgimsg num), avg{msg data), count(*)
2 FROM bench WHERE alg in ('Migration’, 'MigrationRR')
3 GROUP BY alg, comps
]

alg comps | avg(msg_num) avg{msg_data) count(*}
1 Migration 3 2.04226336011177 267.8458714635 572600
2 Migration 4 2.16402472527473 668.129401098901 364000
3 Migration 5 3.33806822465134 3954.09705050886 530600
4 MigrationRR | 3 32.7222301781348 482.572275585051 572600
5 MigrationRR 4 31.8533351648352 932.708425824176 364000
6 MigrationRR |5 19.2345269506219 4361.30746324915 530600

Y. Falcone, On the Monitoring of Decentralized Specifications 17

THEMIS
000

STUDYING EXISTING ALGORITHMS < PRINCIPLES OF THE ALGORITHMS

/0!

/
@ @ EHE
A\
obs @ \)@’/,w

~ O Verdict(Bg)

(D
O

Orchestration Migration Choreography
- one central monitor - monitor state “hops" - DAG of monitors
- observations are - monitor updates it - a monitor evaluates
forwarded to the with local information a sub-specification
central monitor - forward to the next - verdict propagates
monitor in the DAG

Y. Falcone, On the Monitoring of Decentralized Specifications 18

THEMIS
(o] 1¢]

STUDYING EXISTING ALGORITHMS < EXPECTED BEHAVIOR

/i

/
@ @ EHE
obs @ \)@’/,w

O Verdict(Bg)

(D
O

Orchestration Migration Choreography
- § is constant . §is linear in . §is linear in
.- #Msgs is linear in components network depth
components . #Msgs is constant (split algorithm)
o |Msg‘ constant: o |MSg| is size of EHE: - ##Msgs is linear in
observations per exponential in network edges
component components - |[Msg| is constant

Y. Falcone, On the Monitoring of Decentralized Specifications 19

THEMIS
ooe

EXISTING ALGORITHMS

GraphStream @a

P .
: i~ Boown
el Alpes

LI G

Y. Falcone, On the Monitoring of Decentralized Specifications 20

EXPERIMENTS

Experiments
080000

STUDYING EXISTING ALGORITHMS < VERIFYING BEHAVIOR

Simulate the behavior of orchestration, migration, and choreography.
Confirm the trends predicted by the analysis.

Experiment Setup (5, 868, 800 runs): !

- 200 synthetic random traces of 100 events (2 observations/component).
- Vary [C] from 3 to 5.
- At least 1,000 random specifications per scenario.

'More experiments and results in paper:

- several probability distributions for events,
- more metrics,
- a case study on the Chiron UL

Y. Falcone, On the Monitoring of Decentralized Specifications 21

Experiments
000000

RESULTS < DELAY

5 Agorittm B8 Orch B8 Migr &2 Chor
4
>‘3
z
8
g
<, “
1
o I ‘ I
3 4 5 6
Components

Recall from the analysis:
Orchestration is - Migration is linear in - Choreography is linear

constant. components. in network depth.

Y. Falcone, On the Monitoring of Decentralized Specifications 22

Experiments
000000

RESULTS < NUMBER OF MESSAGES

Aigorittm B8 Orch B8 Migr &2 Chor

1

- s :

3 4 5 6

#Msgs (Normalized)
N

Components
Recall from the analysis:
Orchestration is . L - Choreography is linear
. . - Migration is constant. .
linear in components. in network edges.

Y. Falcone, On the Monitoring of Decentralized Specifications 23

Experiments
000000

RESULTS < DATA TRANSFERRED

Aigorittm B8 Orch B8 Migr &2 Chor

400

Data per Message

100

3 4 5 6

Components
Recall from the analysis:
Orchestration is - Migration is exponential . Choreography is
constant. in components. constant.

Y. Falcone, On the Monitoring of Decentralized Specifications 24

Experiments
00000@

RESULTS (AVERAGE VALUES)
Alg. |C|] & #Msgs Data #S #S/Mon Conv

3 237 2.02 18.05 15.27 6.63 018
Chor 4 249 2.54 22.62 18.22 6.79 0.20
5 237 3.08 2718 21.29 695 0.22
3 102 036 49.46 4.80 480 1.00
Migr 4 138 0.41 128.26 5.67 567 1.00
5 228 057 646.86 9.40 9.40 1.00
3 1.09 0.86 58.02 5.00 500 1.00
Migrr 4 1.49 0.85 144.62 591 591 1.00
5 232 0.83 68481 9.60 9.60 1.00
3 063 1.68 21.01 4.13 413 1.00
Orch 4 065 2.43 30.42 411 411 1.00
5 0.81 3.04 3851 555 555 1.00

Lower Conv = more evenly distributed computation across monitors
Y. Falcone, On the Monitoring of Decentralized Specifications 25

BRINGING RUNTIME VERIFICATION HOME

Bringing RV Home
oe

MONITORED ENVIRONMENT

Amiqual4Home?

Experimental platform consisting of a smart apartment, a rapid prototyping
platform, and tools for observing human activity.

- Hierarchical setup: 2 floors, 7 rooms, 219 sensors. QAm:qualAHc;n;;Q

- Existing public datasets of full sensors traces ‘
o Kitchen
(Orange4Home, ContextAct@A4H). ’]r ;';;nrg
- Databases are annotated with user activities. Z, - . l \

Monitoring Context

- 22 specifications written for up to 27/ sensors.

- Traces from 07:30 to 17:30 (36,000 timestamps) from Orange4Home.

2amiqualshome.inria.fr

Y. Falcone, On the Monitoring of Decentralized Specifications 26

amiqual4home.inria.fr

Bringing RV Home
°0

PROPERTY GROUPS

- System Properties: ensure system working properly

- Verify Light Switches (each room i + global house)

sc_light(7) = O(switch; = X(light,; U —switch;), i € [0..7]
sc_ok = /\ sc_light(7)
i€[0..n]
- Activities of Daily Living (ADL): detecting user behavior

- Formalize an activity as a property over sensors output.
- A knowledge-based approach (vs. Machine Learning approaches).
- Examples: sleeping, cooking, watching tv.

- Meta-Properties: properties of other Properties

- Properties that are defined on top of other properties.
. firchazard = O(napping = —cooking)

Y. Falcone, On the Monitoring of Decentralized Specifications 27

Bringing RV Home
oe

PROPERTIES < EXAMPLE PROPERTIES

ADL m_toilet toilet_water
sink_usage O3z (m_bathroom_sink_water)
bathroom_sink bathroom_sink_cold V bathroom_sink_hot
shower_usage Oz (m_bathroom_shower_water)
napping Oas(m_bedroom_bed_pressure)
dressing O4(m_bedroom_closet_door V m_bedroom_drawers))
reading m_bedroom_light A ¢4 (—dressing A —napping)
office_tv O3 (m_office_tv)
computing O3 (m_office_deskplug)
livingroom_tv O3 (m_livingroom_tv A m_livingroom_couch)
eating —m_kitchen_presence A Og(m_livingroom_table)
Meta actfloor(0) cookingV preparingVeatingVwashing_dishesVlivingroom_tvV
m_toilet
acthouse actfloor(0) V actfloor(1)
notwopeople —(actfloor(0) A actfloor(1))
firechazard napping = -—cooking

Y. Falcone, On the Monitoring of Decentralized Specifications 28

Bringing RV Home
€000

DECENTRALIZATION < TAKING ADVANTAGE OF HIERARCHIES

1. Abstraction/Modularity
11 Sub-specifications are building blocks for more complex specifications.
* (Meta) Specifications of specifications.
1.2 Change (or refine) existing sub-specifications without changing those
that depend on them.
1.3 Abstraction from Implementation: references should eventually return

a verdict.

2. Scalability /Efficiency
21 Factor the monitoring cost of sub-specifications.
2.2 Smaller automata/formulae to represent complex inter-dependent
specifications (Monitor Synthesis).
2.3 Manage duplication of computation and computation.
2.4 Communication modeled by dependencies.
2.5 Monitor placement can be optimized for system architecture.

Y. Falcone, On the Monitoring of Decentralized Specifications 29

Bringing RV Home

[e] le]e]
DECENTRALIZED SPECIFICATIONS < DEPENDENCY HIERARCHIES & REFERENCE
acthouse notwopeople

actfloor(0

preparing
kactivity N cooking
2N~ e 7N

cupboard sink WdteI‘ fridge door presence cooktop oven

Y Y Y Y
(’old* 7hot* _fdoor”™ _ pres* __cook™ _oven

7c2* 3" cd” 7c5*

+ Reduction of atomic propositions and size of specifications
+ Re-use: no need to recompute same dependencies

+ Abstraction: references hides implementation

Y. Falcone, On the Monitoring of Decentralized Specifications 30

Bringing RV Home
0000

MONITOR SYNTHESIS < AToMIC PROPOSITIONS

Name |AP|¢ |AP|© d

..) . sc_light(7) 2 2 1

. Synthesml_ng monitors is doubly sc_ok 4 3 7
exponential. —

1. Number of atomic propositions t.oﬂet 1 . 0

sink_usage 1 2 1

2. Size of formula napping 1 1 1

dressing 2 3 1

reading 3 5 2

* Goal: Reference Sub-specifications kactivity™ 4 9 1

- Reduce number of atomic preparing . 1 2

propositions (JAP|4 < |AP|°) actfloor(0) 6 16 3

- Reduce formula size (atomic cuiianil) / B .

.. dof f | acthouse 2 27 4

proposition instead of formula) notwopeople 2 7 4

firehazard 2 3 2

Y. Falcone, On the Monitoring of Decentralized Specifications 31

Bringing RV Home
0o00e

RE-USING COMPUTATION AND COMMUNICATION

- A shared sub-specification is K
monitored once.
- Higher-up specifications do not need
the sub-specification sensors.
- Centralized sc_ ok (SW-C) uses 8 sensors ’
instead of 6 for decentralized (SW-D). . - .

@
8

#Msgs (Normalized)
»
3

. . . SW-D SW-C ADL*H ADL+H+2 _ ADL+M
Adding meta-properties incurs ess propercs
overhead due to re-use. o
ADL AlL ADL properties (baseline) gm
ADL+H ADL + actfloor(i) (i € [0..1]), acthouse E
ADL+H+2 ADL+H + notwopeople %200
ADL+M All meta properties 2
acthouse %f actﬂoor(O) V actfloor(1) gmo
notwopeople Kot —(actfloor(0) A actfloor(1)) .
|
SW-D SW-C ADL+H ADL+H+2 ADL+M
Propemes

Y. Falcone, On the Monitoring of Decentralized Specifications 32

Bringing RV Home
°0

SCHEDULE

(SR Entering

Up
Shower-
ing
Si

08:30 RIS
TV

09:00 [RS8

Comput-

IR Down
Prey

Suggested (left) vs Reconstructed (right)

T 12:00 [OCTEIS
Di

Cleaning

Staircase

Bathroom

13:00
Bathroom
Staircase (SRS

Livingroom

taircase

13:45

14:00

16:30
taircase

Down
17:00

Leaving

Kitchen

Kitchen

Livingroom
Kitchen
Kitchen
Staircase
Bathroom

Bedroom

Bedroom

Bedroom

Bedroom

Staircase

Entrance

Properties

verdict Fause [rrue [l na

preparng- ’ I

cooking -

computing -

washing_dishes -

rssing -
rading-
—
.
ot - I
S S ST T S S
Time

Y. Falcone, On the Monitoring of Decentralized Specifications 33

Bringing RV Home
oe

HOW GOOD IS OUR METHOD AT DETECTING ADL?
* Depends on Property

Availability of sensors Property Precision Recall F1
Rigidity of specification computing 0.98 0.99 0.99
office_tv 1.00 0.80 0.89
- Examples: cooking 0.88 088 088
toilet: only water usage = low recall shower_usage 1.00 0.50 0.67
. . . e . . washing_dishes 1.00 0.47 0.64
reading: no sensors — inferred from others T
. . X . livingroom_tv 1.00 0.43 0.60
napping: changing specification R 100 041 058
toilet™ 1.00 0.18 0.30
Formula Precision Recall F1 sink_usage 1.00 0.13 023
o5 (weight) 0.43 0.95 0.60 eating 0.61 0.35 0.44
O (weight) 0.43 099 060 —

O3(weight) 0.43 1.0 0.60 napping gg 823 8'2(5)

O3 (pres A weight) 0.34 0.14 0.20 . - : :
Os(—¢ A weight) 1.00 0.97 0.99 reading 037 0.04 0.06

weight: bed pressure sensor
pres: bedroom presence sensor
¢: bedroom light sensor

Y. Falcone, On the Monitoring of Decentralized Specifications 34

CONCLUSIONS

Conclusions
oe

SUMMARY AND FUTURE WORK
* Decentralized Monitoring of (De)Centralized Specifications
1. Aim for predictable behavior — Automata + EHE data structure.

2. Separate synthesis from monitoring: decentralized specifications.

3. Methodology + tool support for designing, measuring, comparing and
extending decentralized RV algorithms.

4. Adapted and compared existing algorithms.
5. Application to smart homes.

* Future Work
1. Centralised specification — equivalent decentralized specifications.
- Optimize existing methods.
- Take into account topology of the monitored system.
2. Extend THEMIS (metrics, better visualization of algorithm behavior).
3. Runtime enforcement of centralized and decentralized specifications.

Y. Falcone, On the Monitoring of Decentralized Specifications 35

Conclusions
oe

@ 11th Euromicro Conference on Real-Time Systems (ECRTS 1999), 9-11 June 1999,
York, England, UK, Proceedings. IEEE Computer Society (1999)

@ Monitoring algorithms for metric temporal logic specifications. Electronic Notes in
Theoretical Computer Science 113, 145 — 162 (2005)

@ Twelfth ACM/IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2014, Lausanne, Switzerland, October 19-21, 2014. IEEE
(2014)

@ Abraham, E., Palamidessi, C. (eds.): Formal Techniques for Distributed Objects,
Components, and Systems - 34th IFIP WG 6.1 International Conference, FORTE 2014,
Held as Part of the 9th International Federated Conference on Distributed Computing
Techniques, Proceedings, Lecture Notes in Computer Science, vol. 8461. Springer (2014)

B Aceto, L., Damgard, I, Goldberg, L.A., Halldérsson, M.M., Ingélfsdéttir, A.,
Walukiewicz, I. (eds.): Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I:
Tack A: Algorithms, Automata, Complexity, and Games, Lecture Notes in Computer
Science, vol. 5125. Springer (2008)

@ Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, 1., Pace, G.J., Rosu, G.,
Sokolsky, O., Tillmann, N. (eds.): Runtime Verification - First International

Y. Falcone, On the Monitoring of Decentralized Specifications 35

[

) &) = &

Conclusions
oe

Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, Lecture
Notes in Computer Science, vol. 6418. Springer (2010)

Bartocci, E.: Sampling-based decentralized monitoring for networked embedded
systems. In: Bortolussi et al. [13], pp. 8599

Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K.,
Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D.,
Zalinescu, E., Zhang, Y.: First international competition on runtime verification: rules,
benchmarks, tools, and final results of crv 2014. International Journal on Software
Tools for Technology Transfer pp. 1-40 (2017)

Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of
distributed systems. In: Harsha and Ramalingam [30], pp. 590-603

Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou and
Meéry [29], pp. 85-100

Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Travers, C.: Challenges in
fault-tolerant distributed runtime verification. In: Margaria and Steffen [36], pp.
363-370

Y. Falcone, On the Monitoring of Decentralized Specifications 35

[

) & @

Conclusions
oe

Bortolussi, L., Bujorianu, M.L., Pola, G. (eds.): Proceedings Third International
Workshop on Hybrid Autonomous Systems, HAS 2013, Rome, Italy, 17th March 2013,
EPTCS, vol. 124 (2013)

Broy, M., a. Peled, D., Kalus, G. (eds.): engineering dependable software systems,
NATO science for peace and security series, d: information and communication
security, vol. 34. ios press (2013)

Buchfuhrer, D., Umans, C.: The complexity of boolean formula minimization. In:
Aceto et al. [5], pp. 24-35

Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with a
global clock. Formal Methods in System Design 49(1-2), 109-158 (2016)

Cotard, S., Faucou, S., Béchennec, J., Queudet, A., Trinquet, Y.: A data flow
monitoring service based on runtime verification for AUTOSAR. In: Min et al. [37], pp.
1508-1515

Défago, X., Petit, F., Villain, V. (eds.): Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6976.
Springer (2011)

Y. Falcone, On the Monitoring of Decentralized Specifications 35

Conclusions
oe

@ Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verification.
Theoretical Computer Science 537, 29 — 41 (2014), theoretical Aspects of Computing
(ICTAC 2011)

@ Diekert, V., Muscholl, A.: On distributed monitoring of asynchronous systems. In: Ong
and de Queiroz [39], pp. 70-84, 10.1007/978-3-642-32621-9_5

@ Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Proceedings of the
11th International Symposium on Automated Technology for Verification and Analysis
(ATVA’13). Lecture Notes in Computer Science, vol. 8172, pp. 442-445. Springer,
Hanoi, Vietnam (Oct 2013)

@ El-Hokayem, A., Falcone, Y.: Themis: A tool for decentralized monitoring algorithms.
In: Proceedings of 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’17-DEMOS), Santa Barbara, CA, USA, July 2017 (2017)

@ El-Hokayem, A., Falcone, Y.: Themis website (2017),
https://gitlab.inria.fr/monitoring/themis

@ Falcone, Y.: You should better enforce than verify. In: Barringer et al. [6], pp. 89-105

@ Falcone, Y., Cornebize, T., Fernandez, J.: Efficient and generalized decentralized
monitoring of regular languages. In: Abraham and Palamidessi [4], pp. 66-83

Y. Falcone, On the Monitoring of Decentralized Specifications 35

10.1007/978-3-642-32621-9_5
https://gitlab.inria.fr/monitoring/themis

Conclusions
oe

@ Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime?
STTT 14(3), 349-382 (2012)

@ Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In:
Engineering Dependable Software Systems, pp. 141-175 (2013)

@ Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.): 26th International Conference on
Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom.
IEEE Computer Society (2004)

@ Giannakopoulou, D., Méry, D. (eds.): FM 2012: Formal Methods - 18th International
Symposium, Paris, France, August 27-31, 2012. Proceedings, Lecture Notes in
Computer Science, vol. 7436. Springer (2012)

@ Harsha, P., Ramalingam, G. (eds.): 35th IARCS Annual Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2015, December
16-18, 2015, Bangalore, India, LIPIcs, vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015)

@ Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Knudsen [33], pp. 327-353

Y. Falcone, On the Monitoring of Decentralized Specifications 35

B

Conclusions
oe

Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: 11th Euromicro Conference
on Real-Time Systems (ECRTS 1999), 9-11 June 1999, York, England, UK,
Proceedings 1], pp. 114-122

Knudsen, J.L. (ed.): ECOOP 2001 - Object-Oriented Programming, 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings, Lecture Notes in
Computer Science, vol. 2072. Springer (2001)

Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293-303 (2009)

Leucker, M., Schmitz, M., & Tellinghusen, D.: Runtime verification for interconnected
medical devices. In: Margaria and Steffen [36], pp. 380-387

Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications - 7th International
Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings,
Part II, Lecture Notes in Computer Science, vol. 9953 (2016)

Min, G., Hu, J., Liu, L.C., Yang, L.T., Seelam, S., Lefévre, L. (eds.): 14th IEEE
International Conference on High Performance Computing and Communication & 9th

Y. Falcone, On the Monitoring of Decentralized Specifications 35

Conclusions
oe

IEEE International Conference on Embedded Software and Systems, HPCC-ICESS
2012, Liverpool, United Kingdom, June 25-27, 2012. IEEE Computer Society (2012)

@ Misra, J., Nipkow, T., Sekerinski, E. (eds.): FM 2006: Formal Methods, 14th
International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006,
Proceedings, Lecture Notes in Computer Science, vol. 4085. Springer (2006)

@ Ong, C.L., de Queiroz, R.J.G.B. (eds.): Logic, Language, Information and
Computation - 19th International Workshop, WoLLIC 2012, Buenos Aires, Argentina,
September 3-6, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7456.
Springer (2012)

@ Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra et al. [38], pp. 573-586

@ Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom.
Softw. Eng. 12(2), 151-197 (2005)

@ Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verification.
In: Twelfth ACM/IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2014, Lausanne, Switzerland, October 19-21, 2014 [3], pp.
52-61

Y. Falcone, On the Monitoring of Decentralized Specifications 35

RW + Goals More Formal Details
®00 o

RELATED WORK AND GOALS

RW + Goals
°0

RELATED WORK <> DECENTRALIZED RV
- General setting
- C: a set of components
- AP: a set of atomic propositions, partitioned by C
- Issues in decentralized monitoring
- partial views of AP — unknown global state
- partial execution of the automaton (evaluation)
- communication between monitors
- Rewriting-based techniques
- (safety) LTL [Rosu et al 05], (full) LTL [BauerFalconel2,ColomboFalconel6]
- (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15|
- Common assumptions
- Reliable network with fully-connected components
- Global clock
- Oblivious to order of messages
() Unpredictable runtime behavior of rewriting
— Hard to compare various strategies

Y. Falcone, On the Monitoring of Decentralized Specifications 36

RW + Goals
oe

RELATED WORK < DECENTRALIZED RV (CONT'D)

- Automata-based techniques for regular languages [Falcone et al 14]
- Same assumptions as rewriting
+ More expressive than LTL
+ Predictable behavior
— Tightly linked to specification (synthesis)
— No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpourl6]
- monitors deciding the same verdict
- Assumptions
+ Fully-connected components
- Asynchronous Systems (Alternating Numbers)
+ Unreliable links (Monitors + System)
— 2k + 2 verdicts when resilience up to k failures
— Determine consensus on a verdict in case of failures
(1 All monitors check the same specification

Y. Falcone, On the Monitoring of Decentralized Specifications 37

More Formal Details
°

STUDYING EXISTING ALGORITHMS

Verdict(B2)

- Example algorithms
- Orchestration: Central monitor + forwarding monitors.
- Migration: Specification hops from one component to another.

- Choreography: Monitors are organized in a tree.
- Expected behavior of algorithms:

Algorithm) # Msg |Msg|
Orchestration O(1) O(IC) ©(|AP,))
Migration o(c|) o(m) 0(Q|'°))

Choreography O(depth(rt) + |tr]) ©O(|E|) O(1)

Y. Falcone, On the Monitoring of Decentralized Specifications

38

	(Decentralized) Monitoring
	Overview of Runtime Verification
	Goals

	Appendix

