
Fault Localization in Embedded Software
based on a Single Cyclic Trace

Azzeddine Amiar, Mickaël Delahaye, Yliès Falcone, Lydie du Bousquet
Université Grenoble Alpes, Laboratoire d’Informatique de Grenoble (LIG)

Email: FirstName.LastName@imag.fr

Abstract—Locating faults in embedded software, especially
in microcontrollers, is still difficult. Quite recently, it became
possible to recover execution traces from microcontrollers using
specific hardware probes. However, the collected traces contain a
huge volume of low-level data. Consequently, manual analysis is
difficult and our industrial partners call for automatic and more
effective fault-localization methods for embedded software.

This paper presents a new approach to automatically locate
faults in embedded programs given a single faulty execution
trace. Our approach exploits the cyclic nature of embedded
programs and uses several adapted spectrum-based methods
in order to find faults on a single execution, rather than a
set of multiple failing and passing executions. Our approach
is implemented in the tool CoMET and evaluated on several
faulty programs. The evaluation shows that our single-trace fault-
localization method using Ochiai [1] allows engineers to find a
fault by inspecting less than 5% of the program in most cases,
and it confirms the interest of automatic fault localization for
microcontrollers.

Index Terms—dynamic analysis; automatic fault localization;
embedded systems

I. INTRODUCTION

A microcontroller is an integrated circuit that incorporates
onto the same microchip the essential computer elements
such as the processor, memory, peripherals and input/output
interfaces [2]. Microcontrollers are embedded in various kinds
of equipment such as cars, washing machines or toys. Surpris-
ingly, even though microcontrollers are now quite affordable,
the development of embedded software still weights heavily
both on the final cost of the product and the time to market.

According to our industrial partners, the main costs are
due to the validation step, and especially the fault diagnosis.
In fact, in spite of the existence of several development
environments for embedded applications, there are few tools
dedicated to validation. Classical approaches used for software
validation are difficult to use. For instance, specification-
based verification tools (provers, model checkers) can not be
used since applications are not formally specified. Moreover,
because the actual code is very low-level and specific to
the environment, static analysis is almost impossible. Note
that dynamic validation is still difficult due to the limited
observability of the execution of the embedded software.
Indeed, engineers still use oscilloscopes to analyze embedded
applications by interpreting electric signals. Consequently,
validation and fault diagnosis are usually carried out manually,
and are thus tedious and time-consuming tasks [3].

Last generation of microcontrollers include parts dedicated
to trace collections. For example, ARM Cortex-M includes a
section dedicated to trace collection, called Embedded Trace
Macrocell (ETM) [4]. Using specialized probes, such as Keil
UlinkPro [5] and STMicroelectronics ST-Link probes [6], it is
possible to collect basic execution traces without input/output
data. An execution trace consists in a sequence of program
counters (PCs) that reflects the execution. However, even in
a recording of a few seconds, the execution trace contains
huge volume of low-level data. In addition, the analysis of a
trace is particularly difficult because the association between
PCs and the actual source code’s statements to debug is
often complicated. In fact, because of memory constraints
or performance reasons, software code is heavily optimized
before being loaded in microcontrollers.

Many embedded programs can be categorized as cyclic
programs, as they rely on a main loop that iterates indefinitely.
In the following, the instruction that defines this main loop
is called the loop header. Usually, at each iteration of the
main loop, the sensors are monitored and actions are taken in
response to changes. For instance, at each cycle, an Anti-lock
Braking System (ABS) reads speed sensors attached to the
driving wheels and adjusts the braking power accordingly. Due
to the cyclic nature of embedded programs, collected execution
traces consist in long sequences of multiple repetitions of
instructions.

In this context, our industrial partners would like to localize
a fault in a program given a single trace that ends at the
failure. They are interested into failure that stops the execution
of an application (such as the so-called hard fault). The
only available piece of information is one trace because of
the due to difficulty of reproducing failures in general. To
summarize, our context contains several interesting challenges:
a single execution trace, a huge volume of data, and a fragile
association between source code and execution trace. However,
any improvement of the manual process of locating faults may
considerably speed up the development process.

Contributions: In this paper, we propose a complete and
novel approach to help locating faults in cyclic programs based
on a single faulty execution trace. This approach is based
on Automatic Fault-Localization (AFL) methods [7], [8], [1],
[9] and takes advantage of the cyclic nature of traces. Our
approach first automatically detects the cycles in the trace
before using adapted AFL method to find the most suspicious
statements. The effectiveness of our method is demonstrated

by an experimental evaluation, made possible thanks to the
development of a tool named CoMET [10]. This evaluation
shows encouraging results. In fact, the proposed method allows
to find the bug in several faulty programs by inspecting in
most cases less than 5% of the program code, with the best
suspiciousness ranking, namely Ochiai.

Paper Organization: Section II gives an overview of
related work in fault localization. In Section III, the automatic
fault-localization methods on which our approach is based are
detailed. Section IV describes our fault-localization approach
using a single microcontroller execution trace. Section V
(resp. VI) presents an experimental evaluation of loop-header
detection (resp. fault localization). Section VII discusses the
threats to validity of this evaluation. Finally, Section VIII
proposes some conclusions and perspectives.

II. RELATED WORK

The goal of automatic fault localization (AFL) is to ease
the debugging step, this by pointing out to the engineer the
lines of code that are the most likely responsible for the
observed failure. A lot of techniques have been proposed to
locate fault(s) in programs. This section discusses existing
techniques. However, note that our very specific context has
not been investigated earlier, mostly because our work is based
on a single trace.

To localize the fault, some methods compare passing and
failing executions. For instance, given a set of passing exe-
cutions and a single failing execution, the nearest neighbor
method [7] finds the passing execution most similar to the
failing execution. Then, it computes statements that are ex-
ecuted by one but not the other, using the so-called union
and intersection models. Other methods compares executions
statistically [8], [1], [9], [11]. In particular, the Tarantula
approach [8] computes a measure of association between
executions of program statements and failures. The measure
allow Tarantula to rank program statements according to their
suspiciousness for consideration by the engineer. This method
is based on the idea that program statements whose absence or
presence are most strongly associated with failures are more
likely to be faulty. As shown in [12], this method can be re-
interpreted as a data mining procedure, because it uses an
indicator which characterizes association rules between data.
In this paper, we propose an adaptation of such methods to
our (industrial) context described in the introduction.

Another way to help locating fault is program slicing, see
for instance [13], [14], [15]. Program slicing points to a set of
statements that may affect the values of variables at a given
point in the program (e.g., at the failure). However, for the
purpose of fault localization, the set contains statements that
are associated with the failure and that may not cause the
failure. Also, the set does not come with an order for suspect
examination. Our approach however does rank statements
given their suspiciousness.

Some techniques combine statistics and program slicing,
e.g., [16], [17], [18], [19]. This kind of techniques requires
a fine-grain association between the program source code,

on which the slicing is usually done, and program execu-
tion traces. In our context, because of the various code-
optimizations performed during compilation, this association
does not exist, and as a result, such techniques are not directly
usable.

Another kind of fault-localization techniques, sometimes
called delta debugging [20], [21], proposes to change the
program state during its execution, to detect the origin of the
fault. As they rely on experiments with the programs, those
techniques are not usable in the embedded context.

III. BACKGROUND

In this section, we focus on two existing fault-localization
methods: the nearest neighbor method [7] and the statistical
method [8], [1]. Our approach is based on these two meth-
ods. Both of these methods take as input several passing
test cases and at least one failing test case. A test case
combines a test input and the verdict of an oracle. Then,
using several techniques, they infer the lines of code that
the engineer needs to inspect. In addition to the test cases,
the program spectrum [22] is assumed to be available. The
program spectrum is a set of data that provides a specific
view on the dynamic behavior of the considered program. A
typical program spectrum is the statement coverage. In this
paper, only the statement coverage will be considered. In this
section, we consider the program runs, and for each program
run we have a spectrum and a verdict (passing or failing).

A. Nearest neighbor method

Assume a given failing run f and a set of passing runs S.
To find events that are present in the failing run but absent
from passing runs, a simple approach consists in computing
the differences of spectrum between the failing run f and the
union of all the passing runs:

spectrum(f)−
(⋃
s∈S

spectrum(s)
)

.

This approach is called the union model. The intersection
model expresses another idea that is complementary to the
union model. It tries to find features that are absent in the
failing run but present in passing runs:(⋂

s∈S
spectrum(s)

)
− spectrum(f) .

Proposed by Renieris and Reiss [7], the nearest neighbor
approach first consists in finding the passing run that cor-
responds the most to the failing run, by comparing their
spectra. The similarity between spectra, represented as bit
vectors, is measured using the Hamming distance1, which
was originally conceived for detecting and correcting errors
in digital communication [23]. Then, the nearest neighbor
approach applies the union and intersection models on the
selected passing runs and the failing run. This step produces

1The Hamming distance of two bit vectors u and v is defined as a10 +a01
where a10 (resp. a01) is an indicator defined in Table I that gives the number
of bits that hold true in u and false in v (resp. false in u and true in v).

TABLE I
BINARY INDICATORS FOR TWO BIT VECTORS u AND v OF SIZE n

u
v 0 1

0 a00 =
∑

1≤i≤n

ūi · v̄i a01 =
∑

1≤i≤n

ūi · vi

1 a10 =
∑

1≤i≤n

ui · v̄i a11 =
∑

1≤i≤n

ui · vi

x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N
...

...
. . .

...

xM,1 xM,2 · · · xM,N

e1

e2
...

eM

N elements

M runs

Spectrum matrix Error detection
vector

Fig. 1. The spectrum matrix and the error detection vector used in fault
diagnosis

two sets of spectrum elements (typically covered statements).
The first one, from the union model, contains elements present
in the failing run but absent from the passing run. The other set
comes from the intersection model and contains the elements
absent from the failing run but present in the passing run.
Those two sets contain elements that, by their presence or
absence, are likely to have caused the observed failure. Finally
the engineer analyzes the two sets to localize the fault.

B. Suspiciousness ranking method

Another kind of spectrum-based fault localization, proposed
by Jones, Harold and Stasko in [8], aims to identify spec-
trum elements (in most cases, statements) whose presence or
absence in runs are strongly correlated with the failure of
the runs. Such elements are likely the cause of the observed
failure. For each spectrum element, the method computes a
suspiciousness score, which measures the correlation of the
execution of the element to the failure of the program.

Spectrum matrix and error detection vector: To obtain the
suspiciousness score for each program statement, the spectrum
matrix is built. For M runs and N program statements, the
spectrum matrix is a M ×N -matrix, as shown in Fig. 1, such
that:
• each row i corresponds to a particular run;
• each column j corresponds to a particular spectrum

element (e.g., a program statement, a basic block);
• and each value xi,j of the matrix is a Boolean value

indicating whether during the i-th run the spectrum
element j is collected (xi,j = 1) or not (xi,j = 0).

In some of the M runs, an error is detected. Other runs
complete without error. This information yields a bit vector
e of size M , named the error detection vector, where, if the
i-th run in the matrix (1 ≤ i ≤ M), is a failing run, then
ei = 1, otherwise ei = 0.

TABLE II
FORMULAS OF MAJOR SIMILARITY COEFFICIENTS FOR (u, v)

Name Formula

Tarantula
a11

a11+a01
a11

a11+a01
+ a10

a10+a00

Jaccard
a11

a11 + a01 + a10

AMPLE
∣∣∣∣ a11

a11 + a01
−

a10

a10 + a00

∣∣∣∣
Ochiai

a11√
(a11 + a01) × (a11 + a10)

Op a11 −
a10

a10 + a00 + 1

The suspiciousness score of a particular spectrum element
numbered j is computed by comparing the vector (xi,j)1≤i≤M
(i.e, the j-th column of spectrum matrix) and the error detec-
tion vector e. This comparison uses a similarity coefficient,
that is, a measure of similarity between two bit vectors of the
same size.

Similarity coefficients: There exists a whole variety of sim-
ilarity coefficients between bit vectors used in the automatic
fault localization. Among the best known and most used
coefficients, we choose to experiment with the following ones:
• Tarantula’s, the original coefficient used in [8] to assist

fault localization using a visualization technique;
• The Jaccard index, a well-known statistic measure used

to compare sets and used in the Pinpoint framework [24];
• AMPLE, the coefficient used in the tool AMPLE (Ana-

lyzing Method Patterns to Locate Errors) to locate error
in object-oriented software [25];

• Ochiai, a coefficient originally used in molecular biology,
but used successfully in fault localization [1];

• Op, a coefficient proposed in [9], designed to be optimal
on programs respecting the ITE2 model, i.e., consisting
of a sequence of two if-then-else constructs.

For two spectra u and v (as bit vectors), Table II indicates
the formula of each of those coefficients, given the indicators
defined in Table I.

Given a similarity coefficient S, the suspiciousness score sj
of a particular spectrum element numbered j is defined as:

sj = S((xi,j)1≤i≤N , e).

For this purpose, the indicators have the following meaning:
• a11 is the number of failing runs where the spectrum

element j is recorded;
• a10 is the number of passing runs where the spectrum

element j is recorded;
• a01 is the number of failing runs where the spectrum

element j is not recorded;
• a00 is the number of passing runs where the spectrum

element j is not recorded.

IV. FAULT LOCALIZATION USING A SINGLE TRACE

In this section, we present an approach to analyze a single
failure execution trace (without data) to provide engineers
with program counters that are most likely the suspects for a
fault. This approach leverages the cyclic nature of embedded
programs and is based on the fault-localization techniques
presented in the previous section. This section first presents
our hypothesis, then our pretreatment of traces in order to
detect cycles in the considered execution trace, and finally the
two adapted fault-localization methods.

A. Hypotheses

It must be noted that our technical approach relies on the
analogy between program runs and cycles. Programs runs
are usually independent, especially if they are obtained by
executing a test suite (usually) consisting of independent test
cases. On the contrary, multiple cycles of same run could
interact in many ways. In general independence between
cycles cannot be guaranteed. However, the cyclic nature of
embedded software can make this assumption valid for a lot
of errors. In fact, many embedded programs interact with
the microcontroller environment via hardware (e.g., sensors),
and execute tasks without taking into account the results
of previous tasks. All programs provided by our industrial
partners are with independent cycles and fits into the model
depicted in Fig. 2.

Moreover, since the abnormal behavior necessarily appears
at the end of the trace, we assume that the last cycle in the trace
corresponds to a failing run, the other cycles being considered
as passing runs. Therefore, the cause of the failure and the
failure occur in the last cycle.

B. Pretreatment

Before applying any fault-localization technique on the
faulty execution, an important pretreatment takes place in our
approach. Indeed, fault localization relies on the division of
the trace into cycles. This can be done through a preliminary
treatment of each execution trace that consists in two steps:
first identifying the particular program counter (PC) that
corresponds to the loop-header, and second slicing the trace
before each of the occurrence of that particular PC.

1) Detecting the likely loop-header: Identifying the pro-
gram counter corresponding to the loop-header is not easy,
because, first, finding the main loop in the source code can
be difficult. Second, even if the loop-header is identified,
the compilation of the program may render the association
with program counters difficult. For instance, more than one
program counter may be associated with the loop-header.
Moreover, if the compiler heavily optimizes the program,
the association between machine instructions and program
statements may be lost. For those reasons, based on the while-
model (see Fig. 2), we designed a way to detect automatically
the program counter that is likely to correspond to the loop-
header. This automatic detection relies on three measures for
each program counter k in the execution trace σ. First, for a

s1();
while(condition){
s2();

}
s3();

Fig. 2. While-model

program counter k in the trace σ, the number of occurrences
Na(k) is defined as follows:

Na(k) =

|σ|∑
i=1

xi where xi =

{
1 if σi = k,
0 otherwise.

where σi is the i-th element in the trace σ.
Then, the average of the distance between its consecutive
occurrences, noted Da(k), is defined as follows:

Da(k) =
(o2 − o1) + · · ·+ (on − on−1)

n− 1

=

∑Na(k)−1
i=1 oi+1 − oi
Na(k)− 1

,

where o1, o2, . . . , on are the indexes of the occurrences of k
in the order that they appear the trace σ, i.e., on the one hand,
σo1 = k, σo2 = k, . . . , σon = k and on the other hand
o1 < o2 < · · · < on.
Finally, the index of the first occurrence of a symbol k in the
trace, noted first(k), is defined such that:

first(k) = o1 = min{i ∈ [0..|σ|] | σi = k} .

The indicators Na(k),Da(k), and first(k) are combined to
form a score that allows us to rank program counters according
to their likelihood to correspond to the loop-header. It is
important to note that the first ranked PC is selected as the
loop-header and used to divide the trace into cycles. The loop-
header score is noted lhscore(k) and is defined as:

lhscore(k) =
Na(k)×Da(k)

first(k)

This score relies on two basic observations. First, loop-headers
are repeated a lot of times (Na(k) is high). Second, the main
loop of a cyclic program has in average longer iterations
than any other loop of the program (i.e., Da(k) is high).
Additionally, first(k) has two roles. On the one hand, it allows
us to quickly discard active error loops, which are loops that
are used to mark an erroneous sink state. On the other hand,
it is a tie breaker when multiple symbols of the main loop
occur the same number of times and with the same average
distance between occurrences. Such ties happen quite often,
because the loop-header is often coded into multiple machine
statements.

Fig. 3. Nearest neighbor fault-localization process

2) Dividing the trace: As defined in [10], given the likely
loop-header lh , it is possible to find the range of indexes
corresponding to each cycle:

C(σ, lh) =
{
〈i, j〉 ∈ [1..|σ|]× [1..|σ|] | (1) ∨ (2)

}
where:
(1) j = |σ| ∧ σi = lh ∧ ∀k ∈ [1, |σ|] : σk 6= lh ,
(2) i ≤ j ∧ σi = σj+1 = lh ∧ ∀k ∈ [i+ 1, j] : σk 6= lh .
A cycle can be of two forms: it can be either a sequence of
symbols starting on an lh-symbol and ending on a symbol
preceding an lh-symbol without any lh-symbol in between,
or, it starts on an lh-symbol and terminates on the last symbol
of the trace without any lh-symbol in between.

C. Nearest neighbor on a single trace

The nearest neighbor method relies on the comparison of
spectra to identify the closest passing run to the failing one. In
this section, we propose an adaptation of the classical method
in the context of a single trace. As noted above, a run becomes
a cycle. In other words, we consider the failing cycle f ′ and a
set of passing cycles S′. Therefore, we apply the formulas of
the union and intersection models on the cycles of a given trace
where we consider each cycle as a spectrum. The Hamming
distance is used to identify the passing run closest to the failing
one.

1) Computing Hamming distances: The passing run (cycle)
that most corresponds to the failing run is found by measuring
the similarity between each passing run and the failing run.
The similarity between runs is measured using the Hamming
distance. Recall that the Hamming distance consists in the
difference between two binary vectors. Therefore, the smaller
the distance is, the higher the similarity is.

For each cycle in trace, a binary vector is constructed. The
Hamming distance is computed on the basic element of the
trace, that is, in our context, the program counters (PCs).

Let PCs = {PC1, PC2, . . . , PCm} be the set of the differ-
ent PCs in an execution trace, and let C = {C1, C2, . . . , Cn}
be the set of different cycles in the trace. As shown in Table III,

TABLE III
CONSTRUCTION OF BINARY VECTORS

C1 C2 . . . Cn

PC1 x1,1 x1,2 . . . x1,n
PC2 x2,1 x2,2 . . . x2,n

...
...

...
...

...
PCm xm,1 xm,2 . . . xm,n

x1,1 x1,2 · · · x1,N
...

...
. . .

...

xM−1,1xM−1,2 · · · xM−1,N

xM,1 xM,2 · · · xM,N

0
...

0

1

N program counters

M cycles

Cycle matrix Error detection
vector

Fig. 4. The cycles matrix and the error detection vector used in single-trace
fault localization

for each cycle Cj with j ∈ [1..n], a binary vector of length
|PCs| is constructed, where, for all i ∈ [1..m]:
• xi,j = 1 if the PCi appears in the cycle Cj ;
• xi,j = 0 if the PCi does not appear in the cycle Cj .
2) Applying the union and intersection models: Given this

estimation, we can compute for each correct cycle the distance
to the faulty one and select the closest match, that is, the cycle
for which the Hamming distance is the lowest. Then both the
union and intersection model are applied to find the suspect
candidates.

Figure 3 illustrates the steps of our approach on an example.
In this example, the failing run is the cycle c8, and we
have seven passing runs {C1, C2, C3, C4, C5, C6, C7}. On the
example, the cycle c7 is the successful run cycle that has the
highest similarity (or lowest distance) with c8, in the example
of Fig. 3. On these two cycles, the union and intersection
models are applied to localize the fault.

D. Suspiciousness ranking using a single trace

Adapting suspiciousness ranking should be straightforward
when considering cycles as independent runs. However, the
adaptation must consider the important size of the execution
trace. One way to reduce the problem is to limit the number
of cycles to analyze. Our suspiciousness-based method for a
single faulty trace consists of two steps: a coarse filtration of
cycles and the suspiciousness scoring.

Coarse filtration: Embedded software traces tend to present
very distinct cycles corresponding to very distinct behaviors.
Indeed, cyclic programming tends to distribute different tasks
over different cycles. It is our belief that such disparity may
hinder the search of the fault using suspiciousness ranking.
Consequently, the selection of cycles to analyze is important
To mitigate this phenomenon, our coarse filtration method first

Fig. 5. Suspiciousness ranking using a single trace

determines, using the Hamming distance estimation discussed
earlier, the cycles that most resemble the erroneous one.

Suspiciousness scoring: Computing the suspiciousness of
a spectrum element relies on comparing the error detection
vector with the vector of presence of the given spectrum
element over the cycles. In case of an execution trace, the
spectrum element is a program counter (see Fig. 4).

Figure 5 summarizes the steps needed to rank program
counters in a faulty execution trace: from the cycle detection
to the actual scoring. One final step is needed to point out the
fault in the program, that is, to associate the program counters
with the source code statement from which it originates.

V. EXPERIMENTAL EVALUATION OF
LOOP-HEADER LOCALIZATION

In this section, we independently evaluate our approach to
automatically localize the loop-header. This evaluation consists
in comparing our automatic detection of the loop-header on
several programs with an oracle.

Programs and Traces: We use execution traces that come
from 14 cyclic programs, denoted Pi, where i is the number of
the program. Table IV indicates for each program the number
of lines in the source code, and the number of lines in the
collected execution trace. Each program contains a main while

(true)-loop, which is repeatedly executed. In order to ensure
that the loop-header localization is not biased regarding fault
localization, we chose programs that differ from the faulty
programs used in Section VI. Note however that our fault-
localization approach relies on the loop-header localization,
and that the fault localization fails if the loop-header is not
correctly identified.

Oracle: The oracle analyzes the execution trace and
the source code for each program used in the experimental
evaluation to identify the loop-header. The oracle in our
experimental evaluation is an engineer.

TABLE IV
EVALUATION RESULTS FOR THE LOOP-HEADER LOCALIZATION

Program #Lines # Lines lhscore
in trace Rank of lh Verdict

P1 154 24747 1 •
P2 162 614391 1 •
P3 358 11593 1 •
P4 254 5110 1 •
P5 222 5789 1 •
P6 61 2681 1 •
P7 126 2000 1 •
P8 107 11797 1 •
P9 87 6701 1 •
P10 62 2740 1 •
P11 68 924 1 •
P12 61 5471 1 •
P13 31 1702 1 •
P14 47 802 1 •

Successes 14
Failures 0

Experiments: For each program used in the experimental
evaluation we observe the program counter selected as loop-
header by our approach and we compare it with the one defined
by the oracle. If they are the same, then the localization of the
loop-header is a success. Otherwise, if they are different, we
analyze the ranking proposed by our approach to determinate
the rank of the loop-header in the list of candidates. Our
approach provides a margin of error in the loop-header local-
ization. Therefore, if the rank of the loop-header is lesser than
or equal to 3 2, the localization of the loop-header is considered
a success. However, if the rank of the loop-header is greater
than three, then the localization of the loop-header is a failure.
According to our experimental results shown in Table IV, we
observe that our automatic loop-header localization approach
succeeds in 100% of cases. Note that the loop-header is always
ranked first.

VI. EXPERIMENTAL EVALUATION OF
FAULT LOCALIZATION

In this section, we present the evaluation of the proposed
automatic fault-localization approaches for a single trace,
namely the adapted nearest neighbor (Section IV-C) and the
adapted suspiciousness ranking (Section IV-D). Our evaluation
essentially consists in applying our approach to known erro-
neous programs and to measure the quality of the diagnosis
emitted by our fault-localization approaches. The evaluation is
performed using our tool named CoMET.

A. CoMET

CoMET is a tool written in Java in about 12,000 LOC that
implements several approaches. As illustrated in Fig. 6, it

2Our experiments show that when the loop-header is not in the three first
statements, then it is much further in the program. In this (rare) case, a manual
analysis is more relevant.

Fig. 6. CoMET workflow

takes as input an execution trace file. As presented in [10],
our tool assists in the trace analysis, by compressing the
execution trace. To generate a compression, CoMET uses
Cyclitur algorithm [10], which is inspired from Sequitur [26].
Note that our tool uses a grammar-based compression to
identify the repeated sequences in the execution trace. The
generated compression provides a comprehensive view of the
execution trace. Then, the compression allows to identify
specific cycles and specific sequences of cycles, e.g., the most
repeated cycles in the trace.

Moreover, the AFL approaches were implemented and
integrated in CoMET. First CoMET uses our compression
approach to divide the trace into cycles. Then, it applies an
AFL method chosen by the user, either the adapted nearest
neighbor or the adapted suspiciousness ranking in which case
the user also needs to specify the similarity coefficient to use
(among Tarantula’s, Jaccard, AMPLE, Ochiai and Op) and the
coarse filtration parameter as a percentage (cf. Section IV-D).
By default, the Ochiai coefficient is used (as experiments
show that it provides better results), and the percentage of the
coarse filtration is set to 30%. Finally, CoMET outputs the
results. For the nearest neighbor approach, the results consist
of two sets: one containing potential missing statements and
one containing potentially superfluous statements. For the
suspiciousness ranking method, the statements are given in
decreasing order of suspiciousness.

B. Programs and Errors

The traces used to evaluate our approach come from 13
embedded programs, which are provided by STMicroelec-
tronics and EASii IC (see also Table V). Each of these 13
programs contains a fault that is commonly found in embedded
software development. Also each program allows the user to
interact with the microcontroller, by using the LCD-Screen
or the 4 microcontroller buttons. When a button is pressed,
the microcontroller executes a specific processing. If the
processing is finished without error, the LED corresponding
to the pressed button is turned-on, and a message is displayed
on the LCD-screen.

In the following we denote program number i by Pi. The
programs P1, P2, and P12 exploit the call stack. When button
B1 is pressed an element is pushed onto the stack, and if button
B2 is pressed, an element is pulled from the stack. The bug in
P1 consists in not checking if the stack is empty before pulling

TABLE V
INFORMATION ABOUT PROGRAMS AND TRACES.

Program Size # Files Trace size # Lines
(MB) (MB) in trace

P1 14.4 165 95.2 1048579
P2 14.4 165 86.9 1,045,869
P3 143 151 25.1 280,049
P4 218 152 21.1 237,062
P5 143 151 18.7 207,914
P6 140 151 21.7 240,829
P7 207 158 94.3 104,8577
P8 139 151 21.8 235,788
P9 218 152 22.4 241,404

P10 143 151 25.2 280,298
P11 207 158 95.6 1,048,576
P12 14.4 165 92.2 1,048,573
P13 50 164 84.7 1,047,568

an element. Then, if the user presses B2 more times than B1
the execution crashes. P2 does not take into account the stack
overflow. P2 uses a recursive function to fill the stack; however,
when the function is called with a big enough argument, the
stack overflows and it generates a memory interrupt.

Programs P3 and P5 calculate the minimum m and the
maximum M of two integers a and b, and check if the
inequality M ≥ m holds. Note that a (resp. b) is the number
of times button B1 (resp. B2) is pressed. In P3, the maximum
function always returns the first argument, that is a fault.
Using P3, if the user presses B1 one time and B2 two times,
the minimum is 1 and the maximum is also 1 instead of 2.
In P5, the fault is in the minimum function and consists in
multiplying the value of the second argument by ten before
comparing the two values. Using P3, if the user presses B1 two
time and B2 one time, the maximum is 2 and the minimum
is also 2 instead of 1.

The bug in P4 consists in using a memory address as
argument instead of an integer variable, i.e., let be value_check

(int x) a function, and v an integer variable, the fault is the
use of value_check(&v) instead of value_check(v).

Program P6 contains a common mistake in C programs
about string comparison. To compare two strings s1 and s2,
some sort of string comparison function like strcmp(s1,s2)

should be used. In P6, the comparison between the strings s1

and s2 is done using the statement s1 == s2. Such statement
compares memory addresses instead of comparing the string
values. This fault leads to an interrupt at some point in the
execution.

The lcd_check and led_check functions in P7 and P11
respectively, generate an interrupt after n execution times of
the main loop.

The function value_check(float v) in P8 checks if v > 0.3.
At some point of the execution of the program, the value of v is
truncated, and, later on, the value of v is passed to value_check,
i.e. if v was 0.4, the cast sets it to 0 and the call to value_check

fails.
The oversight of a break statement in a case is the bug in

P9. If for the case 1, which executes “v = v * 3”, the break is
forgotten, the program will execute also the instruction “v = v

* 2” of case 2, thus the value of v is multiplied by six instead
of three.

A for-loop in the program P10 contains one too many “;”
as illustrated in the following example: “for (i = 0; i < 10;

i++);”. In this case any instruction intended for the for-loop
will be executed only once when i is 10.

A watchdog is a mechanism that triggers a system reset
if the main program neglects to check in regularly with the
watchdog, because of some error. Using P13, if the user
presses B3 button the regular check-ins with the watchdog
are disabled and a system reset is triggered, which generates
a hardware interrupt. This failure was reported to us as being
known to be hard to debug due to the delay between the
execution of the faulty statement and the hardware interrupt.

One at a time, each program is downloaded on a
STM32F107 EVAL-C microcontroller board and executed.
Then, the execution trace is retrieved using a Keil UlinkPro
probe [5], and saved in CSV format. The trace file contains,
for each instruction, its index, which is an ID, the time when it
was executed, its corresponding assembly instruction and the
program counter (PC).

C. Results

A preliminary step to our (adapted) fault-localization ap-
proaches is the loop-header localization. The experiments with
the 13 faulty execution traces agree with the independent
evaluation in Section V. Indeed, on each of the 13 traces,
the proposed loop-header localization effectively detects the
correct loop-header in the trace.

1) Evaluation Method: To evaluate our two approaches, we
applied the six following adapted AFL methods to each of the
13 execution traces:
• the nearest neighbor,
• the suspiciousness ranking with the Tarantula coefficient,
• the ranking with the Jaccard index,
• the ranking with the AMPLE coefficient,
• the ranking with the Ochiai coefficient, and
• the ranking with the Op coefficient.

It is important to note that the original versions of the
mentioned AFL methods does not work in our context where
only one faulty trace is available.

The expense of locating a fault E depends on the number
of inspected statements I and the total number of statements
T in the program. The expense is defined as follows:

E =
I

T
.

The expense of locating a fault with the nearest neighbor
method depends on the number of statements in the output and
the order in which they are inspected. We choose to inspect the
statement in the reverse order of the trace, which is common
in manual debugging. For locating a fault with suspiciousness

ranking, the number of statements to inspect is simply the
number of correct statements with a higher rank than the
faulty statement. In case of a tie in the ranking, the strategy
used for the nearest neighbor method is applied; statements
are inspected in the reverse order of the trace.

2) Analysis: Figure 7 shows the results of the experimental
evaluation, where the axis of abscissa represents the programs
from P1 to P13, and the axis of ordinates represents the ex-
pense for the fault localization. For each program we calculate
the expense using the Nearest Neighbor, Tarantula, Jaccard,
AMPLE, Ochiai and Op methods.

First, consider the spikes where the expense is very high. To
localize the fault, it was required to analyze the traces of P3
and P4 in details (expense above 75%), except with the nearest
neighbor method and the Op suspiciousness ranking where
the expense is less than 5%. The main reason behind this bad
fault localization is that P3 and P4 propagate a state between
cycles and that most suspiciousness rankings seems ill-adapted
in this case. For P2 and P12, Op ranks very badly the fault,
and as a result the engineer needs to inspect the whole trace
and the source code (100%). In those execution traces, almost
all statements obtain similar suspiciousness scores with Op.
A possible reason is that the programs are too different from
the model ITE2 for which Op is optimal. For P13, the nearest
neighbor and Ample also require a detailed analysis of the
trace and the source code, with expenses above 80%.

Then, globally, we observe that the nearest neighbor and the
Op suspiciousness ranking require significantly more manual
inspection to localize faults than the other suspiciousness
rankings. In particular, on P1, P2, P5, P6, P8 and P11, while
the fault localization expense with nearest neighbor rises up to
35%, the expenses with Tarantula, Jaccard, Ample and Ochiai
stay under 5%. We also observe that in 75% of cases, at most,
we analyze strictly less than 20% of the executed statements.
Note that compared to the other techniques, the Ochiai method
allows a fault localization with a less expensive analysis.

D. Evaluation of Coarse filtration
Figure 8 shows the result of the filtration evaluation. The

graph represents the expense of locating the fault in program
P6, using the Ochiai coefficient. When our fault-localization
approach uses 10% of cycles of the trace, the engineer
needs to analyze 5% of the source-code to localize the fault.
The execution trace generated by the program P6 contains
323 different cycles. Thus, by using 32 cycles, the engineer
analyzes 5% of the source code before he localizes the fault.
However, by using 30% to 100% of cycles, the expense of
locating the fault remains stable (less than 4% of the source
code to analyze). It is important to note that the experimental
evaluation concerns the 13 programs presented in this section.
The fault localization in the other 12 programs requires the
same expense to locate the fault since at least 10% of cycles
are used.

VII. THREATS TO VALIDITY AND DISCUSSION

Threats to Validity: The first threat to validity of our
evaluation might be its limited size. We experimented only

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
0%

20%

40%

60%

80%

100%

Nearest Neighbor Tarantula Jaccard

Ample Ochiai Op

Fig. 7. Expenses when localizing faults for the 13 programs and the six methods

Fig. 8. Fault Localization using cycle filtration and Ochiai in P6

on thirteen faulty programs. However, each faulty program
was chosen either by our industrial partners or because they
are representative of common faults in the development of
programs for microcontrollers. Consequently, we believe our
benchmark is reasonable for our purposes. Another potential
issue concerning the evaluation is the size of the considered
programs. However, automatic fault localization arithmetically
performs better, in terms of expense, with bigger programs.
Indeed, as noted in [27], because of the separation of concerns
in larger programs, fault localization techniques are able to
quickly discard all chunks of the code that are completely
unrelated to the fault.

The second threat to validity of our evaluation is that the
proposed methods are useful to detect a single fault in a
program and were not designed to detect multiple faults.
However, a previous study [8] with Tarantula suggested that a
single-fault localization technique may be used efficiently to
detect multiple faults.

The third threat to validity comes from the loop-header lo-
calization, which is the basis of fault localization. An incorrect

loop-header could lead to irrelevant and misleading results.
However, in our experiments, such a case did not occur and a
manual loop-header detection is always possible.

Discussion: A last point we would like to address is the
translation of program counters into actual program state-
ments. As noted earlier, embedded machine code is heav-
ily optimized. Consequently, the actual association between
machine code, on which the failure occurs, and the source
code, which should be debugged, is very limited. The task
of finding the statement of source code corresponding to
some machine instruction is consequently in itself very hard.
Automated or manual fault localization needs this task to be
done precisely. However, given a trace in terms of program
counters, manual approaches and automatic approaches differ
greatly in the number of machine instruction to translate back
into source statements. On the one hand, standard manual fault
localization approaches would likely have to translate a lot of
machine instructions to source statements, browsing the trace
from the failure back to the error. On the other hand, our
approach will limit this translations to a few instructions by
finding first the most likely faulty machine instructions before
actually translating them to source statements. Those elements
lead us to believe that automatic fault localization will greatly
speedup debugging in the embedded context and in any other
context where the association between the collected trace and
the source code is not a given.

VIII. CONCLUSION AND PERSPECTIVES

1) Conclusion: Debugging embedded software remains a
difficult task. In fact, embedded software consists of low-
level code with a tight integration in a unique environment
in terms of sensors, outputs, etc. This makes both static and
dynamic analyses very hard. Recent microcontrollers are able
to record execution traces. However, the size of the collected

traces makes the manual analysis tedious. In this paper, we
propose a complete approach to help locating a fault in an
embedded program based on a single failing execution trace.

In this approach, we take advantage of the cyclic nature
of most embedded programs to adapt well known fault-
localization techniques. The method first detects cycles in
the execution trace automatically. Then, this work adapts
known fault localization techniques to the context of a single
failing execution trace. Those techniques take multiple passing
and failing executions of the program as input. Our adapted
techniques consider cycles as program runs. Finally, the paper
presents an adapted nearest neighbor method and an adapted
suspicious ranking method compatible with any similarity
coefficient (e.g., Ochiai or Tarantula’s).

The presented approaches are implemented in a tool named
CoMET and evaluated on several faulty programs. The evalu-
ation shows promising results, in particular for the Ochiai sus-
piciousness ranking. Indeed, by using this particular method,
the user is able to find the faulty statement by inspecting in
most cases less than 5% of the program.

2) Perspectives: In the future, we will apply our methods
to bigger programs and different faults. In particular, it would
be interesting to study programs where an erroneous state
propagates through multiple cycles before a failure occurs.
This kind of faults raises an interesting challenge in the context
of fault localization based on a single erroneous trace. Indeed,
we need to identify the cycle that we can trust to be correct in
order to detect the fault. We believe that identifying cycles and
comparing them will allow us to help find such faults rapidly.
Moreover, it must be noted that embedded software is not the
only type of systems with a cyclic and long running behavior.
For instance, most server-side applications satisfy these same
characteristics. That is why we are also interested in applying
and adapting our approach to other cyclic systems.

ACKNOWLEDGMENT

This work has been funded by the French-government
Single Inter-Ministry Fund (FUI) through the IO32 project
(Instrumentation and Tools for 32-bit Microcontrollers). The
authors would like to thank our project partners STMicro-
electronics, AIM and EASii IC for their help in providing
programs and improving the relevance of our approach in an
industrial context.

Laboratoire d’Informatique de Grenoble is partner of the
LabEx PERSYVAL-Lab (ANR–11-LABX-0025).

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in 12th Pacific Rim
International Symposium on Dependable Computing (PRDC). IEEE
Computer Society, 2006, pp. 39–46.

[2] J. S. Parab, V. G. Shelake, R. K. Kamat, and G. M. Naik, Exploring C
for Microcontrollers: A Hands on Approach. Springer, 2007.

[3] A. Rohani and H. Zarandi, “An analysis of fault effects and propagations
in AVR microcontroller ATmega103(L),” in International Conference on
Availability, Reliability and Security (ARES), Mar. 2009, pp. 166 –172.

[4] Trace macrocells (ETM). ARM. [Online]. Available:
http://www.arm.com/products/system-ip/debug-trace/trace-macrocells-
etm/index.php

[5] Keil UlinkPro. [Online]. Available: http://www.keil.com/ulinkpro/
[6] ST Microelectronics. [Online]. Available:

http://www.st.com/internet/evalboard/product/219866.jsp
[7] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor

queries,” in 18th IEEE International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, 2003, pp. 30–39.

[8] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in 24th International Conference on
Software Engineering (ICSE). New York, NY, USA: ACM, 2002, pp.
467–477.

[9] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 11:1–11:32, Aug. 2011.

[10] A. Amiar, M. Delahaye, Y. Falcone, and L. du Bousquet, “Compressing
microcontroller execution traces to assist system analysis,” in IESS,
ser. IFIP Advances in Information and Communication Technology,
G. Schirner, M. Götz, A. Rettberg, M. C. Zanella, and F. J. Rammig,
Eds., vol. 403. Springer, 2013, pp. 139–150.

[11] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an RBF neural
network to locate program bugs,” in 19th International Symposium on
Software Reliability Engineering (ISSRE). IEEE CS, 2008, pp. 27–36.

[12] T. Denmat, M. Ducassé, and O. Ridoux, “Data mining and cross-
checking of execution traces. a re-interpretation of Jones, Harrold
and Stasko test information visualization,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, T. Ellman and A. Zisman, Eds. ACM Press, November 2005.

[13] F. Tip, “A survey of program slicing techniques,” J. Prog. Lang., vol. 3,
no. 3, 1995.

[14] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization
using execution slices and dataflow tests,” in Sixth International Sympo-
sium on Software Reliability Engineering (ISSRE), 1995, pp. 143–151.

[15] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, “Experimental
evaluation of program slicing for fault localization,” Empirical Softw.
Engg., vol. 7, no. 1, pp. 49–76, Mar. 2002.

[16] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” SIGPLAN Not., vol. 41, no. 6, pp. 169–180, Jun. 2006.

[17] R. Gore and P. F. Reynolds Jr., “Causal program slicing,” in
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Dis-
tributed Simulation (PADS). IEEE CS, 2009, pp. 19–26.

[18] G. K. Baah, A. Podgurski, and M. J. Harrold, “Mitigating the confound-
ing effects of program dependences for effective fault localization,” in
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (ESEC/FSE). ACM, 2011, pp.
146–156.

[19] R. Yu, L. Zhao, L. Wang, and X. Yin, “Statistical fault localization via
semi-dynamic program slicing,” in Trust, Security and Privacy in Com-
puting and Communications (TrustCom), 2011 IEEE 10th International
Conference on, 2011, pp. 695–700.

[20] H. Cleve and A. Zeller, “Locating causes of program failures,” in 27th
International Conference on Software Engineering (ICSE). ACM, 2005,
pp. 342–351.

[21] A. Zeller, “Isolating cause-effect chains from computer programs,” in
10th ACM SIGSOFT symposium on Foundations of Software Engineer-
ing (FSE-10). ACM, 2002, pp. 1–10.

[22] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling for
software maintenance with applications to the year 2000 problem,” in
ACM Software Engineering Notes. Springer-Verlag, 1997, pp. 432–449.

[23] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[24] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
problem determination in large dynamic internet services,” in Interna-
tional Conference on Dependable Systems and Networks (DSN), 2002,
pp. 595–604.

[25] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization
for Java,” in 19th European Conference on Object-Oriented Program-
ming. Springer-Verlag, 2005, pp. 528–550.

[26] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,” Journal of Artificial
Intellgence Research (JAIR), vol. 7, pp. 67–82, 1997.

[27] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in 20th IEEE/ACM international
Conference on Automated Software Engineering (ASE). ACM, 2005,
pp. 273–282.

