
On Decentralized Monitoring

Yliès Falcone
(www.ylies.fr)

Univ. Grenoble Alpes, Inria, CNRS, Laboratoire d’Informatique de Grenoble, France

22 November 2021

Based on work with Andreas Bauer, Christian Colombo, and Antoine El-Hokayem.

www.ylies.fr
https://www.univ-grenoble-alpes.fr
https://inria.fr
http://www.cnrs.fr
http://www.liglab.fr


Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Talk overview

Part I: Approaches to monitoring spatially distributed systems
▶ Specifications in Linear-time Temporal Logic and as finite-state

automata
▶ Organization of monitors:

▶ orchestration: master/slave
monitors

▶ migration: "flat" monitors
▶ choreography: hierarchical monitors

m0m1 m2

m3

m4

obs

m0

m1

m2

m3

m4

EHE

m0

m1

m2 m3

m4

Verdict(B2)

▶ Generalization of existing algorithms
▶ Decentralized specifications

Part II: Bringing Monitoring Home

▶ Monitoring a real smart house
▶ Challenges for monitoring
▶ Effectiveness of monitoring techniques

Perspectives and research opportunities



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Systems tend to be more decentralized and distributed

"Smart" Anything Car platoon

Modern car Decentralized Finance

Decentralization/distribution is desirable for operational and security
reasons . . . or comes by design
Exhaustive (static) verification of such systems is often impossible



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Considered system: a smart apartment

Amiqual4Home1

Experimental platform consisting of a smart apartment, a rapid
prototyping platform, and tools for observing human activity
▶ Hierarchical setup: 2 floors, 7 rooms, 219

sensors
▶ Existing public datasets of full sensors traces

(Orange4Home, ContextAct@A4H)
▶ Databases are annotated with user activities

Verification Context
▶ 22 specifications written for up to 27 sensors

▶ system behavior
▶ activity of daily living
▶ meta specifications

▶ Traces from 07:30 to 17:30 (36,000 timestamps) from Orange4Home

1amiqual4home.inria.fr

amiqual4home.inria.fr


Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitoring (aka Runtime Verification)
Overview

Lectures on Runtime Verification - Introductory and Advanced Topics. Bartocci, Falcone. Lecture
Notes in Computer Science 10457, Springer 2018

▶ Lightweight verification technique.
▶ Checks whether a run of a system conforms to a specification

(Incomplete, as opposed to exhaustive verification techniques)
▶ Specification is formalized
▶ Monitors are synthesized and integrated to observe the system
▶ Monitors determine a verdict in B3 = {⊤, ⊥, ?}:

▶ ⊤ (true): run complies with specification
▶ ⊥ (false): run does not comply with specification
▶ ? (undetermined): verdict cannot be determined yet

Monitor

specification

run verdicts



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitoring (aka Runtime Verification)
Overview (ctd)

Runtime
Verification

application
area

analysis

debugging

software
& system

engineering

information
collection

failure
prevention
& reaction

testing

deployment

architecture

stage

instrumentation

monitor generation

execution

decision
procedure

reaction

active

passive

interference

invasive

non-invasive

tracerole

evaluation

information

specification

organisation

behaviour

monitorability

enforceability

A taxonomy for classifying runtime verification tools. Falcone, Krstic, Reger, Traytel. Int. Journal on
Software Tools for Technology Transfer volume 23, pages 255–284 (2021)



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitoring
System Abstraction

1. Components (C)
2. Atomic propositions (AP)
3. Observations/Events (AP → B2, possibly partial)
4. Trace: a sequence of events for each component

(N → C → AP → B2)
Example

1. {c0, c1} (Temp sensor + Fan)
2. {tlow, tmed, thigh, tcrit, fan} (e.g., tcrit “temperature critical”)
3. {⟨tlow, ⊤⟩, ⟨fan, ⊥⟩} — “temperature is low and fan is not on”

4.
[ 0 7→ c0 7→ {⟨tlow, ⊤⟩, ⟨tmed, ⊥⟩, . . .} 0 7→ c1 7→ {⟨fan, ⊥⟩}

1 7→ c0 7→ {⟨tmed, ⊤⟩, . . .} 1 7→ c1 7→ {⟨fan, ⊥⟩}
2 7→ c0 7→ {⟨thigh, ⊤⟩, . . .} 2 7→ c1 7→ {⟨fan, ⊤⟩}

]



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Specifications in Runtime Verification

▶ Formally expressed specifications
▶ Automata
▶ Logics: LTL, MTL, etc.
(!) Possible: LTL → Büchi → Moore Automaton

Example (Specifications)
1. “Temperature should never reach critical”: G(¬tcrit)
2. “Fan must cool the environment”: G(fan U tlow)
3. “Fan must always be turned on when temperature is high”:

G(thigh =⇒ Xfan)

(!) Can span multiple components



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitoring using Automata
Example

“Fan must always be turned
on when temperature is
high”

q0 q1

q2

thigh
fan ∧ thigh¬thigh

¬fanfan ∧ ¬thigh

⊤

Figure: *

G(thigh =⇒ Xfan)

1. At t = 1, from q0:

1.1 Observe thigh ⊤
fan ⊥

1.2 Eval ¬thigh ⊥
thigh ⊤

2. At t = 2, from q1:

2.1 Observe thigh ⊤
fan ⊥

2.2 Eval
fan ∧ ¬thigh ⊥

fan ∧ thigh ⊥
¬fan ⊤

Monitoring this property requires a central observation point!



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Decentralized Monitoring: Problem statement
▶ General setting

▶ C = {c1, . . . , cn}: components
▶ AP = AP1 ∪ . . . ∪ APn: atomic propositions, partitioned by C
▶ no central observation point
▶ but monitors attached to components

▶ Issues in decentralized monitoring:
▶ partial views of AP – unknown global state
▶ partial execution of the automaton (evaluation)
▶ communication between monitors

▶ Requirements for online monitoring:
▶ efficiency in monitor computation and communication
▶ predictability of monitor performance

c1 . . . ci . . . cn

M1 . . . Mi . . . Mn

AP1 AP i APn



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Assumptions
▶ Local behavior is sufficiently observable.
▶

Traian Pop et al. “Timing analysis of the FlexRay communication protocol”. In: Real-Time Syst. 39 (1–3 2008). Gunzert and Nägele.
“Component-Based Development and Verification of Safety Critical Software for a Brake-by-Wire System with Synchronous Software
Components”. In PDSE. IEEE, 1999

Existence of a global clock
▶ local monitors awareness
▶ realistic in several industrial critical systems
▶ can be achieved in a distributed systems with synch. algorithms

Automotive domain uses FlexRay data bus, which has
(among others) a synchronous transfer mode:

Examples: Steer-by-wire, brake-by-wire, engine
management, etc.

Flight-control systems mostly synchronous
(fly-by-wire):

SIGNAL, Lustre, Astrée verifier, etc.

▶ Monitors can directly communicate with each others in a reliable
fashion but possibly out of order.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

I - Considering Synchronous Communications and LTL

Decentralised LTL monitoring. Bauer and Falcone. FM 2012: 85-100

Using a Linear-time Temporal Logic formula φ as specification
Partial evaluation of LTL formula
Assumes fixed communication delay
Decentralized progression ≈ decentralized monitoring step:

▶ for an operator, we use expansion laws and fix-point semantics:
P(φ1 ∨ φ2, σ) = P(φ1, σ) ∨ P(φ2, σ)
P(φ1 U φ2, σ) = P(φ2, σ) ∨ P(φ1, σ) ∧ φ1 U φ2

P(G φ, σ) = P(φ, σ) ∧ G(φ)
. . .

▶ for atomic propositions, we evaluate or record a past obligation:

P(p, σ, APi) =

{
⊤ if p ∈ σ
⊥ if p /∈ σ ∧ p ∈ APi
X p otherwise

▶ for past obligations, we use the local memory:

P(Xm p, σ, APi) =


⊤ if p ∈ APi ∩ Memi(m)
⊥ if p ∈ APi \ Memi(m)
Xm+1 p otherwise

On some component Ci with atomic propositions APi .



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

I - Considering Synchronous Communications and LTL

Decentralized Monitoring Algorithm by migration

Each local monitor communicates
with the monitor that can resolve the
most urgent part of the formula

Comp. B Comp. CComp. A

M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) M :M :

Migration takes place

Comp. B Comp. CComp. A

M : M : G (Xa1 ∧ c1 ∨ (b1 ∧ b2)) ∧
(
a1 ∧Xc1

)
M :

Decentralised LTL monitoring. Bauer and Falcone. Formal Methods System Design. 48(1-2): 46-93
(2016)

Properties
▶ soundness: any decentralized verdict is a centralized verdict;
▶ (eventual) completeness: decentralized verdict is eventually

reached ( provided no message loss)

simplicity
potential formula explosion
problem

performance unpredictability
assumes fixed communication
delay



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

II - Organizing Monitors

Organizing monitors into a network + protocol for cooperation
Using the syntactic structure of the formula
Global formula → local formula

Organising LTL monitors over distributed systems with a global clock. Colombo and Falcone. Formal
Methods Syst. Des. 49(1-2): 109-158 (2016)

Arbitrary scoring function to place formula on monitors

Automated synthesis of network of monitors with references pointing to
the verdict of other monitors

Decentralized Monitoring Algorithm by choreography
Each monitor reports to its parents and
receives reports from its children

G ((Xa1 ∧ c1) ∨ (b1 ∧ b2))
Comp. C Comp. BComp. A

M : X ∧ c1 M : G ( ∨ (b1 ∧ b2))M : a1

reduced message size
less computation

more messages
potential formula explosion problem



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Execution History Encoding
Information as Atoms / Construction

Monitoring decentralized specifications. El-Hokayem and Falcone: ISSTA 2017: 125-135

Encode the execution as a datastructure that
▶ supports flexibility when receiving partial information
▶ is insensitive to the reception order of information
▶ has predictable size and operations

Atomic propositions → Atoms
▶ Allow algorithms to add data to observations (enc : AP → Atoms).
▶ Ordering information (timestamp, round number, vector clock etc).

▶ Monitors store Atoms in their Memory

EHE is constructed recursively & lazily (as needed and on-the-fly)
using A.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Execution History Encoding
Construction

Construction of the EHE, between t = 0 and t = 2, given that at t = 0,
the automaton is in q0

q0 q1

a ∨ b

⊤¬a ∧ ¬b

t q expr
0 q0 ⊤
1 q0 ⊤ ∧ ¬⟨1, a⟩ ∧ ¬⟨1, b⟩
1 q1 ⟨1, a⟩ ∨ ⟨1, b⟩
2 q0 (¬⟨1, a⟩ ∧ ¬⟨1, b⟩) ∧ (¬⟨2, a⟩ ∧ ¬⟨2, b⟩)
2 q1 [(¬⟨1, a⟩ ∧ ¬⟨1, b⟩) ∧ (⟨2, a⟩ ∨ ⟨2, b⟩)] ∨ [(⟨1, a⟩ ∨ ⟨1, b⟩) ∧ ⊤]

...



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Execution History Encoding
Properties

1. Soundness (provided that observations can be totally ordered)
▶ For the same trace, EHE and A report the same state.

→ They find the same verdict.

2. Strong Eventual Consistency
▶ We can merge EHEs by disjoining (∨) each entry ⟨t, q⟩.
▶ ∨ is commutative, associative and idempotent.

→ EHE is a state-based replicated data-type (CvRDT) [Shapiro].
→ Monitors that exchange their EHE find the same verdict.
→ Can monitor centralized specification shared with multiple monitors.

3. Predictable size2: O
(
δ × Label × |Q|δ+1)

▶ The EHE encodes all potential and past states, as needed.
▶ The more we keep track of potential states, the bigger the size.

→ We can assess algorithms by how they manipulate the EHE.

2δ is the information delay, Label the max label size in the automaton, and Q the
set of states.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Studying Existing Algorithms
Principles of the algorithms

m0m1 m2

m3

m4

obs

m0

m1

m2

m3

m4

EHE

m0

m1

m2 m3

m4

Verdict(B2)

Orchestration
▶ one central

monitor
▶ observations are

forwarded to the
central monitor

Migration
▶ monitor state

“hops"
▶ monitor updates it

with local
information

▶ forward to the next
monitor

Choreography
▶ DAG of monitors
▶ a monitor

evaluates a
sub-specification

▶ verdict
propagates in the
DAG



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Studying Existing Algorithms
Expected Behavior

m0m1 m2

m3

m4

1 1

1

1obs

m0

m1

m2

m3

m4

1
2

3

4

5
EHE

m0

m1

m2 m3

m4

2

1 1

1 Verdict(B2)

Orchestration
▶ δ is constant
▶ #Msgs is linear

in components
▶ |Msg| constant:

observations per
component

Migration
▶ δ is linear in

components
▶ #Msgs is

constant
▶ |Msg| is size of

EHE: exponential
in components

Choreography
▶ δ is linear in

network depth
(split algorithm)

▶ #Msgs is linear
in network edges

▶ |Msg| is constant



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Studying Existing Algorithms

Orchestration

m0m1 m2

m3

m4

obs

Central monitor +
forwarding monitors

Migration

m0

m1

m2

m3

m4

EHE

Specification hops
from one component

to another

Choreography
m0

m1

m2 m3

m4

Verdict(B2)

Monitors are
organized in a tree

Expected behavior of algorithms

Algorithm δ # Msg |Msg|
Orchestration Θ(1) Θ(|C|) Θ(|APc |)
Migration O(|C|) O(m) O(|Q||C |)
Choreography O(depth(tree) + |trace|) Θ(|Edges|) Θ(1)

C: number of components, APc : global alphabet, m: number of active monitors, |Q|: number of states
in the underlying automaton, Edges: number of edges in the network.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Decentralized Specifications

On the Monitoring of Decentralized Specifications: Semantics, Properties, Analysis, and Simulation.
El-Hokayem and Falcone ACM Trans. Softw. Eng. Methodol. 29(1): 1:1-1:57 (2020)

▶ A single automaton → Set of automata/monitors (Mons).
▶ Each monitor is associated with a component (L : Mons → C).
▶ Set of references to monitors (atomic propositions) (APmons)
▶ The transition labels of an automaton m ∈ Mons are restricted to:

▶ Atomic propositions local to the attached component (L(m)).
▶ References to other monitors.

q0 q1

q2

thigh
fan ∧ thigh¬thigh

¬fanfan ∧ ¬thigh

⊤

q00

A0
(Temp)

q01

q02

thigh
m1 ∧ thigh¬thigh

¬m1m1 ∧ ¬thigh

⊤

q10 q11

q12
A1

(Fan)

fan

¬fan

⊤

⊤



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Decentralized Specifications
Evaluating References/Semantics

qi0 qi q′
i

[1, n − 1] ¬mj

mj

⊤

Ami

qj0 qj
[n, n + m − 1]

⊤

Amj

0 n n + 1 n + m − 1

n : mj 7→ ⊥

⋆ Managing buffering and potential states using EHE.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Properties of Decentralized Specifications
Monitorability

▶ Monitorability: “Is a given specification monitorable?”

▶ Non-monitorable =⇒ monitors will never yield a verdict

▶ [Pnueli] For any (finite) trace t, does there exist a continuation t′ s.t. t · t′

yields a final verdict?

▶ Monitorability of automata: are all states co-reachable to states
labeled by final verdicts?

▶ Necessary & sufficient
▶ Decidable in O(|Q| + |δ|) time (quadratic in |Q| worst-case).

▶ Decentralized specification: needs to account for dependencies.
1. Every automaton must be monitorable; and
2. Graph of monitor dependencies has no cycle.
3. Decidable: cycle detection (monitor dependency graph, DFS/SCC)
4. This is (only) a sufficient condition.

(boolean simplification can eliminate dependencies: s ∨ m1)



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

General Monitoring Algorithm
Overview

▶ Generalizes existing algorithms for decentralized monitoring of
LTL/automata specifications.

▶ 2 stages: setup and monitoring.

1. Setup (Deploy)
1.1 Analyze and convert the specification as necessary.
1.2 Create monitors and assign them a specification.

(!) The monitor handles encoding of AP and Memory.
1.3 Attach monitors to components.

2. Monitoring
2.1 Wait to receive observations from attached component.
2.2 Receive messages (EHE or verdicts) from monitors.
2.3 Process observations and messages (update the local EHE).
2.4 Communicate with other monitors.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

The THEMIS tool
Java and AspectJ implementation (5,700 LOC).
▶ Library: all necessary building blocks to develop, simulate,

instrument, and execute decentralized algorithms.
▶ Command-line tools: basic functionality to generate traces,

execute a monitoring run and execute a full experiment (multiple
parametrized runs).

Design

Instrument

Execute

Analyze

Design Design a monitoring algorithm

Instru-
ment

Create or re-use metrics.
Metrics are automatically in-

strumented using AspectJ

Execute
Use THEMIS tools to execute

one or more monitoring run(s)

Analyze Measures are stored in a
database for postmortem analysis

THEMIS: a tool for decentralized monitoring algorithms. El-Hokayem and Falcone: ISSTA 2017:
372-375
Demo, source code, and tutorial: https://gitlab.inria.fr/monitoring/themis-demo

https://gitlab.inria.fr/monitoring/themis-demo


Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

The Migration Algorithm in THEMIS

Figure: Setup
1 Map<Integer, ? extends Monitor> setup() {
2 config.getSpec().put("root",
3 Convert.makeAutomataSpec(
4 config.getSpec().get("root")));
5 Map<Integer, Monitor> mons = new

HashMap<Integer, Monitor>();↪→
6 Integer i = 0;
7 for(Component comp : config.getComponents()) {
8 MonMigrate mon = new MonMigrate(i);
9 attachMonitor(comp, mon);

10 mons.put(i, mon);
11 i++;
12 }
13 return mons;
14 }

Figure: Monitor
1 void monitor(int t, Memory<Atom> observations)
2 throws ReportVerdict, ExceptionStopMonitoring {
3 m.merge(observations);
4 if(receive()) isMonitoring = true;
5 if(isMonitoring) {
6 if(!observations.isEmpty())
7 ehe.tick();
8 boolean b = ehe.update(m, -1);
9 if(b) {

10 VerdictTimed v = ehe.scanVerdict();
11 if(v.isFinal())
12 throw new ReportVerdict(v.getVerdict(), t);
13 ehe.dropResolved();
14 }
15 int next = getNext();
16 if(next != getID()) {
17 Representation toSend = ehe.sliceLive();
18 send(next, new RepresentationPacket(toSend));
19 isMonitoring = false;
20 }
21 }
22 }



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Examples
Metrics

1 void setupRun(MonitoringAlgorithm alg) {
2 addMeasure(new Measure("msg_num","Msgs",0L,Measures.addLong));
3 }
4 after(Integer to, Message m) : Commons.sendMessage(to, m) {
5 update("msg_num" , 1L);
6 }



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Studying Existing Algorithms
Verifying Behavior

Simulate the behavior of orchestration, migration, and choreography.

Confirm the trends predicted by the analysis.

Experiment Setup (5, 868, 800 runs): 3

▶ 200 synthetic random traces of 100 events (2 observations per
component).

▶ Vary |C| from 3 to 5.
▶ At least 1,000 random specifications per scenario.

3More experiments and results in paper:
▶ several probability distributions for events,
▶ more metrics,
▶ a case study on the Chiron UI.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Existing Algorithms



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Results (average values)

Alg. |C| δ #Msgs Data #S #S/Mon Conv

Chor
3 2.37 2.02 18.05 15.27 6.63 0.18
4 2.49 2.54 22.62 18.22 6.79 0.20
5 2.37 3.08 27.18 21.29 6.95 0.22

Migr
3 1.02 0.36 49.46 4.80 4.80 1.00
4 1.38 0.41 128.26 5.67 5.67 1.00
5 2.28 0.57 646.86 9.40 9.40 1.00

Migrr
3 1.09 0.86 58.02 5.00 5.00 1.00
4 1.49 0.85 144.62 5.91 5.91 1.00
5 2.32 0.83 684.81 9.60 9.60 1.00

Orch
3 0.63 1.68 21.01 4.13 4.13 1.00
4 0.65 2.43 30.42 4.11 4.11 1.00
5 0.81 3.04 38.51 5.55 5.55 1.00

Lower Conv =⇒ more evenly distributed computation across monitors



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitored Environment

Amiqual4Home4

Experimental platform consisting of a smart apartment, a rapid
prototyping platform, and tools for observing human activity.

▶ Hierarchical setup: 2 floors, 7 rooms, 219
sensors.

▶ Existing public datasets of full sensors traces
(Orange4Home, ContextAct@A4H).

▶ Databases are annotated with user activities.

Monitoring Context5

▶ 22 specifications written for up to 27 sensors.
▶ Traces from 07:30 to 17:30 (36,000 timestamps) from Orange4Home.

4amiqual4home.inria.fr
5Bringing Runtime Verification Home. Antoine El-Hokayem, Yliès Falcone. RV

2018 and extended version in Software Tool for Technology Transfer 2021.

amiqual4home.inria.fr


Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Property Groups

▶ System Properties: ensure system working properly
▶ Verify Light Switches (each room i + global house)

sc_light(i) def= G(switchi =⇒ X(lighti U ¬switchi ), i ∈ [0..n]

sc_ok
def=

∧
i∈[0..n]

sc_light(i)

▶ Activities of Daily Living (ADL): detecting user behavior
▶ Formalize an activity as a property over sensors output.
▶ A knowledge-based approach (vs. Machine Learning approaches).
▶ Examples: sleeping, cooking, watching tv.

▶ Meta-Properties: properties of other Properties
▶ Properties that are defined on top of other properties.
▶ firehazard

def= G(napping =⇒ ¬cooking)



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Properties
Example Properties

ADL m_toilet toilet_water
sink_usage G3(m_bathroom_sink_water)
bathroom_sink bathroom_sink_cold ∨ bathroom_sink_hot
shower_usage G2(m_bathroom_shower_water)
napping G25(m_bedroom_bed_pressure)
dressing F4(m_bedroom_closet_door ∨ m_bedroom_drawers))
reading m_bedroom_light ∧ F4(¬dressing ∧ ¬napping)
office_tv F3(m_office_tv)
computing F3(m_office_deskplug)
livingroom_tv F3(m_livingroom_tv ∧ m_livingroom_couch)
eating ¬m_kitchen_presence ∧ G6(m_livingroom_table)

Meta actfloor(0) cooking ∨ preparing ∨ eating ∨ washing_dishes ∨ livingroom_tv ∨
m_toilet

acthouse actfloor(0) ∨ actfloor(1)
notwopeople ¬(actfloor(0) ∧ actfloor(1))
firehazard napping =⇒ ¬cooking



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Decentralization
Taking Advantage of Hierarchies and Decentralized Specifications

1. Abstraction/Modularity
1.1 Sub-specifications are building blocks for more complex

specifications.
⋆ (Meta) Specifications of specifications.

1.2 Change (or refine) existing sub-specifications without changing those
that depend on them.

1.3 Abstraction from Implementation: references should eventually
return a verdict.

2. Scalability/Efficiency
2.1 Factor the monitoring cost of sub-specifications.
2.2 Smaller automata/formulae to represent complex inter-dependent

specifications (Monitor Synthesis).
2.3 Avoid duplication of computation.
2.4 Communication modeled by dependencies.
2.5 Monitor placement can be optimized for system architecture.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Decentralized Specifications
Dependency Hierarchies & Reference

preparing

kactivity cooking

sink_waterfridge_door presencecupboard cooktop oven

_pres∗_fdoor∗_cold∗ _hot∗

_c2∗ _c3∗ _c4∗ _c5∗
_c1∗ _oven∗_cook∗

actfloor(0)

acthouse notwopeople

Reduction of atomic propositions and size of specifications

Re-use: no need to recompute same dependencies

Abstraction: references hides implementation



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Monitor Synthesis
Atomic Propositions

▶ Synthesizing monitors is doubly
exponential.

1. Number of atomic propositions

2. Size of formula

⋆ Goal: Reference sub-specifications

▶ Reduce number of atomic
propositions (|AP|d < |AP|c)

▶ Reduce formula size (atomic
proposition instead of formula)

Name |AP|d |AP|c d
sc_light(i) 2 2 1
sc_ok 4 8 2
toilet∗ 1 1 0
sink_usage 1 2 1
napping 1 1 1
dressing 2 3 1
reading 3 5 2
kactivity∗ 4 9 1
preparing 2 11 2
actfloor(0) 6 16 3
actfloor(1) 7 11 3
acthouse 2 27 4
notwopeople 2 27 4
firehazard 2 3 2



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Re-using computation and communication

▶ A shared sub-specification is
monitored once.

▶ Higher-up specifications do not need
the sub-specification sensors.

▶ Adding meta-properties incurs less
overhead due to re-use.

ADL All ADL properties (baseline)
ADL+H ADL + actfloor(i) (i ∈ [0..1]),

acthouse
ADL+H+2 ADL+H + notwopeople
ADL+M All meta properties

acthouse
def= actfloor(0) ∨ actfloor(1)

notwopeople
def= ¬(actfloor(0) ∧ actfloor(1))

0

10

20

30

40

SW−D SW−C ADL ADL+H ADL+H+2 ADL+M
Properties

#M
sg

s 
(N

or
m

al
iz

ed
)

0

100

200

300

400

SW−D SW−C ADL ADL+H ADL+H+2 ADL+M
Properties

#S
im

pl
ifi

ca
tio

ns
 (

N
or

m
al

iz
ed

)



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Schedule

Suggested (left) vs Reconstructed (right)

Entering Entrance

Up Staircase

Showering Bathroom

Sink Bathroom

Down Staircase

TV Livingroom

Up Staircase

Computing Office

Down Staircase

Preparing Kitchen

Cooking Kitchen

Eating Livingroom

Dishes Kitchen

Cleaning Kitchen

Up Staircase

Sink Bathroom

Dressing Bedroom

Reading Bedroom

Napping Bedroom

Dressing Bedroom

Computing Office

TV Office

Down Staircase

Leaving Entrance

08:00

08:30

09:00

11:30

12:00

13:00

13:15

13:45

14:00

16:30

17:00



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

How good is our method at detecting ADL?

⋆ Depends on Property
▶ Availability of sensors
▶ Rigidity of specification

▶ Examples:
toilet: only water usage =⇒ low recall

reading: no sensors =⇒ inferred from
others

napping: changing specification

Formula Precision Recall F1

G25(weight) 0.43 0.95 0.60
G3(weight) 0.43 0.99 0.60
F3(weight) 0.43 1.0 0.60
G3(pres ∧ weight) 0.34 0.14 0.20
G3(¬ℓ ∧ weight) 1.00 0.97 0.99

weight: bed pressure sensor
pres: bedroom presence sensor
ℓ: bedroom light sensor

Property Precision Recall F1

computing 0.98 0.99 0.99
office_tv 1.00 0.80 0.89
cooking 0.88 0.88 0.88

shower_usage 1.00 0.50 0.67
washing_dishes 1.00 0.47 0.64
livingroom_tv 1.00 0.43 0.60
dressing 1.00 0.41 0.58

toilet∗ 1.00 0.18 0.30
sink_usage 1.00 0.13 0.23

eating 0.61 0.35 0.44

napping 0.43 0.95 0.60
preparing 0.23 0.77 0.35

reading 0.37 0.04 0.06



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Agenda

Background and Motivations

Some Approaches to Decentralized Monitoring

Generalization: Monitoring Decentralized Specifications with Execution
History Encodings

The THEMIS Approach

Bringing Runtime Verification Home

Conclusions



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Summary

Decentralized Monitoring of (De)Centralized Specifications

Aim for predictable behavior →
Automata + EHE data structure.

t q expr
0 q0 ⊤
1 q0 ⊤ ∧ ¬⟨1, a⟩ ∧ ¬⟨1, b⟩
1 q1 ⟨1, a⟩ ∨ ⟨1, b⟩
2 q0 (¬⟨1, a⟩ ∧ ¬⟨1, b⟩) ∧ (¬⟨2, a⟩ ∧ ¬⟨2, b⟩)
2 q1 (¬⟨1, a⟩ ∧ ¬⟨1, b⟩) ∧ (⟨2, a⟩ ∨ ⟨2, b⟩)] ∨ [(⟨1, a⟩ ∨ ⟨1, b⟩) ∧ ⊤]

Separate synthesis from monitor-
ing: decentralized specifications.

q00

A0
(Temp)

q01

q02

thigh
m1 ∧ thigh¬thigh

¬m1m1 ∧ ¬thigh

⊤

q10 q11

q12
A1

(Fan)

fan

¬fan

⊤

⊤

Methodology + tool support for design-
ing, measuring, comparing and extending
decentralized RV algorithms.

Design

Instrument

Execute

Analyze

Design Design a monitoring algorithm

Instru-
ment

Create or re-use metrics.
Metrics are automatically in-

strumented using AspectJ

Execute
Use THEMIS tools to execute

one or more monitoring run(s)

Analyze Measures are stored in a
database for postmortem analysis

Adapted and compared exist-
ing algorithms

m0m1 m2

m3

m4

obs

m0

m1

m2

m3

m4

EHE

m0

m1

m2 m3

m4

Verdict(B2)

Application to smart homes.



Background and Motivations Approaches Generalization THEMIS Bringing RV Home Conclusions

Research Perspectives

▶ Centralized specification → equivalent decentralized specifications.
▶ Optimize existing methods.
▶ Take into account the topology of the monitored system.

▶ More expressive specifications (time, data).

▶ Going fully distributed: using vector clocks in atoms.

▶ Extend THEMIS
▶ metrics,
▶ monitor deployment / component instrumentation,
▶ better visualization of algorithm behavior.

▶ Runtime enforcement of centralized and decentralized specifications.

▶ Case studies for modern decentralized systems (e.g., UAVs, smart
cities, . . .)



RW + Goals More Details

Agenda

Related Work and Goals

More Details



RW + Goals More Details

Related Work
Decentralized RV

▶ General setting
▶ C: a set of components
▶ AP: a set of atomic propositions, partitioned by C

▶ Issues in decentralized monitoring
▶ partial views of AP – unknown global state
▶ partial execution of the automaton (evaluation)
▶ communication between monitors

▶ Rewriting-based techniques
▶ (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone12,ColomboFalcone16]
▶ (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
▶ Common assumptions

▶ Reliable network with fully-connected components
▶ Global clock
▶ Oblivious to order of messages

(!) Unpredictable runtime behavior of rewriting
→ Hard to compare various strategies



RW + Goals More Details

Related Work
Decentralized RV (Cont’d)

▶ Automata-based techniques for regular languages [Falcone et al 14]
▶ Same assumptions as rewriting

More expressive than LTL
Predictable behavior
Tightly linked to specification (synthesis)
No monitor topology nor communication strategy

▶ Monitor Consensus [MostafaBonakdarpour16]
▶ monitors deciding the same verdict
▶ Assumptions

▶ Fully-connected components
▶ Asynchronous Systems (Alternating Numbers)

Unreliable links (Monitors + System)
2k + 2 verdicts when resilience up to k failures

→ Determine consensus on a verdict in case of failures
(!) All monitors check the same specification



RW + Goals More Details

Agenda

Related Work and Goals

More Details



RW + Goals More Details

Using finite-state automata

Using finite-state automata as specification formalism
All regular properties and no monitorability issue (finite-word
semantics)

Efficient and Generalized Decentralized Monitoring of Regular Languages. Falcone, Cornebize and
Fernandez. FORTE 2014: 66-83

Decentralization of a monitor and monitoring algorithm
▶ State estimator synthesized by “inverse determinisation" wrt

partial information – (s, σ): σ occurred on components in s

q0 q1
{a, b, c}

Σ \ {a, b, c} Σ

{q0} {q0, q1}{q1}
({1, 2, 3}, {a, b, c}) {(s, σ) | σ = ∪i∈sAP i ∧ σ 6= {a, b, c}}

{(s, σ) | σ ⊂ ∪i∈sAP i}{(s, σ) | σ ⊆ ∪i∈sAP i}

({1, 2, 3}, {a, b, c})

{(s, σ) | σ ⊆ ∪i∈sAP i ∧ σ 6= {a, b, c}}

▶ Monitors exchange information of the form (t, s, σ) about the
occurrence of atomic propositions in σ on components in s at time t

monitor size determined statically
no formula explosion

redundancy of monitor
computation/specification



RW + Goals More Details

Execution History Encoding
Analysis

▶ Information delay (δ):
▶ expanded timestamps

with no state determined;
▶ potential states to keep

track of.
▶ Size of expressions grows

with each move beyond t.
▶ Size of one expression S(t ′),

t ′ > t:
S(t ′) = |Q| × (S(t ′ − 1) + L)

= O(|Q|t
′
).

▶ Size of EHE:
|Iδ| = O

(
δ × |Q| × L × |Q|δ

)
.

t 7→ q 7→ ⊤

δ



t + 1 7→

q0 7→ e10
q1 7→ e11

...
q|Q|−1 7→ e1(|Q|−1)

 |Q|

t + 2 7→
q0 7→ e20

...
q|Q|−1 7→ e2(|Q|−1)

 |Q|

...

t + δ 7→

q0 7→ eδ0
q1 7→ eδ1

...
q|Q|−1 7→ eδ(|Q|−1)

 |Q|



RW + Goals More Details

Studying Existing Algorithms

m0m1 m2

m3

m4

obs

m0

m1

m2

m3

m4

EHE

m0

m1

m2 m3

m4

Verdict(B2)

▶ Example algorithms
▶ Orchestration: Central monitor + forwarding monitors.
▶ Migration: Specification hops from one component to another.
▶ Choreography: Monitors are organized in a tree.

▶ Expected behavior of algorithms:
Algorithm δ # Msg |Msg|
Orchestration Θ(1) Θ(|C|) Θ(|APc |)
Migration O(|C|) O(m) O(|Q||C |)
Choreography O(depth(rt) + |tr|) Θ(|E |) Θ(1)



RW + Goals More Details

Results
Delay

3 4 5 6

0

1

2

3

4

5

Components

A
ve

ra
ge

 D
el

ay
Algorithm Orch Migr Chor

Recall from the analysis:
▶ Orchestration is

constant.
▶ Migration is linear

in components.
▶ Choreography is linear

in network depth.



RW + Goals More Details

Results
Number of Messages

3 4 5 6

0

2

4

6

8

Components

#M
sg

s 
 (

N
or

m
al

iz
ed

)

Algorithm Orch Migr Chor

Recall from the analysis:
▶ Orchestration is

linear in
components.

▶ Migration is
constant.

▶ Choreography is linear
in network edges.



RW + Goals More Details

Results
Data Transferred

3 4 5 6

0

100

200

300

400

Components

D
at

a 
pe

r 
M

es
sa

ge

Algorithm Orch Migr Chor

Recall from the analysis:
▶ Orchestration is

constant.

▶ Migration is
exponential in
components.

▶ Choreography is
constant.


	Appendix

