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ABSTRACT
Runtime enforcement is a verification/validation technique aiming
at correcting (possibly incorrect) executions of a system of interest.
In this paper, we consider enforcement monitoring for systems with
timed specifications (modeled as timed automata). We consider
runtime enforcement of any regular timed property specified by a
timed automaton. To ease their design and their correctness-proof,
enforcement mechanisms are described at several levels: enforce-
ment functions that specify the input-output behavior, constraints
that should be satisfied by such functions, enforcement monitors
that implement an enforcement function as a transition system, and
enforcement algorithms that describe the implementation of en-
forcement monitors. The feasibility of enforcement monitoring for
timed properties is validated by prototyping the synthesis of en-
forcement monitors.

1. INTRODUCTION
Runtime enforcement [10, 6, 7, 5, 9] is a verification/validation

technique aiming at correcting (possibly incorrect) executions of a
system of interest. In traditional (untimed) approaches, the enforce-
ment mechanism is a monitor that is modeled as a decision proce-
dure that inputs, corrects, and outputs a sequence of events. How a
monitor transforms the input sequence is done according to a high-
level specification, formalized as a property, that indicates correct
and incorrect sequences. Moreover, a monitor should only out-
put correct sequences (the monitor is sound) and should minimally
alter the input sequence (the monitor is transparent). An impor-
tant endeavor in the previous enforcement monitoring approaches
is to determine the set of enforceable properties which, from an
abstract point of view, consists in determining the set of proper-
ties for which an enforcement monitor can be synthesized. Sev-
eral sets of enforceable properties were delineated according to the
enforcement primitives conferred to enforcement monitors, e.g.,
safety properties for security automata [10, 6], renewal properties
for edit-automata [7], response properties for generalized enforce-
ment monitors [5]. In addition to enforcement primitives, enforce-
ability limitations arose because properties were expressed over in-
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finite sequences, thus imposing an enforcement monitor to consis-
tently take decisions (on finite sequences) with the possible infinite
continuations of the observed sequences. Only considering prop-
erties over finite sequences allows to get rid of the aforementioned
limitations [4]: any property over finite sequences is enforceable
with a monitor endowed with the primitives of an edit-automaton,
basically inserting and suppressing events from the input sequence.
Most of the runtime enforcement endeavors consider logical time,
as opposed to physical time. Suppressing events and (later) insert-
ing them is assumed without consequence on the execution nor on
the satisfiability of the property.

In this paper, we consider runtime enforcement of timed prop-
erties, initially introduced in [9]. In timed properties (over finite
sequences), the time that elapses between two events matters and
affects the satisfiability of the property. Moreover, it turns out that
considering time when specifying the behavior of systems brings
some expressiveness that can be particularly useful in some appli-
cation domains when, for instance, specifying usage of resources.
For example, the two following properties could specify the behav-
ior of a server.

P1 “Resource grants and releases alternate, starting with a grant,
and every grant should be released within 15 to 20 time units
(t.u.)”.

P2 “Every 10 t.u., there should be a request for a resource followed
by a grant. The request should occur within 5 t.u.”.

In this paper, we generalize and extend the initial approach to run-
time enforcement of timed properties [9] in several directions. (See
Section 7 for a detailed description of the improvements over [9].)
First the approach in [9] tackled only safety and co-safety proper-
ties that allow to respectively express that “something bad should
never happen" and that “something good should happen within a
finite amount of time"; thus ruling out specifications P1 and P2. In-
deed, in the space of regular properties (over timed words), many
interesting properties of systems are neither safety nor co-safety
properties but belongs to a larger set: the set of the so-called re-
sponse properties that allow to specify some form of transactional
behavior and cannot be considered in [9]. We propose to synthe-
size enforcement mechanisms for all regular timed properties. We
consider enforcement mechanisms as time retardants, i.e., mecha-
nisms should keep the same order of actions, but are allowed to in-
crease the delay between two actions. We specify the mechanisms
at several levels. The notion of enforcement function describes the
behavior of an enforcement mechanism at an abstract level as an
input-output relation between timed words. An enforcement moni-
tor implements an enforcement function and describes the behavior
of an enforcement mechanism in an operational way as a rule-based
transition system. Enforcement algorithms describe the implemen-



tation of enforcement monitors and serve to guide the concrete
implementation of enforcement mechanisms. The difficulty that
arises when considering response properties is that the aforemen-
tioned enforcement mechanisms should consider input (corrected)
sequences of events that alternate between satisfying and not satis-
fying the underlying property.

Paper organization.
Some motivating examples for the enforcement monitoring of re-

sponse properties and illustrating the enforceability issue are given
in Section 2. Section 3 introduces some preliminaries and nota-
tions. Section 4 explains how properties are specified as TA with
some examples. Section 6 describes the enforcement mechanisms
(enforcement function, monitor, and algorithm) in detail. Related
work are discussed in Section 7. Finally, conclusions and open per-
spectives are drawn in Section 8.

2. SOME MOTIVATING EXAMPLES
Let us consider again the two properties P1 and P2 mentioned in

the introduction. We shall see in Section 4 how to formalize these
specifications as properties represented by timed automata. Let gr
and rel denote the grant and release events, respectively.

Let us consider P1 and illustrate how an enforcement monitor
corrects the input sequence (3, gr)·(10, rel)·(3, gr)·(5, gr) (where
each event is associated with a delay, indicating the time elapsed af-
ter the previous event or the system initialization for the first event).
Let t be the total time since the beginning of the sequence. The
monitor receives the first event gr at t = 3, the second event rel
at t = 13, etc. The monitor cannot output the first received event
gr because the event alone does not satisfy the property (and the
monitor does not know yet the next events). If the next event is rel ,
then it can output the events gr followed by rel , if it can choose
good delays for both the events satisfying the timing constraints.
At t = 13, the monitor can decide that the first two events can be
released as output. Hence in output, the delay associated with the
first gr will be 13 t.u. If the monitor chooses the same delay for
the second action rel , then the property cannot be satisfied. The
monitor chooses a delay of 15 t.u. which is the minimal delay sat-
isfying the constraint and greater than the delay in the input. When
the monitor observes the second gr at t = 16, it will not release it
as output, and again waits for the next event. Since the next input
event observed at t = 21 is not rel , the sequence violates the prop-
erty and cannot be corrected by the monitor. Hence the output of
the monitor will be (13, gr) · (15, rel).

Let us now consider P2. Consider an input sequence (3, req) ·
(4, gr) · (2, req) · (6, gr). The monitor will be observing the events
req followed by a grant only when t = 7. Hence, the delay as-
sociated with the first event in the output should be at least 7 t.u.,
and if the monitor chooses a delay which is greater than or equal
to 7, the timing constraints cannot be satisfied. So, the output of
the monitor will be empty. However, notice here that the input se-
quence provided to the monitor satisfies the property. Nevertheless,
the monitor cannot release any event as output as it cannot take a
decision until it receives a gr , which effects the delay of the first
event req , thus falsifying the constraints.

In addition to the “expressiveness" of response properties, prop-
erties P1 and P2 illustre another important feature of the timed
case, that we exhibit in this paper: not all properties (over finite
sequences) can be enforced. For instance, we will see that prop-
erty P1 is enforceable, while P2 is not. It turns out that enforce-
ment monitors face some physical constraints when they input and
memorize timed events, e.g., memorizing events takes time and in-
fluences satisfiability of the considered property. Nevertheless, the

synthesis of enforcement mechanisms proposed in this paper works
for all regular timed properties and the synthesized enforcement
mechanisms remain sound.

3. PRELIMINARIES AND NOTATION

3.1 Untimed Languages
A (finite) word over an alphabet A is a finite sequence of ele-

ments of A. The length of a word w is noted |w|. The empty word
over A is denoted by ε when clear from the context. The set of all
(respectively non-empty) words over A is denoted by A∗ (respec-
tivelyA+). A language overA is a set L ⊆ A∗. The concatenation
of two words w and w′ is noted w · w′. For an interval [j, k] of N,
by
⊙

i∈[j,k](ai) we denote the concatenation aj · aj+1 · · · ak. A
word w′ is a prefix of a word w, noted w′ 4 w, whenever there
exists a word w′′ such that w = w′ · w′′, and w′ ≺ w whenever
w′ 4 w ∧ |w′| < |w|. For a word w and 1 ≤ i ≤ |w|, the i-
th letter (resp. prefix of length i, suffix starting at position i) of
w is noted w(i) (respectively w[···i], w[i··· ]– with the convention

w[···0] = w[0··· ]
def
= ε). Given a word w and two integers i, j, s.t.

i ≤ j and |w| ≥ j, the subword from index i to j is noted w[i···j].
The set pref(w) denotes the set of prefixes of w and by extension,

pref(L)
def
= {pref(w) | w ∈ L} the set of prefixes of words in

L. Given an n-tuple of symbols e = (e1, . . . , en), Πi(e) is the

projection of e on its ith element (Πi(e)
def
= ei).

3.2 Timed Words and Languages
A timed word over a finite alphabet Σ is a finite sequence σ =

(δ1, a1)·(δ2, a2) · · · (δn, an) of events. For an event (δi, ai), act(δ,

a)
def
= a is the action and delay(δi, ai)

def
= δ is the delay between

ai−1 (or the initialization for i=1) and ai. A timed language is
any set L ⊆ (R≥0 × Σ)∗. Note that even though the alphabet
(R≥0 × Σ) is infinite in this case, previous notions and notations
defined in the untimed case (related to length, concatenation, pre-
fix, etc) naturally extend to timed words. The untimed projection
of σ is ΠΣ(σ)

def
= a1 · a2 · · · an in Σ∗ (i.e., delays are ignored).

The duration of a timed word σ, noted time(σ)
def
=
∑n
i=1 δi, is the

sum of its delays.

3.3 Preliminaries to Runtime Enforcement

Orders on timed words.
Apart from the prefix order 4, we define the following partial

orders on timed words:
Delaying order 4d: For σ, σ′ ∈ (R≥0 × Σ)∗, we say that σ′ is a

delayed prefix of σ (noted σ′ 4d σ) iff
ΠΣ(σ′) 4 ΠΣ(σ) and ∀i ≤ |σ′| : delay(σ′(i)) ≥ delay(σ(i)),
which means that the untimed projection of σ′ is a prefix of the
untimed projection of σ, but delays in σ′ may be greater than the
delays in σ. This order will be used to characterize outputs with
respect to inputs in enforcement monitoring.

Lexical order �lex: Given any two timed words σ, σ′ s.t. ΠΣ(σ) =
ΠΣ(σ′) and any two timed events with identical actions (δ, a)
and (δ′, a), �lex is defined recursively as follows: ε �lex ε, and
(δ, a) · σ �lex (δ′, a) · σ′ iff δ ≤ δ′ ∨ (δ = δ′ ∧ σ �lex σ

′). This
order is useful to choose a unique timed word among some with
same actions.

Some special sets and sequences.
We consider an input timed word σ ∈ (R≥0 × Σ)∗ and a timed

property ϕ defined by a timed regular language.



The observation of σ at time t ∈ R≥0 is the part of the input
that can be read by the enforcement monitor at time t, and is de-
fined as the maximal prefix of σ whose duration is smaller than t:
obs(σ, t)

def
= max4{σ′ ∈ (R≥0 × Σ)∗ | σ′ 4 σ ∧ time(σ′) ≤ t},

where max4 takes the maximal sequence according to the prefix
relation 4 (unique in this case).

The maximal strict prefix of σ that belongs toϕ is noted maxϕ≺,ε(σ)

and defined as: maxϕ≺,ε(σ)
def
= max�

(
{σ′ ∈ (R≥0 × Σ)∗ | σ′ ≺

σ ∧ σ′ ∈ ϕ} ∪ {ε}
)
.

4. PROPERTIES AS TIMED AUTOMATA

4.1 Timed Automata
A timed automaton [1] (TA) is an automaton extended with a

finite set of real valued clocks. Let X = {x1, . . . , xk} be a finite
set of clocks. A clock valuation for X is a function ν from X to
RX≥0 where RX≥0 denotes the valuations of clocks of X in the set
R≥0. For ν ∈ RX≥0 and δ ∈ R≥0, ν + δ is the valuation assigning
ν(xi) + δ to each clock xi of X . Given a set of clocks X ′ ⊆ X ,
ν[X ′ ← 0] is the clock valuation ν where all clocks in X ′ are
assigned to 0. G(X) denotes the set of clock constraints defined
as Boolean combinations of simple constraints of the form xi ./ c
with xi ∈ X , c ∈ N and ./ ∈ {<,≤,=,≥, >}. Given g ∈ G(X)
and ν ∈ RX≥0, we write ν |= g when g holds according to ν.

Definition 1 (Timed automaton) A timed automaton is a tupleA =
〈L, l0, X,Σ, ∆, F 〉, s.t. L is a finite set of locations, l0 ∈ L is the
initial location, X is a finite set of clocks, Σ is a finite set of events,
∆ ⊆ L × G(X) × Σ × 2X × L is the transition relation. F ⊆ L
is a set of accepting locations.

The semantics of a TA is a timed transition system [[A]] = 〈Q, q0,Γ,
→, QF 〉 where Q = L × RX≥0 is the (infinite) set of states, q0 =
(l0, ν0) is the initial state where ν0 is the valuation that maps every
clock in X to 0, QF = F × RX≥0 is the set of accepting states,
Γ = R≥0×Σ is the set of transition labels, i.e., pairs composed of
a delay and an action. The transition relation→⊆ Q × Γ × Q is

the maximal set of transitions of the form (l, ν)
(δ,a)−−−→(l′, ν′) with

ν′ = (ν + δ)[Y ← 0] whenever there exists (l, g, a, Y, l′) ∈ ∆ s.t.
ν + δ |= g for δ ∈ R≥0.

In the following, we consider a timed automatonA = 〈L, l0, X,
Σ,∆, F 〉 with its semantics [[A]]. A is deterministic whenever for
any (l, g1, a, Y1, l

′
1) and (l, g2, a, Y2, l

′
2) in ∆, g1 ∧ g2 is unsatis-

fiable. A is complete whenever for any location l ∈ L and every
event a ∈ Σ, the disjunction of the guards of the transitions leaving
l and labeled by a evaluates to true (i.e., it holds according to any
valuation).

In the remainder of this paper, we shall consider only determin-
istic timed automata, and, automata refer to timed automata.

A run ρ from q ∈ Q is a sequence of moves in [[A]] of the form:

ρ = q
(δ1,a1)−−−−→ q1

···−→ qn−1
(δn,an)−−−−−→ qn, for some n ∈ N. The set

of runs accepted byA, i.e., when qn ∈ QF , is denoted asLQF (A).
The set of runs from q0 ∈ Q is denoted Run(A) and RunQF (A)
denotes the subset of runs accepted byA, i.e., when qn ∈ QF . The
trace of a run ρ is the timed word (δ1, a1) · (δ2, a2) · · · (δn, an).
We noteL(A) the set of traces of Run(A). We extend this notation
to LQF (A) in a natural way, which are the set of accepted traces.

4.2 Classes of Timed Properties
In this paper, a timed property is defined by a timed language

ϕ ⊆ (R≥0 × Σ)∗ that can be recognized by a timed automaton.

l0 l1 l2

Σ \ {alloc}
alloc,
x := 0

Σ \ {alloc}

alloc, x ≥ 10,
x := 0

alloc,
x<10

Σ

(a) Safety TA

l0 l1

l2

l3

alloc, x := 0

Σ \ {alloc}
Σ \ {gr};

gr , x < 5 ∨ x > 7

gr ,
5≤x ≤7

Σ

Σ

(b) Co-safety TA

l0 l1

l2

Σ \ {gr , rel} gr ,
x := 0

rel

Σ \ {gr , rel}

gr ;
rel, x < 15 ∨ x > 20

rel, 15 ≤ x ≤ 20;
x := 0

Σ

(c) Response TA

l0 l1

l2

Σ \ {req, gr} req,
x ≤ 5

gr ;
req, x > 5

Σ \ {req, gr}

req;
gr , x > 10

gr , x ≤ 10;
x := 0

Σ

(d) Response TA

Figure 1: Some properties as TAs

That is, we consider the set of regular timed properties. Given a
timed word σ ∈ (R≥0 × Σ)∗, we say that σ satisfies ϕ (noted
σ |= ϕ) if σ ∈ ϕ.

Definition 2 (Safety, co-safety and response TA) A TA A = 〈L,
l0, X,Σ, ∆, F 〉, with semantics [[A]] = 〈Q, q0,Γ,→, QF 〉 is said
to be:
- a safety TA if q0 ∈ QF and QF is unreachable from Q \QF ;
- a co-safety TA if q0 ∈ Q\QF and Q\QF is unreachable from
QF ;

- a response TA if it is an unconstrained TA.

Safety properties are the non-empty prefix-closed languages, i.e.,
properties ϕ such that ϕ 6= ∅ and if w 4 w′ then w′ |= ϕ⇒ w |=
ϕ. Co-safety properties are the non-universal extension-closed lan-
guages, i.e., properties ϕ such that ϕ 6= (R≥0×Σ)∗ and if w 4 w′

then w |= ϕ ⇒ w′ |= ϕ. Safety and co-safety properties are dual:
ϕ is a safety property iff (R≥0×Σ)∗\ϕ is a co-safety property. Re-
sponse properties are all properties, including safety and co-safety
properties. It is not hard to see that safety TAs (respectively co-
safety TAs) define safety (resp. co-safety properties).

Example 1 (Properties modeled as TA’s) Figure 1 presents some
properties expressed as TA’s, where accepting locations are repre-
sented by squares. The safety property “The delay between consec-
utive allocation requests should be at least 10 t.u." is specified by
the safety TA in Figure 1a. The co-safety property “An allocation
request should be followed by a grant within 5 to 7 t.u." is specified
by the co-safety TA in Figure 1b. The response property P1 is spec-
ified by the response TA in Figure 1c. The response property P2 is
specified by the response TA in Figure 1d .

5. CONSTRAINTS ON AN ENFORCEMENT
MECHANISM

At an abstract level, an enforcement mechanism can be seen as
a function with two parameters, an input timed word, and a given
time, and which returns a timed word as output.

Enforcement
function

ϕ

Eϕ(σ, t) σ, t



An enforcement function Eϕ transforms some input timed word
σ which is possibly incorrect w.r.t. ϕ. The resulting outputEϕ(σ, t)
at time t is a timed word with same actions, but possibly increased
delays between actions so that eventually it will satisfy the prop-
erty. Our enforcement monitors are time retardants.

Definition 3 (Constraints on an Enforcement Mechanism) For a
timed property ϕ, an enforcement mechanism behaves as a func-
tion Eϕ from (R≥0 × Σ)∗ × R≥0 to (R≥0 × Σ)∗, satisfying the
following constraints:
- Time retardant:

∀σ ∈ (R≥0 × Σ)∗,∀t, t′ ∈ R≥0 :
t ≤ t′ =⇒ Eϕ(σ, t) 4 Eϕ(σ, t′) (Phy1).

∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0, ∀i ≤ |Eϕ(σ, t)| :
time(Eϕ(σ, t))[...i] ≥ time(σ[...i]) (Phy2).

- Soundness:
∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0 :

Eϕ(σ, t) 6= ε =⇒ (∃t′ ≥ t : Eϕ(σ, t′) |= ϕ) (Snd).

- Transparency:
∀σ ∈ (R≥0 ×Σ)∗, ∀t ∈ R≥0 : Eϕ(σ, t) 4d obs(σ, t) (Tr).

The requirements of the enforcement function are specified by three
constraints, physically time retardant, soundness and transparency.
(Phy1) means that the outputs of the enforcement function are con-
catenated over time, i.e., what is output cannot be modified. (Phy2)
expresses that the events cannot be released as output, before they
are read as input. Soundness (Snd) means that if a timed word
is released as output by the enforcement function, in the future,
the output of the enforcement function should satisfy the property
ϕ. In other words, no event is output before being sure that the
property will be satisfied by subsequent events. Transparency (Tr)
expresses that, at any time t, the output is a delayed prefix of the
observed input obs(σ, t).

6. GENERALIZED RUNTIME ENFORCE-
MENT OF TIMED PROPERTIES

In this section, we present how to synthesize an enforcement
monitor from any property specified by a timed automaton. Rather
than giving directly the enforcement algorithm, we propose several
descriptions of enforcement mechanisms: as an enforcement func-
tion, as a transition system, and finally as an algorithm derived from
the transition system.

6.1 Functional Definition
The purpose of the functional definition of an enforcement mech-

anism is to clearly distinguish each step such as i) processing the
input, ii) computing the delayed timed word satisfying the property,
iii) and processing the output sequence. Moreover, the enforcement
function describes how these functions are composed to transform
an input sequence. The resulting functional definition presented
here satisfies the physical, soundness, and transparency constraints.

Definition 4 (Enforcement function) The enforcement function for
a property ϕ is Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗ defined
as:

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

where storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ is defined as

storeϕ(ε) = (ε, ε)

storeϕ(σ · (δ, a)) =

{
(σs ·min�lex

K, ε) if K 6= ∅
(σs, σc · (δ, a)) otherwise

with
(σs, σc) = storeϕ(σ)
K = κϕ(time(σ) + δ, σs, σc · (δ, a))

where κϕ(T, σs, σc)
def
= {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w| =

|σc| ∧ σs · w |= ϕ ∧ delay(w(1)) ≥ T − time(σs))}.

In the definition of Eϕ, obs(σ, t) is the prefix of the input that has
been observed at time t, and thus can be processed by the enforce-
ment function. From this observation, the storeϕ function com-
putes a pair, whose first component extracted by Π1 is processed
by obs to produce the output.

The storeϕ function takes as input an observation, and outputs
a pair: the first element is the transformation of a prefix of the
observation for which delays have been computed (the property is
satisfiable by this prefix by appropriate delaying); the second el-
ement is the suffix of the observation for which delays still have
to be computed. The storeϕ function is defined inductively: ini-
tially, for an empty observation, both elements are empty; if σ has
been observed, storeϕ(σ) = (σs, σc), and a new event (δ, a) is
observed, there are two possible cases, according to the vacuity of
the set K = κϕ(time(σ) + δ, σs, σc · (δ, a)) (the set of candidate
timed words appropriately delaying σc · (δ, a) and satisfying ϕ, see
below):
- if K 6= ∅, the minimal timed word in K w.r.t the lexicographic

order is appended to σs, and the second element is set to ε.
- otherwise, (δ, a) is appended to σc and σs is unmodified.
The function κϕ has three parameters: T (the duration of the cur-
rent observation), σs, and σc. It computes the set of candidate
timed words w “appropriately delaying” σc such that σs · w sat-
isfies ϕ. The appropriate delaying is such that w and σc have iden-
tical actions, same length but delays of w are greater than or equal
to those of σc. Moreover the delay of the first action in w should
exceed the difference between the duration of the observation and
the duration of σs. The reason for this constraint is that σs will be
output entirely after a duration of time(σs), while the decision to
output w is taken after T t.u., thus a smaller value for delay(w(1))
would cause this delay to be elapsed before the decision is taken.

Notice that upon reading an input event (δ, a), in case there are
no appropriate delays, and if it is not possible to correct the subse-
quence σc · (δ, a) (when κϕ is empty), then the input event (δ, a)
is appended to σc, and in case the subsequence σc · (δ, a) can be
corrected, it is appended immediately to σs (with appropriate de-
lays) without relying on events which will be read later. The policy
adopted is to correct the observation of the input sequence as soon
as possible. Consequently, the input sequence is treated as a series
of subsequences, each subsequence allowing to satisfy the property.

Proposition 1 Given some property ϕ, its enforcement function
Eϕ as per Definition 4 satisfies the physical constraints Phy1 and
Phy2 and is sound and transparent as per Definition 3.

In addition to the physical constraints, soundness and transparency,
the functional definition also ensures that each subsequence is re-
leased as output as soon as possible, as expressed by the following
proposition:



obs(σ, t) = ε
storeϕ(obs(σ, t)) = (ε, ε)
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, gr)
storeϕ(obs(σ, t)) = (ε, (3, gr))
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, gr) · (10, rel)
storeϕ(obs(σ, t)) = ((13, gr) · (15, rel), ε)
Eϕ(σ, t) = obs((13, gr) · (15, rel), t)
obs(σ, t) = (3, gr) · (10, rel) · (3, gr)
storeϕ(obs(σ, t)) = ((13, gr) · (15, rel), (3, gr))
Eϕ(σ, t) = obs((13, gr) · (15, rel), t)
obs(σ, t) = (3, gr) · (10, rel) · (3, gr) · (5, gr)
storeϕ(obs(σ, t)) = ((13, gr) · (15, rel), (3, gr) · (5, gr))
Eϕ(σ, t) = obs((13, gr) · (15, rel), t)

t ∈ [0, 3[

t ∈ [3, 13[

t ∈ [13, 16[

t ∈ [16, 21[

t ∈ [21,∞]

Figure 2: Enforcement function evolution for P1

Proposition 2 (Optimality of an enforcement function) Given some
propertyϕ, its enforcement functionEϕ as per Definition 4 satisfies
the following optimality constraint:

∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0 : Eϕ(σ, t) 6= ε ∧ Eϕ(σ, t) |= ϕ
=⇒ ∃m,w ∈ (R≥0 × Σ)∗ :

m = maxϕ≺,ε(Eϕ(σ, t))
∧Eϕ(σ, t) = m · w
∧time(w) = min{time(w′) | delay(w′(1)) ≥

time(σ[1···|Eϕ(σ,t)|])− time(m) ∧m · w′ |= ϕ}.

For any input σ, at any time t, if the output Eϕ(σ, t) is not ε, and
satisfies ϕ, then the output is considered as two sub-sequences m
followed byw, such thatm is the maximal strict prefix ofEϕ(σ, t)),
satisfying the property ϕ andw is the remaining sub-sequence such
that Eϕ(σ, t)) = m · w.

The last sub-sequence of the output which again makes the out-
put to satisfy ϕ after m is w. The optimality constraint expresses
that the sum of the delays (time required to output) of w is mini-
mal. The delay for the events inw should be chosen such thatm ·w
satisfies the property, is transparent, and the delay of the first event
is greater than the difference between the duration of the input se-
quence σ[1···|Eϕ(σ,t)|] and the duration of m.

Notice that if time(σ[1···|Eϕ(σ,t)|])−time(m) is negative or null,
then this means that the delay corresponding to some events in the
sequence preceding w (which is m) are increased, providing suf-
ficient amount of time to observe the last subsequence (which is
σ[|m+1|···|m|+|w|]) entirely. In case time(σ[1···|Eϕ(σ,t)|])−time(m)
is positive, all events in m have been released as output before the
last subsequence σ[|m+1|···|m|+|w|] is observed entirely as input.
After releasingm, time(σ[1···|Eϕ(σ,t)|])−time(m) time units have
elapsed and thus the last subsequence w can be released as output
only after a delay of time(σ[1···|Eϕ(σ,t)|])− time(m) time units.

Example 2 (Enforcement function) We now illustrate how the Def-
inition 4 is applied to enforce the property P1 defined by the au-
tomaton depicted in Fig. 1c with Σ= {gr , rel}, and the input timed
word σ = (3, gr) · (10, rel) · (3, gr) · (5, gr). Figure 2 shows the
evolution of obs, storeϕ and Eϕ. The variable t describes global
time. The resulting output is (13, gr) · (15, rel), which satisfies the
property P1.

Example 3 (Enforcement function: A non-enforceable property)
Let us now consider another property P2, formalized by the TA

obs(σ, t) = ε
storeϕ(obs(σ, t)) = (ε, ε)
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, req)
storeϕ(obs(σ, t)) = (ε, (3, req))
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, req) · (4, gr)
storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, req) · (4, gr) · (2, req)
storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))
Eϕ(σ, t) = obs(ε, t)

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)
storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))
Eϕ(σ, t) = obs(ε, t)

t ∈ [0, 3[

t ∈ [3, 7[

t ∈ [7, 9[

t ∈ [9, 15[

t ∈ [15,∞]

Figure 3: Enforcement function evolution for P2

in Figure 1d, with Σ= {gr , req}, and the input timed word σ =
(3, req) · (4, gr) · (2, req) · (6, gr). Figure 3 shows the evolution of
obs, storeϕ and Eϕ. The variable t describes global time. The re-
sulting output of the enforcement function is ε at any time instance.

Remark 1 (Non-enforceable properties) From Example 3, notice
that the output of the enforcement function is ε, though the input se-
quence itself satisfies the property. As explained in Section 2, the
delay associated with the first event should be at least 7 time units,
but increasing the delay associated with the first event to 7, will
falsify the guard on transition between l0 to l1, which is a possible
move upon the first event req, and there is no transition with a reset
of clock x before.

It can be noticed that guards with<,≤,= impose urgency on re-
leasing an event as output at or before some time. For some proper-
ties, some input sequences that can be delayed to satisfy ϕ cannot
be corrected by enforcement, because the delay of the first event
of each subsequence may be increased, which may falsify a guard
with <,≤,=. However, even for such properties, the enforcement
function will never produce incorrect output. If the enforcement
function outputs some sequence, it will satisfy the physical, sound-
ness and transparency constraints.

6.2 Enforcement Monitor
An enforcement function Eϕ for a property ϕ specified by a TA
Aϕ, is implemented by an enforcement monitor (EM), defined as a
transition system E . An EM is equipped with a memory and a set of
enforcement operations used to store and dump some timed events
to and from the memory, respectively. The memory of an EM is
basically a queue containing a timed word, the received actions
(with increased delays) that are not released yet. In addition, an
EM also keeps track of the state of the underlying TA, and clock
values used to count time between input events and between output
events.

Before presenting the definition of enforcement monitor, we in-
troduce update as a function from Q × (R≥0 × Σ)+ × R≥0 to
(R≥0 × Σ)+ × B. The update function takes as input the (cur-
rent) state (q ∈ Q) of [[A]], a timed word σc ∈ (R≥0 × Σ)+, and
a real number mt which is the difference between the duration of
the input sequence observed minus the duration of the corrected se-
quence, and returns a timed word of length |σc| and a Boolean as



output.

update(q, σc,mt)
def
=

{(
σc, ff

)
if ∆(σc,mt, q) = ∅(

σ′c, tt
)

otherwise

where σ′c = min�lex
∆(σc,mt, q) with ∆ defined as:

∆(σc,mt, q) ={
⊙

i∈[1,|σc|](δi, act(σc(i))) |
∀i ≤ |σc|, δi ≥ delay(σ(i)) ∧ δ1 ≥ mt

∧∃q1 ∈ QF : q

⊙
i∈[1,|σc|](δi,act(σc(i)))

→ q1}

∆ is the set of timed words σ′c of length |σc| with same actions
as σc, each delay in the sequence is equal to or greater than the
delay at the corresponding index in the provided input sequence
σc, and the first delay should be greater that or equal to mt, and an
accepting state is reachable from state q upon the sequence σ′c.
- In the first case, there are no good delays such that an accepting

state is reachable from the state q upon with a sequence delaying
σc (∆ = ∅). In this case, the update function returns the same
timed word σc (which is provided as input), and a Boolean value
ff, indicating that no accepting state is reachable.

- The second case applies when there are good delays and an ac-
cepting state in q1 ∈ QF is reachable from q upon a sequence de-
layed from σc. In this case, the update function returns a timed
word of minimal duration belonging to ∆, chosen according to
the lexicographic order; and a Boolean value tt, indicating that
an accepting state is reachable.

Definition 5 (Enforcement Monitor) An enforcement monitor E
for ϕ is a transition system (C,C0, Γ, ↪→) s.t.:
- C = (R≥0 × Σ)∗ × (R≥0 × Σ)∗ × R≥0 × R≥0 × R≥0 ×Q is

the set of configurations,
- C0 = 〈ε, ε, 0, 0, 0, q0〉 ∈ C is the initial configuration,
- ΓE =

(
(R≥0 ×Σ)∪ {ε}

)
×Op×

(
(R≥0 ×Σ)∪ {ε}

)
is the al-

phabet, which are triples comprised of an optional input event, an
operation, and an optional output event, where the set of possible
operations is Op = {store-ϕ(·), store-ϕ(·),dump(·), idle(·)};

- ↪→⊆ C×ΓE×C is the transition relation defined as the smallest
relation obtained by the following rules applied with the priority
order below:
- 1. store-ϕ:

(σs, σc, δ, d,mt, q)
(δ,a)/store−ϕ(δ,a)/ε

↪→ (σs, σc·(δ, a), 0, d,m′t, q)
if Π2(update(q, σc · (δ, a),mt + δ)) = ff

- m′t = mt + δ

- 2. store-ϕ:

(σs, σc, δ, d,mt, q)
(δ,a)/store−ϕ(δ,a)/ε

↪→ (σs · σ′c, ε, 0, d,m′t, q′)
if (update(q, σc · (δ, a),mt + δ)) = (σ′c, tt), where:
- m′t = m′t + δ − time(σ′c)

- q′ is defined as q
σ′
c→ q′

- 3. dump:

((δ, a)·σs, σc, s, δ,mt, q)
ε/dump(δ,a)/(δ,a)

↪→ (σs, σc, s, 0,mt, q)

- 4. idle:
(σs, σc, s, d,mt, q)

ε/idle(δ)/ε
↪→ (σs, σc, s+ δ, d+ δ,mt, q).

A configuration (σs, σc, s, d,mt, q) of the EM consists of the cur-
rent stored sequence (i.e., the memory content) σs, and σc. The
sequence which is corrected and can be released as output is de-
noted by σs. The sequence σc is sort of an internal memory for the
store function: this is the input sequence read by the EM, but yet
to be corrected. The configuration also contains two clock values

s and d indicating respectively the time elapsed since the last store
and dump operations, and one more counter mt indicating the dif-
ference between the duration of the observed input sequence and
the duration of the corrected sequence. q is the current state of [[A]]
reached after processing the sequence already released followed by
the timed word in memory σs.

Semantic rules can be understood as follows:
- Upon reception of an event (δ, a), one of the following store rules

is executed.
- The store-ϕ rule is executed if the update function returns ff

(indicating that σc · (δ, a) cannot be corrected). The clock s
is reset to 0, and the event (δ, a) is appended to the internal
memory σc. The delay corresponding to the input event δ is
added to mt.

- The store-ϕ rule is executed if the update function returns tt,
indicating that ϕ can be satisfied for the sequence already re-
leased as output, followed by the sequence in σs, followed by
σc · (δ, a) with possibly increased delays. When executing this
rule, s is reset to 0, and the timed word σ′c returned by the
update function is appended to the content of the output mem-
ory σs. The delay of the input event δ is added to mt, and the
duration of the corrected sub-sequence returned by the update
function, time(σ′c), is subtracted from mt.

- The dump rule is executed if the time elapsed since the last dump
operation d, is equal to the delay corresponding to the first event
of the timed word σs in the memory. The event (δ, a) is released
as output and removed from σs, and the clock d is reset to 0.

- The idle rule adds the time elapsed δ to the current values of s
and d when no store nor dump operation is possible.

Example 4 (Execution of an enforcement monitor) We now illus-
trate how the rules of Definition 5 are applied to enforce the prop-
erty P1. Let us consider the input timed word σ = (3, gr)·(10, rel)·
(3, gr) · (5, gr). Figure 4 shows how semantic rules are applied,
and the evolution of the configurations of the enforcement monitor.
In a configuration, the input (resp. output) is on the right (resp.
left). The variable t describes global time. The resulting output is
(13, gr) · (15, rel), which satisfies the property P1. From t = 28,
only the delay rule can be applied.

Remark 2 (Simplified definitions of enforcement monitor) To syn-
thesize an EM for a safety or co-safety property, one can use simpli-
fied definitions. For example, for a safety property, only one timed
word is needed in the configuration. Indeed, recall that σc is a
sort of internal memory used to store the input events used when it
may be possible to reach an accepting state if more events are ob-
served in the future. Since a safety property is prefix-closed, upon
an event that cannot be delayed to keep satisfying the property, no
future extension can. Hence, σc is not necessary for safety proper-
ties. Therefore, some simplifications, that may lead to performance
improvements, are possible.

Remark 3 (Relation between enforcement function and monitor)
An enforcement monitor is an operational description of an en-
forcement function. For any property ϕ, input σ, and at any time t,
the input sequence processed by the enforcement function obs(σ, t)
is the concatenation of all events read by EM (store) over various
steps, until time t. At any time t, the output of the enforcement func-
tion Eϕ, is equal to the output behavior of the associated EM (the
concatenation of all the released events (dump) until time t). Since,
Eϕ is sound, transparent, and satisfies the physical constraints,



ε/(ε, ε, 0, 0, 0, (l0, 0))/(3, gr) · (10, rel) · (3, gr) · (5, gr)

ε/(ε, ε, 3, 3, 0, (l0, 0))/(3, gr) · (10, rel) · (3, gr) · (5, gr)
idle(3)

ε/(ε, (3, gr), 0, 3, 3, (l0, 0))/(10, rel) · (3, gr) · (5, gr)
store-ϕ

ε/(ε, (3, gr), 0, 13, 3, (l0, 0))/(10, rel) · (3, gr) · (5, gr)
idle(10)

ε/((13, gr) · (15, rel), ε, 0, 13,−15, (l0, 15))/(3, gr) · (5, gr)
store-ϕ

(13, gr)/((15, rel), ε, 0, 0,−15, (l0, 15))/(3, gr) · (5, gr)
dump

(13, gr)/((15, rel), ε, 3, 3,−15, (l0, 15))/(3, gr) · (5, gr)
idle(3)

(13, gr)/((15, rel), (3, gr), 0, 3,−12, (l0, 15))/(5, gr)

store-ϕ

(13, gr)/((15, rel), (3, gr), 5, 8,−12, (l0, 15))/(5, gr)

idle(5)

(13, gr)/((15, rel), (3, gr) · (5, gr), 0, 8,−7, (l0, 15))/ε

store-ϕ

(13, gr)/((15, rel), (3, gr) · (5, gr), 7, 15,−7, (l0, 15))/ε

idle(7)

(13, gr) · (15, rel))/(ε, (3, gr) · (5, gr), 7, 0,−7, (l0, 15))/ε

dump

t = 0

t = 3

t = 3

t = 13

t = 13

t = 13

t = 16

t = 16

t = 21

t = 21

t = 28

t = 28

Figure 4: Execution of an enforcement monitor

with relating the input-output behavior of an EM to Eϕ, it can be
proved that EM is sound, transparent and satisfies the physical con-
straints.

6.3 Implementation
The implementation of an EM consists of two processes run-

ning concurrently (Store and Dump) as shown in Figure 5, and a
memory. The Store process models the store rules. The memory
contains the timed word σs: the corrected sequence that can be re-
leased as output. The memory σs is realized as a queue, shared
by the Store and Dump processes, where the Store process adds
events which are processed and corrected to this queue. The Dump
process reads events stored in the memory σs and releases them as
output after the required amount of time. The Store process also
makes use of another internal buffer σc (not shared with any other
process), to store the events which are read, but cannot be corrected
(to satisfy the property). In the algorithms the await primitive is
used to wait for a trigger event from another process or to wait un-
til some condition becomes true. The wait primitive is used by a
process to wait for a certain amount of time, which is determined
by the process itself.

Enforcement Monitor

Dump
Process

Store
Process

Memory (σs)

σcEϕ(σ, t) σ, t

Figure 5: Realizing an EM

The StoreProcess algorithm (see Algorithm 1) is an infinite loop
that scrutinizes the system for input events. In the algorithm, (l, ν)
represents the state of the property automaton, where l represents
the location and ν is the current clock valuation. It is initialized to
(l0, [X ← 0]). The variable mt is used to keep track of the differ-
ence between the duration of the input sequence read (the sequence
which is already corrected followed by the sequence in σc), and the
duration of the corrected sequence. The update function takes the
events stored in the internal memory of the store process σc, the

current state, and mt, and returns a timed word of same length as
σc and a Boolean indicating whether an accepting state is reachable
from the current state upon the timed word it returns as a result. The
function post takes a state of the property automaton (l, ν), a timed
word, and computes the state reached by the property automaton.

Algorithm 1 StoreProcess

(l, ν)← (l0, [X ← 0])
(σs, σc)← (ε, ε)
mt ← 0
while tt do

(δ, a)← await (event)
σc ← σc · (δ, a)
mt ← mt + δ
(σ′c, isPath)← update(l, ν, σc,mt)
if isPath = tt then
mt ← mt − time(σ′c)
σs ← σs · σ′c
(l, ν)← post(l, ν, σ′c)
σc ← ε

end if
end while

The algorithm proceeds as follows. The StoreProcess initially
waits for an input event. After receiving an event as input, it is
appended to the internal buffer σc, with the corresponding delay,
and the delay corresponding to the received event δ is added to mt.
Then the update function is invoked providing the events stored in
σc as input. If the update function indicates that there is a path
leading to an accepting state, (i.e., if isPath = tt), then the timed
word σ′c returned by the update function, is appended to the shared
memory σs (since it now corrected with respect to the property, and
can be released as output). Then, the duration of σ′c is subtracted
from mt. Before proceeding to the next iteration, the state of the
automaton (l, ν) is updated, and the internal memory σc is cleared.

Algorithm 2 DumpProcess

d← 0
while tt do

await (σs 6= ε)
(δ, a)← dequeue (σs)
wait (δ − d)
dump (a)
d← 0

end while

The DumpProcess algorithm (see Algorithm 2) is an infinite
loop that scrutinizes the memory and proceeds as follows: Initially,
the clock d is set to 0. If the memory is empty (σs = ε), the dump
process waits until a new element (δ, a) is stored in the memory.
Else (the memory is not empty), it proceeds with the first element in
the memory. Using the dequeue operation, the first element stored
in the memory is removed, and is stored as (δ, a). Meanwhile, d
keeps track of the time elapsed since the last dump operation. The
DumpProcess waits for (δ − d) time units before performing the
dump(a) operation, releasing the action a as output (which amounts
to appending (δ, a) to the output of the enforcement monitor). Fi-
nally, the clock d is reset to 0 before the next iteration starts.

7. RELATED WORK
Several approaches for the runtime enforcement of properties are

related to the one proposed in this paper.



Most of the work on this topic was dedicated to the enforce-
ment of untimed properties (see [3] for a short overview). Schnei-
der introduced security automata as the first runtime mechanism
for enforcing safety properties [10]. Then the set of enforceable
properties was later refined by Schneider, Hamlen, and Morrisett
by showing that security automata were actually restrained by the
computational limits exhibited by Viswanathan and Kim [11]: the
set of co-recursively enumerable safety properties is a strict upper
limit of the power of (execution) enforcement monitors defined as
security automata. Ligatti et al. [7] later introduced edit-automata
as enforcement monitors. Edit-automata can either insert a new
action by replacing the current input, or suppress it. The set of
properties enforced by edit-automata is called the set of infinite re-
newal properties: it is a super-set of safety properties and contains
some liveness properties (but not all). Similar to edit-automata are
generic enforcement monitors proposed that are able to enforce the
set of response properties in the safety-progress classification of
(untimed) properties. Moreover, some variants of edit-automata
differ in how they ensure the transparency constraints (see e.g., [2]).
However, none of these approaches is able to synthesize an enforce-
ment mechanism from a property.

In previous work in [9] we introduced the problem of runtime en-
forcement for timed properties. We similarly proposed several no-
tions of enforcement mechanisms: enforcement function, enforce-
ment monitor, and enforcement algorithm. Only safety and co-
safety properties were considered and different definitions of mech-
anisms were proposed for each of the classes. In this paper, given
any timed automaton (representing any regular property), we syn-
thesize enforcement functions, monitors and algorithms according
to one general definition and for more properties: the set of regular
response properties. Moreover, when the input timed automaton
recognizes a safety or a co-safety property, we could optimize the
data-structures used by the enforcement monitors and algorithms.
Finally, for the enforcement of co-safety properties, the approach
in [9] assumes that time elapses differently for input and output se-
quences (the sequences are desynchronized). More precisely, the
delay of the first event of the output sequence is computed from the
moment an enforcement mechanism detects that its input sequence
can be corrected (that is, the mechanisms has read a sequence that
can be delayed into a correct sequence). Our approach is more re-
alistic as it does not suffer from this “shift" problem.

Finally, Matteucci proposed to synthesize controller operations
to enforce safety and information-flow properties using process-
algebra [8]. The approach targets discrete-time properties and sys-
tems are modelled as timed processes expressed in CCS. Monitors
are described at an abstract level and resemble Schneider’s security
automata: monitors only halt the underlying program and do not
consider timing issues.

8. CONCLUSION AND FUTURE WORK

Conclusion.
This paper presented a general enforcement monitoring frame-

work for systems with timing requirements. We generalized the
results of [9], showed how to synthesize enforcement mechanisms
for any regular timed property (modeled with a timed automaton).
Enforcement mechanisms are described at several levels of abstrac-
tion (enforcement function, monitor, and algorithm), thus facilitat-
ing the design and implementation of such mechanisms.

Future work.
Several avenues for future work are open by this paper.

First, we believe it is important to study and delineate the set of
enforceable timed properties. As shown informally by this paper,
some timed properties should be characterized as non-enforceable.
For this purpose, an enforceability condition should be defined and
used to delineate enforceable properties. Such a criterion should
ideally also be expressible on timed automata. Note that even for
properties which are non-enforceable, enforcement monitors can
be built, which may not be able to correct some input sequences,
but outputs are always sound.

Specifications are currently modeled with timed automata. We
consider synthesizing enforcement mechanisms from more expres-
sive formalisms. For instance, we will consider formalisms such
as context-free timed languages (which can be useful for recursive
specifications) or introduce data into requirements (which can be
useful in some application domains). Implementing efficient en-
forcement monitors is another important aspect and should be done
in a particular application domain.

Alternative enforcement primitives can be afforded to timed re-
tardant. For instance, we could relax the constraint of only aug-
menting delays of events. For instance, time retardants that delay
the current observation of the input (while being allowed to shorten
the delay of some events) have yet to be studied. We believe that
suppressing events also can be considered, by erasing some events
which are stored in the memory.

A prototype is implemented based on the algorithms described
in Section 6.3. Regarding efficiency, some experiments should be
done using the prototype to determine to what extent using more
specific enforcement mechanisms for a sub-class (e.g., the safety
class), can give better performance, compared to using the general
enforcement monitoring mechanism.
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