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Abstract. Runtime verification (RV) is a successful technique to mon-
itor system behavior at runtime and potentially take compensating ac-
tions in case of deviation from a specification. For the usage in safety
critical systems the question of reliability of RV components arises since
in existing approaches RV components are not verified and may them-
selves be erroneous.
In this paper, we present work towards a framework for certified RV
components. We present a solution for implementations of transition
functions of RV monitors and prove them correct using the Coq proof
assistant. We extract certified executable OCaml code and use it inside
RV monitors. We investigate an application scenario in the domain of
automotive embedded systems and present performance evaluation for
some monitored properties.

1 Introduction

Behavioral guarantees are an important prerequisite for using embedded systems
in safety critical environments. Runtime verification [HG05,PZ06,FFM09,BH11]
(RV) has become an important technique to monitor a system’s behavior at run-
time and take compensating actions in case of deviation from a specification. In
RV, a system is typically extended with instrumentation code that communi-
cates with a monitor. The monitor may be realized as an external program, the
monitor is then referred as an outlined monitor. Once an abnormal behavior is
detected, the monitor tries to bring the system into a fail-safe state using some
feedback loop. This increases the confidence to handle system errors appropri-
ately when the system is running, and, helps discovering them during testing.

Going one step beyond classical RV: for achieving an even higher level of
confidence the question of whether an RV system itself has been implemented
correctly arises. We address this question in this paper. In particular we guaran-
tee that runtime-monitors do indeed monitor the desired specification and show
the practicability of these runtime monitors for regular properties expressed with
regular expressions.

The described approach targets OCaml based runtime monitors and their
verification using the Coq proof assistant [Coq12]. Coq based runtime monitors
can be extracted as OCaml code and verified in the Coq environment. In the
context of this paper, the code that is verified and extracted out of Coq is said
to be certified.



Our approach is suitable for regular expression based properties in the em-
bedded systems domain. As an analyzed and implemented example we are dis-
cussing properties that can be monitored while analyzing the traffic on a bus
structure. This paper aims to demonstrate that certified runtime verification is
feasible and can be used in safety-critical application domains. More precisely,
this paper features the following contributions:

– Verified runtime monitors automatically generated out of Coq and a method
to verify regular expression based monitors.

– An OCaml based framework for runtime monitoring and its evaluation.
– An experimental application for monitoring properties inspired by needs

from the automotive embedded systems domain. Furthermore, we present
a description of the ingredients of a certified RV system and dependencies
between different RV components.

The main focus of the experimental application shall demonstrate the possibility
to integrate the approach for real applications in the embedded systems domain
especially in the automotive area. We are not at the stage of deploying a concrete
application in a car. Many parameters are not fixed yet, e.g., the embedded
devices and the exact type of bus. For this reason we evaluate some aspects of
the approach using standard hardware in this paper, but mention the constraints
for real applications in the automotive area.

Paper Organization This paper is structured as follows. Related approaches are
discussed in Section 2. Section 3 introduces guiding examples from the auto-
motive domain that are regarded throughout this paper. Prerequisites including
definitions on RV correctness are described in Section 4. Our OCaml based run-
time monitors are introduced in Section 5. Section 6 describes runtime monitor
formalization, and correctness proofs. An evaluation including a study on the in-
tegration of our Coq based code is presented in Section 7 and Section 8 features
a conclusion and ideas for future work.

2 Related Approaches

Runtime Verification principles Over more than a decade, the field of runtime
verification has produced many frameworks dedicated to the verification of the
behavior of monolithic programs w.r.t. user-defined specifications. From an ab-
stract point of view, most of these approaches proceed as follows. Two inputs are
needed: a user-defined specification characterizing some desired or proscribed be-
havior, and an implementation to be runtime-checked. The (abstract) events of
this specification are related to the (concrete) events of the program. An instru-
mentation technique is then used to observe the execution of these events when
the program is executed. The so-called monitor is generated from the specifica-
tion. A monitor is a decision procedure for the specification: it is fed by events
coming from the program and indicates specification fulfillment or violation.
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RV implementations Many tools have been proposed as implementations of the
existing runtime verification frameworks. A large effort is the Java-MOP line
of work conducted by Rosu et al. (see [MJG+11] for an overview). Java-MOP
uses as input specifications which can be written in different formalisms (e.g.,
LTL, regular expression, context-free grammars). Java-MOP allows to generate
an AspectJ aspect that instruments the underlying program (using weaving) and
embeds the (automatically generated) monitor. Besides its genericity, Java-MOP
is also efficient as demonstrated by experimentation.

On the other hand, a series of tools and approaches are based on the (less
efficient) paradigm of rewriting. These approaches focus on expressiveness of the
specification formalism (rather than the runtime efficiency). A major effort in
this regard is the endeavor conducted by Barringer and Havelund with the tools
Eagle [BGHS04], RuleR [BGHS04,BRH10], LogScope [BGHS10], and TraceCon-
tract [BH11]. Eagle handles LTL formulae as input and uses the techniques of
progression that was proposed earlier in planning. RuleR is a more general sys-
tem where specifications are directly encoded as a set of rewrite rules. This
confers RuleR the ability to handle very expressive specifications. From an ab-
stract point of view, LogScope can be seen as a variant of RuleR internally
using state-machines. TraceContract is an embedding of LogScope in the Scala
programming language (as an internal domain-specific language).

In addition to these two major research endeavors there are the tools Trace-
Matches [AAC+05], JLO [SB06], and LARVA [CPS09]. TraceMatches is an ex-
tension of AspectJ allowing to write regular expressions over pointcuts. JLO
allows to generate monitors from LTL formulae where events are AspectJ point-
cuts. Finally, LARVA allows to monitor different specification formalisms such as
Lustre and duration calculus. LARVA translates specifications into the so called
dynamic event timed automata and then uses AspectJ to weave the monitor.

Formal Treatment As for the formal verification part of the work, a summary of
usages of RV for certification has been proposed by Rushby [Rus08]. Additional
ideas for monitoring systems in the context of certification are stated in [SH11].
Up to our knowledge, we are the first who have actually realized and evalu-
ated certified RV monitors. Moreover, none of the previous tools or framework
contains a certified subset. The presented verification technique, explicitely es-
tablishing a simulation relation that captures characteristics between property
and states of a monitor in Coq, is similar to one of the authors work on compiler
verification [BG11].

3 Guiding Examples

Figure 1 presents an abstract view on a guiding example from the embedded
automotive system domain. There are sensors, a control unit and an actuator
connected to a bus with with some timing guarantees3. The control unit receives

3 cf. existing bus systems used in the automotive area with timing guarantees in the
embedded domain: FlexRay [FRay05], TTEthernet [SKS10] or TTP [Kop93].
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Fig. 1. An example bus

data from the sensors and processes them. Based on this, the actuator receives
messages from the control unit. Sensor 1 is mandatory, while the other sensors
are optional and can be added later.

The monitor observes the bus. In particular, we are interested whether the
communication with actuator and sensor conforms to a given specified protocol.
If the protocol is violated, the monitor notices this and can trigger a handling
for this problem. However, the error-handling itself is not part of the monitor.
Different kinds of errors due to hardware failures (e.g., bit-shifts, packet loss) or
software errors can occur and need to be detected.

The bus features a time signal every 10 ms. The fact that reasonable data is
sent on the bus by either a sensor, the actuator, or the control unit is abstracted
into events.

In a real system, the first sensor might be a manual control providing a user
interface for a functionality that is realized as an actor, while the two other
sensors might analyze the environment to improve the service quality. With
the advent of real-time operating systems that provide some timing and non-
interference guarantees for parallel execution (e.g., PikeOS [KW]) it becomes
possible to execute the control unit and the monitor in parallel even on the
same processor core. The rate of arriving events is typically in the lower ms
range, while an operating system’s context switch can be typically done in a few
µs.

A special feature of the given example is the ability to add and remove
components to the IT system of a car during runtime, including connecting and
disconnecting them from a bus. It is especially crucial that some core system
behavior is preserved – and runtime monitored in this process. Two example
applications and properties are regarded in the scope of this paper

3.1 A Rain-Sensor Application

A Rain-Sensor senses whether it is raining and determines the rain intensity. It
sends the calculated intensity value to a Wiper-Controller, which analyses the
value and sends control values to a Wiper-Actuator. Communication is done
using the bus. The communication between system components is shown in
Fig. 2. For the given example we have realized the communication between
sensor and controller in the following way: The Rain-Sensor encodes the rain
intensity in 10 single event bits, followed by a parity event bit P . Each event
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Fig. 2. Example application

can be either 0 or 1. The more 1s are sent, the higher is the rain intensity.
After this sequence of 11 events has been sent, the next sequence is sent, trans-
mitting a new value of rain intensity. The corresponding regular expression is:
1(1)n(0)m0P such that n+m = 8 and P ∈ {0, 1}.

The regular expression is checked by a monitor. In addition to this, the mon-
itor checks the parity bit P . If the number of previous 1s was odd (n was even)
P shall be 1. In addition, the monitor can check another consistency condition
that the rain-intensity (number of 1s) in two succeeding sequences should only
change by an amount of 2. This consistency condition reflects that the rain
amount is unlikely to change much in the very short time interval of 10 ms. For
instance, the sequence 11100000001 can be followed by 11111000000, but not by
11111110001.

Regarding the communication between controller and actuator: The con-
troller counts the number of 1s (denoted #1) received from the Sensor per se-
quence (without counting the parity) and sends a control value C ∈ {0, 1, 2} to
the actuator after each sequence. If 0 ≤ #1 ≤ 2 : C := 0; if 3 ≤ #1 ≤ 6 : C := 1;
otherwise C := 2. The value of C denotes the speed of the wiper.

Due to the constraint that #1 change at most by 2 in two succeeding se-
quences, the sequence of sent control values C is also constrained. After C was
0, C cannot become 2, but only 0 or 1. Assuming that C = 0 is the start and
end state, the possible sequences of C can by expressed by 0+(1+(2+1+)∗0+)∗.
This can be verified during runtime by a second monitor.

The monitors observe if both the sequence of received values by the controller
and the sequence of sent control values are valid.

In addition to properties specified by regular expressions, here we also ob-
serve behavior that is not specified in the regular expression itself: we check the
”maximal rain-intensity variation by two” property between two signals and the
parity bit. Such properties are checked by our monitors and can be specified
in Coq and generated out of the Coq specification. However, only the regular
expression part is verified. It is important for us, that our framework supports
monitors that are able to observe additional constraints – thus, these monitors
are more restrictive than the regular expression. This enlarges the monitor but
since these aspects may be less critical they do not have to be verified. In the
given example, however, it would be possible to specify the extra constraints by
large regular expressions.
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3.2 Timing-Properties

Our bus systems typically features some time events. This is used to evaluate
properties requiring that certain signals arrive in certain time intervals. The bus
systems features the following events:

Σ = {tick(T ), actuator(A), sensor1(S1), sensor2(S2), sensor3(S3)}

We assume the requirement that between two time ticks (10 ms interval) there
is at least one sensor1 event and the actuator status should be updated. Fur-
thermore, either sensor2 or sensor3 should send a message event between two
ticks.

The formalization of the previous requirement is ensured by the conjunction
of the three following properties expressed with regular expressions:

1. φ1 = (S1 + T.S1)∗.(T + ε)
2. φ2 = (A+ T.A)∗.(T + ε)
3. φ3 = ((S2 + S3) + T.(S2 + S3))∗.(T + ε)

When abstracting from the other events, the first property can be realized by
an automaton as depicted in Fig. 3.

4 Prerequisites

We now introduce prerequisites for our RV framework: a formalization of the
notions of correctness of RV and the minimal concepts of regular expressions
used to state properties.

4.1 A Formalization of RV Basics

In our RV scenario we distinguish a syntactical representation (e.g., the source
code) of a system s, its instrumentation sI and the syntactical representation of
a monitor m. The instrumentation may modify the source code of a system.

– Assuming that an operational semantics can be assigned to s and that a
system state of typeΣs and concrete events of typeΣc can be observed during
runs associated with this semantics. The semantics of s is given by a function
σ returning a set of traces in (Σs × Σc)∗. The Σc events abstract system
states. The motivation for distinguishing system states and concrete events
is that system states represent all important information to determine the
control flow and important actions of the system. Concrete events explicitly
specify observable system behavior.
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– The semantics of sI is given by another function – for simplicity it is also
denoted σ returning a set of traces. Each trace has the type:

(Σs ×Σc × (Σa ∪ {ignore}))∗

Each trace element comprises a tuple of a system state, two corresponding
events of system events in Σc and their instrumented counterparts in Σa ∪
{ignore}. In the case of ignore no abstract corresponds to a concrete one.
In the deployed RV system this is used to reduce communication overhead
between the instrumented system and the monitor.

– Monitors are defined as state transition systems comprising monitor states
mStates and a transition function

mStep : (mStates ×Σa)→ (mStates × bool)

taking a monitor state and an abstract event and returning a new (updated)
monitor state and a verdict.
In addition to this, the monitor comprises code for communicating with the
instrumented system and calling mStep.

– The semantics of m with sI running in parallel is denoted: sI ||m.
The semantics is given by another function – for simplicity it is also denoted
σ as a set of traces, each trace comprising tuples of four components. A trace
has the type: (Σs ×Σc × (Σa ∪ {ignore})× bool)∗
Traces comprise system states Σs, concrete events Σc, their instrumented
counterparts Σa ∪ {ignore} and truth values returned by the monitor.

Traces of systems Our correctness definitions use the projection of sets of traces
(e.g., given by one of the σ functions) to the Σ∗s parts (denoted Ts for a set
of traces of tuples T ). Furthermore, we need projections for the Σ∗c and Σ∗a
(denoted Tc and Ta for a set of traces of tuples T ). The event ignore is omitted
in this projection. A projection for sets of the bool∗ parts of traces of tuples
(denoted Tb for a set of tuples of traces T ) is also needed.

The fact that a system s can generate a trace t (t ∈ σ(s)) is denoted s(t).
Likewise we introduce the notations sI(t) and (sI ||m)(t) and projections (σ(sI))c
and (σ(sI ||m))c to restrict sets of traces to the Σ∗c parts. The fact that a monitor
m accepts a trace ta is denoted m(ta). In the case of safety properties this means
that its output trace contains only true.

Correctness of instrumentation It is possible that the instrumentation or running
the monitor in parallel with the instrumented system does change the seman-
tics of the original system due to side effects. Thus, we require a definition of
correct instrumentation and monitor integration with respect to the uninstru-
mented system. This correctness definition is done by checking equality of sets
of (projected) sets of traces.

Abscence of side-effect of instrumentation is defined as:

σ(s)s = σ(sI)s and σ(s)c = σ(sI)c
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Furthermore, the instrumentation is responsible for abstracting concrete events.
Abstract and concrete events shall correspond to each other using an abstraction
function ψ : Σc → (Σa ∪ {ignore}). Thus, we require that applying ψ to the Σc
component in a tuple in each trace is equal to the Σa ∪ {ignore} component.

Correctness of instrumentation is defined as the conjunction between absence
of side-effects and the correspondence of concrete and abstract events.

Correctness of monitor integration Correctness of monitor integration requires
a correct instrumentation and the following conditions:

– The monitor does not pose any side-effects on the instrumented system:
σ(sI)s = σ(sI ||m)s ∧ σ(sI)c = σ(sI ||m)c ∧ σ(sI)a = σ(sI ||m)a

– The monitor is not effected by side-effects:
∀ t ∈ (Σs ×Σc × (Σa ∪ {ignore})× bool)∗ . σ(sI ||m)b(t) iff m(ta)

Monitor correctness Correctness of a monitor mϕ is defined with respect to a
property ϕ. When a trace t fulfills a property ϕ, we note it ϕ(t). Thus, monitor
correctness is defined as: ∀ ta ∈ Σ∗a . ϕ(ta) = mϕ(ta) Correctness of monitor
implementation correctness is defined as:

Combined correctness properties An RV system sI ||mϕ is considered correct with
respect to a property ϕ iff:

– the instrumentation is done correctly,
– the monitor has been integrated correctly, and
– the monitor is correct with respect to ϕ.

In addition, it has to be ensured that the system is a correct deployment and
compilation of sI ||mϕ which is not in the scope of this paper.

4.2 Regular Expressions

Regular expressions are defined as an inductive datatype ΦΣa
parameterized

with a set of (abstract) events Σa. In our Coq formalization they comprise
constructors for atoms, concatenations, disjunctions, the star and plus operators,
and the epsilon (corresponds to an empty list of events) and empty expressions
(corresponds to nothing). Furthermore, we have defined abbreviations to ease
the specification like concatenating n-times the same (sub-)regular expression to
each other.

Semantics of regular expressions The semantics of a regular expression is defined
in the usual way, by associating a regular expression φ with a function that
indicates whether a list of events el is in the language described by φ. We note
φ(el) when this is the case. We define an equivalence relation ' over regular
expressions φ, φ′ that describe languages over the same vocabulary Σ:

∀ el ∈ Σ∗. φ(el) = φ′(el) iff φ ' φ′

This partitions syntactical representations of regular expressions into semantic
equivalence classes.
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Accepting an event When comparing a regular expression φ to a list of events, it
is helpful to define an operator that returns a modified regular expression that
captures the effect of having consummed an event e. For this reason, we define
the / operator that has the following property:

∀ e el . φ(e :: el) iff φ/e(el)

where e :: el is the OCaml notation for the concatenation of an event e to a list of
events el. Note that, for space reasons, we do not give the full formal definition
specifying how this is achieved for regular expressions, but this is part of our
Coq formalization.

5 OCaml Based RV Monitors

Our RV framework distinguishes between an instrumented system and monitors.
Outlined monitors observe the system behavior by using information provided
by the instrumented system.

Figure 4 shows the environment in which our RV monitors are deployed. RV
monitors are relatively small pieces of software and are in this work realized as
a state-transition function which performs transitions of the internal monitor
state. This state-transition function is called from a loop structure over and over
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again, thereby consuming behavioral events from the system and emitting an
overall system status value to indicate possible deviations from an acceptable
system behavior. The events received by the RV monitor are originating from
abstraction functions which observe, e.g., a stream from a Posix socket. This
stream can contain concrete events which are originating from the instrumented
system. Here, the monitor functionality is realized in OCaml. Communication
with the rest of the system and the environment is done using the operating
system API.

While we generate the state transition functions for our RV monitors out of
Coq specifications which are verified in the Coq environment, the state transition
functions have to be embedded into a monitor environment which takes care of
the monitor’s communication with the system, as shown in Fig. 4.

The OCaml part of the monitor is divided into three parts:

– A generic part, that takes care of the Posix based communication with the
environment and is the same for all of the monitors targeted in this paper.

– A verified state transition generated out of Coq and all depending definitions.

– A file that realizes glue code for the interaction between the generic part and
the generated state transition function. Naturally this file has to be adapted
for each individual monitor. It contains abstractions (cf. Section 4.1), e.g.,
of network packets to events. The abstractions can be verified optionally.

6 Certified Monitors with Coq

We describe how we obtain certified monitors using Coq: the formalization of a
monitor, of regular expressions, monitor extraction and the correctness proofs.

6.1 Formalization of Monitor Correctness in Coq

We have adapted an existing library (definitions, morphisms and lemma) for
handling regular expressions in Coq in order to work with our definitions of
events 4. Small adaptations were necessary since the original library only handles
regular expressions of a particular String type.

We define the following artifacts in Coq:

– Possible events as abstract data types.

– States of monitors as data types and state transition functions written in a
functional style.

– The regular expression that specifies the correctness property.

– The statement that the monitor corresponds to the regular expression, using
simulation.

4 Available at http://coq.inria.fr/pylons/contribs/view/RegExp/v8.4 by Takashi
Miyamoto.
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OCaml program extraction Due to the functional nature of our monitors, they
can be extracted using the Coq command Recursive Extraction. The resulting
extraction provides a state-transition function and definitions of the used data-
types and possible auxiliary functions. Extraction follows the Coq definitions.
This means that our choice of datatypes can influence the performance of moni-
tors. If non-performant definitions are used (e.g., a definition of natural numbers
as abstract datatype using 0 and successor constructors) non-performant imple-
mentations will be generated.

6.2 Verification of a Monitor with Respect to a Regular Expression

We describe the verification of a monitor with respect to a regular expression in
Coq. We establish monitor correctness and assume a state transition function of
the internal state of the monitor (cf. Section 4):

mStep : (mStates ×Σa)→ (mStates × bool).

To verify monitor correctness for a property φ, we first establish a simulation
relation R between states (mStates) and regular expressions of type Φ – each
alphabet of events instantiates a parameterized type of regular expressions; log-
ically this results in an distinguishable types for each alphabet – with φ ∈ Φ:

R : mStates × Φ→ bool

The relation performs a check on the semantic correspondence of states using the
' relation on regular expressions (see Section 4.2). Finding regular expressions
corresponding to a state is done using Arden’s Lemma [Ard61]. The proof is
done using an induction. The initial case is resolved by using (1). The induction
step is proven using the property (2) described below. The following items have
to be proven:

1. The first property that is proven states that the initial state of mStep and φ
are in the simulation relation. This is the basis for proving that m accepts
the same lists of events as specified by φ.

2. We prove the following property (step-relation correspondence) using the
implication −→:

∀ m m′ : mStates φ φ′ : Φ e : Σa b : bool .
mStep(m, e) = (m′, b) −→ φ′ = φ/e −→ R(m,φ) −→
R(m′, φ′)

It states: for a regular expression φ and a state m in the simulation relation
R, the succeeding state m′ after processing one event e and a succeeding
regular expression φ′ are in the simulation relation again. φ′ corresponds to
accepting (using the / operator) the same event e on φ. A Coq formalization
of this property is shown in Fig. 5. We use s, s’ to indicate states of type
StatesAutomaton1. The message alphabet has type MAa1. The =R= is a rela-
tion denoting equivalent regular expressions. derive realizes the / operator.
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Lemma step_correspondence :

forall (e : MAa1) (s s’ : StatesAutomaton1) (r r’ : RegExp MAa1),

s’ = (fst(A1Step s e)) ->

r’ =R= derive MAa1 dec_MAa1 e r ->

regexp_states_rel_a1 s r ->

regexp_states_rel_a1 s’ r’.

Fig. 5. Coq formalization of step-relation correspondence

Our correctness criterion for safety invariants states that each finite prefix
of event streams (our regular expressions typically work on potentially infinite
streams) will only result in non-error states iff the regular expression gets non
empty. We prove a stronger property first which implies the correctness criterion
and requires that all encountered states and the acceptance state of the regular
expressions are in the relation.

Non-safety properties are characterized by the fact that finite prefixes of a
trace do not have to fulfill the property even if the entire trace does. It remains
possible to prove an adequate simulation relation, and, based on this derive that
at least in distinct states a property holds using the method described above.

Example relation An example relation for the property checked by the automa-
ton from Fig. 3 associates states to their corresponding regular expressions:

S1 ' (S1 + T.S1)∗.(T + ε)
S2 ' (S1.(S1 + T.S1)∗.(T + ε)) + ε

ERROR ' Empty

Figure 6 shows the same simulation relation in Coq. The events and states have
slightly different names to make them usable together with other automata in the
same file. In addition, we also have defined some abbreviations to make the look
of constructors Star, Atom, Eps closer to the mathematical notations during the
interactive proofs. It can be seen that regular expressions used inside the relation
can become larger than the original property. In case of wrong relations, however,
we will not be able to establish an overall correctness proof. Thus, the size of
the relation does not enlarge the trusted computing base of our approach.

6.3 Verification of Abstractions

It is convenient to deliver only certain events to a monitor. For this reason,
we have introduced abstraction functions in Section 4. We verify abstractions
by specifying them in Coq and proving the required properties, e.g., for an
abstraction function abs and an abstract event ea and a set of possible concrete
events Σc:

∀ ec : Σc . ec = specification of concrete events −→ ea = abs(ec)

Proofs are straightforward. The extraction of OCaml code from Coq has to take
into account that datatypes are sometimes defined in a different way in Coq and
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Definition regexp_states_rel_a1

(s : StatesAutomaton1) (r : RegExp MAa1) : Prop :=

match s , r with

| A1S1 , x => ((Star MAa1

((Atom MAa1 S_a1) || ((Atom MAa1 T_a1) ++ (Atom MAa1 S_a1) ) ))

++ ((Atom MAa1 T_a1) || Eps MAa1)

) =R= x

| A1S2 , x => (((Atom MAa1 S_a1 ++

Star MAa1

(Atom MAa1 S_a1

|| (Atom MAa1 T_a1 ++ Atom MAa1 S_a1)))

++ (Atom MAa1 T_a1 || Eps MAa1)) || Eps MAa1)=R= x

| A1SError , x => Empty MAa1 =R= x

end.

Fig. 6. Simulation relation in Coq

OCaml. For instance, integers are defined using native processor arithmetics in
OCaml, but are realized as an inductive datatype in Coq.

7 Evaluation

We evaluate our approach with respect to three criteria that are used in a first
step aiming to assess the feasibility of certified RV in an industrial context:
proving effort, integration into a bus simulator and performance of monitors.

Proving effort for regular expression based monitors For proving a new regular
expression based monitor correct, one has to establish a relation comprising
states and corresponding regular expressions. The main effort is the proof of
step-relation correspondence which requires a case distinction on possible states
and events (|states| × |events| different cases). Each case essentially requires
some rewriting of equivalent regular expressions to prove the correspondence.
This can require several lines of proof code for each event. Automation using
tactics might be possible, but require some clever rewriting strategies which we
have not developed currently. The other parts of the proofs are either relatively
easy or can be reused (are generic) with some adaptations.

Generation of monitors from Coq specifications We have generated monitor
state-transition functions out of our verified Coq formalizations. Coq allows the
extraction of executable state-transition functions. Extraction works recursively,
so all required types and depending functions are also extracted from their Coq
specifications.

Integration of monitors into a bus simulator We have demonstrated the ap-
plicability of our approach by an implementation of a bus simulator for the

13



Rain-Sensor scenario from Section 3.1. The Rain-Sensor senses the rain inten-
sity, sends the intensity value to a Wiper-Controller, which analyses the value
and sends control values to a Wiper-Actuator. The example application is im-
plemented in C++ using BSD Sockets for communication over UDP/IP. Only
the Wiper-Controller is monitored. The communication between the controller
and its monitor is based on Unix pipes. This solution can be used with any Posix
compatible protocol. For example ethernet based bus implementations that fulfill
real-time constraints (e.g., [SKS10]).

Performance evaluation of OCaml based monitors We have built an experimental
setup to evaluate the performance of certified monitoring code. A trace generator
creates multiple traces and send them to a certified monitor for analysis. Since
the performance of the embedded hardware we are aiming at is still subject
to change, we have conducted the experiments on different standard machines:
Machine 1 is a Macbook Pro i7 at 2GHz, Machine 2 is a Pentium D at 3GHz,
Machine 3 is Machine 2 down-clocked at 850MHz. Results are given in Table 1. In
each cell, the indicated result (in seconds) is obtained by taking the mean value
after a hundred executions. The table shows five properties. The first column
shows the property under consideration. The entry |tr.| denotes the length of
the traces sent to the monitor. The entry no mon (resp. mon) denotes the
execution time in seconds when the trace is not monitored (resp. is monitored)
by the certified monitors. The entry ovhd indicates the overhead induced by
the monitor on the original system: mon - no mon

no mon . The entry kevt/s indicates
the throughput of the monitor, i.e., how many thousands of events it can handle
in a second. The timing properties are taken from Section 3.2. The monitors φ4
and φ5 monitor the rain-intensity as explained in Section 3.1.

Timings in Table 1 clearly substantiate our claim that the performance of
certified runtime monitors is good. The overhead induced by the monitoring code
on the initial system is negligible. This is due to the performance of the optimized
code generated by the OCaml compiler. The throughput of the monitors is also
very satisfactory. Actually, the similar performance results observed on Machine
2 and Machine 3 made us notice that the throughput of the monitor is actually
not limited by the monitoring code but by the performance of the OS primitives
used to establish communication between the system and the monitors. Note
that, for traces of length 106, some erratic measures were taken on Machine 3,
probably because of down-clocking. Thus, we could not report reliable numbers.

8 Conclusion and Future Work

We presented work towards certified RV by means of higher-order theorem
provers. In particular, we have demonstrated the feasibility to generate OCaml
based runtime monitors out of verified Coq formalizations. We have demon-
strated the deployment in a bus simulator. Furthermore, we have presented a
performance evaluation of OCaml based monitors in general. Our properties can
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Table 1. Performance evaluation of certified monitors

φ |tr.| Machine 1 Machine 2 Machine 3

no mon mon ovhd kevt/s no mon mon ovhd kevt/s no mon mon ovhd kevt/s

φ1 104 .7055 .7056 .00022 438.94 .7119 .7119 0 75.98 2.3357 2.3357 0 81.69

105 1.9884 1.9920 .0019 5.6453 5.6453 0 18.585 18.585 0

106 14.599 14.599 0 55.061 54.451 .0027

φ2 104 .7047 .7047 0 449.76 .7093 .7138 0 73.28 2.1986 2.2474 .03077 75.52

105 2.0095 2.0095 0 5.6589 5.6469 .0027 17.5597 17.898 .0318

106 14.387 14.436 .003588 54.48 54.690 0.00405

φ3 104 .7050 .7051 .00022 445.79 .712 .7167 .00816 77.88 2.2309 2.2882 .03402 74.79

105 2.0981 2.1032 .00267 5.6476 5.6738 .00539 17.465 18.207 .057

106 14.507 14.517 .00125 54.48 54.789 0

φ4 104 .7054 .7054 0 441.73 .7085 .7136 .00895 77.16 2.234 2.3109 .04426 73.85

105 2.1334 2.1338 .00036 5.6778 5.6778 0 17.524 18.077 .041

106 14.343 14.343 0 54.974 54.974 0

φ5 104 .7047 .7051 .0064 450.32 .7093 .7127 .00652 74.07 2.1978 2.2261 .02127 78.92

105 2.0754 2.0762 .00057 5.6273 5.6273 0 17.724 17.827 .01723

106 14.502 14.502 0 54.729 54.809 0.00204

be checked in an acceptable time and it seems feasible to deploy the demon-
strated solutions in industrial domains. The shown aspects are an important
prerequisite for demonstrating the feasibility for large scale applications.

Despite being sufficient for the sketched property monitoring of bus messages,
the properties regarded in this paper are relatively small and simple. As an
academic goal future work should extend the expressiveness and also regard
more complex properties. More particularly, it would be of great interest to
be able to extract monitoring code for parametric properties, i.e., properties
featuring parameterized events taking values at runtime. Recent advances [RC12]
in runtime verification that give a semantics to these properties will certainly
help. Furthermore, as a goal with a strong engineering focus we want to deploy
monitors on real embedded hardware and industrial demonstrators as a next
step. Dynamic aspects like adding or removing components during runtime and
the impact on monitors are another aspects.
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