Weave Droid:
Aspect-Oriented Programming on Android Devices

Fully Embedded or in the Cloud

Ylies Falcone
UJF - University of Grenoble |, France
Laboratoire d’Informatique de Grenaoble, France
Ylies.Falcone@ujf-grenoble.fr

ABSTRACT

Weave Droid is an Android application that makes Aspect-
Oriented Programming (AOP) on Android devices possible
and user-friendly. It allows to retrieve applications and as-
pects and weave them together in several ways. Applica-
tions and aspects can be loaded from Google Play, personal
repositories, or the local memory of a device. Then, two
complementary weaving modes are provided: local or re-
mote, using the embedded aspect compiler or the compiler
in the cloud, respectively. This provides flexibility and pre-
serves the mobility of the target devices. Weave Droid opens
a world of possible applications, not only by benefiting from
the already existing uses of AOP on standard machines, but
also by the various uses related to the mobile devices. Effec-
tiveness of Weave Droid is demonstrated by weaving aspects
with off-the-shelf applications from Google Play.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— Computer-aided software engineering, Software Li-
brairies

General Terms

Design, Experimentation, Languages, Measurement

Keywords

Android, Mobile Devices, Aspect-Oriented Programming,
Embedded Systems, Weaving, Cloud Computing

1. CONTEXT AND MOTIVATIONS

The rise of Android. The mobile market is exploding. Over
the last five years, the number of user-friendly mobile devices
has grown dramatically. As an operating system for mo-
bile devices, Android enjoys an increasing popularity. The
market-share of Android cellphones has just come over 50%
at the end of 1Q2012 [1]. Moreover, Moores’s and Koomey’s
laws for mobiles announce that the processing speed and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE 12, September 3-7, 2012, Essen, Germany

Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

Sebastian Currea
UJF - University of Grenoble |, France
Laboratoire d’Informatique de Grenoble, France
Sebastian.Currea@imag.fr

the energy efficiency double after every 18-month period, re-
spectively. Being based on a generic Linux kernel, Android
runs on various mobile devices from smartphones to tablets.
Being based on the Java programming language, Android
applications enjoy desirable features for developers. Con-
sequently, a large number of applications is available both
inside and outside Google Play.

Aspect-Oriented Programming. An established and ac-
tive software development methodology is aspect-oriented
programming (AOP) [3]. AOP allows one to implement
crosscutting concerns through aspects. Aspects rely on three
concepts: joinpoints, pointcuts, and advices. A jointpoint is
an identifiable point in the execution of a target program.
A pointcut selects a set of jointpoints. Then, an advice is a
piece of code associated to some pointcuts. They augment
or alter the execution of the program when the execution
reaches a jointpoint selected by the pointcuts. Many com-
pilers are available to implement AOP. Among them, As-
pectJ |4] is certainly the most successful one due to its user-
friendly language and the performance of both the weaving
process and the resulting weaved application (compared to
the initial application).

Since its introduction by Kiczales in 3], AOP has been an
asset in many software development projects, a supporting
technology for many research areas, and a research subject
on its own. It has been used in several techniques for soft-
ware reliability and verification such as runtime verification
and testing. Moreover, AOP can be used to augment soft-
ware with logging capabilities, profile software, check pre
and post conditions, deploy security policies, etc. Finally,
many research efforts are conducted to give a formal seman-
tics to this popular software development methodology.

Motivations and challenges. Using AOP with Android
applications is appealing. To develop applications, an An-
droid developer uses a well identified set of methods whose
purposes are precisely described in the SDK. For instance,
methods in the package com.google. ads are used to dis-
play ads. Consequently, it becomes very easy to write as-
pects implementing abstract functionalities that work with
any Android application on any device. For instance, in Sec-
tion [3| we show how to write an ad-blocker for any Android
application (that will necessarily go through the mentioned
interface) using a very simple aspect.

However, AOP is not possible on Android devices, or, at
least, not in a satisfactory manner. Indeed, the necessary
constraints to use AOP on Android applications seriously
hinder the mobility of the device and restrain the possi-

Select Embedded weaving
Application

Cloud weaving

& Aspect Request (upload)
"""" Weave Droid Aspect & Application
—_—
status
informati
DS Aspect | Application
Repository | Repository | Result (download) \

Weaved Application
User 1 1 PP

Upload & Download
Aspect & Application
\ Y

App. Repository

Upload & Download Aspect & Application
Figure 1: Weave Droid context

Aspect Repository

ble usages of AOP. Currently, to weave an aspect with an
Android application, one has to use an auxiliary computer
plugged to the target device. Weaving of the aspect is done
in the auxiliary computer and then the weaved application
is transferred to the device. What is worse, weaving is pos-
sible only for self-developed applications (using the binary
or source files), as opposed to existing Android application
(downloaded for instance from Google Play). This is due
to the incompatibility of existing aspect-compilers with the
Android .apk files (Android target binary file format).

Another challenge is that computation resources may be-
come an issue on embedded devices such as smartphones or
tablets. On the one hand, aspect weaving can be arbitrarily
expensive memory-wise. Depending on the hardware device,
the Dalvik virtual machine (VM)E] enforces some limitation
on the available memory. For instance, in the best case, on
a state-of-the art tablet, the available memory is limited to
288 MB. Moreover, on some older versions of Android (be-
fore v3.1), the developer was not authorized to use all the
available physical memory. On the other hand, the process-
ing speed on embedded device is generally much slower than
the one available on standard machines.

2. AN OVERVIEW OF Weave Droid

Weave Droid is an Android application that allows user-
friendly and flexible AOP on Android devices. Weave Droid
takes any existing Android application plus an aspect as in-
put and weaves them together in a transparent way for the
user. Applications can be downloaded from personal reposi-
tories or Google Play. As we shall see, weaving can be done
in two complementary fashions: inside the device (embed
mode) or on a dedicated weaving cloud (cloud mode).

Weave Droid is compatible with Android HoneyComb 3.1
or higher. It can be freely downloaded and tested from [2]
or Google Play. In this paper, we provide a description of its
features and some insights about its internal architectureﬂ

Weave Droid is a Java application of approximately 1200
LLOC built above several third-party tools. How Weave
Droid interacts with the user is represented in Figure
Using the interface shown in Figure [2| the user selects an
Android application directly as an .apk file plus an aspect
as an .aj file. These entities can be chosen either from local
or remote repositories (whose IP address can be configured).
Then, the user chooses to weave the aspect within the appli-

!The Dalvik virtual machine is the software in the operating
system that run the applications on Android devices.

2 A detailed technical manual is currently being finalized and
will be available at |2].

Weave Droid

Remotely

Weave

Cloud Weave

Figure 2: Weave Droid main screen

cation either locally with the embedded weaver or remotely
within the dedicated weaving cloud (whose IP address can
be configured). The two repositories and the weaving cloud
can be located on two different servers. If embedded weav-
ing is selected, several steps and additional third-party tools
are involved. This is due to the initial incompatibility be-
tween formats as announced in Section [I} If cloud weaving
is selected, the application is transferred using FTP to the
weaving cloud that embeds a version of the aspect compiler
as a Web service interacting with Weave Droid. Both modes
use the AspectJ compiler since it is the most popular and
efficient aspect compiler currently available. Two weaving
modes are proposed to the user since these modes are used
in different situations and have different performance (see
also Section . Embedded weaving mode is suitable when
the device is not connected to the internet or when the user
wants to locally modify a downloaded application (e.g., ac-
cording to some local security policy). Cloud weaving is
suitable when an appropriate internet connection is avail-
able and/or that the resources required for weaving exceeds
the available resources on the target device. Ignoring ap-
plication and aspect transfer, cloud weaving performs faster
than embedded weaving. After weaving according to one of
the 2 x 2 X 2 possible combinations, the user is notified about
weaving success or failure. If weaving succeeds, the woven
application is available locally and ready to be executed.

3. EXAMPLES

Weaving applications on embedded devices affords a world
of possible uses. This section presents some of them using
off-the-shelf Android applications downloaded from Google
Play. In addition to the applications mentioned in this sec-
tion, the aspects were also successfully woven in several other
applications to assess their effectiveness.

Note that the methods used in aspects were selected by
a simple analysis of Android SDK (without any knowledge
about the internal code of the applications)

3.1 Simple Ad Blocker

Tic-Tac-Toe is a classic game that uses the device’s In-
ternet connection to display banners in the bottom of the

screen (see Figure [3(a)]).

Listing 1: Aspect blocking banners
aspect BannerAspect {
Object around() : execution(* com.google.ads..*(..))
&& !'within(BannerAspect) {
return null;

AW N e

}
}

o

3 A selection of interesting packages and methods (with their
descriptions) is available for users of Weave Droid at [2].

0-wins X-wins Draw

b
i
1
| asms | 2P (T’
i
4

(a) With Banner (b) Without Banner
Figure 3: Tic-Tac-Toe application

Temperature

iSRG

Lat: 45.1932, Long: 5.7685

Lat: 79.1383, Long: -46.4063

(a) Real coordinates (b) Greenland coordinates
Figure 4: Temperature application

With the simple aspect shown in Listing |1 and Weave
Droid, we can obtain an ad blocker. The aspect determines
whether Tic-Tac-Toe invokes a Google banner by catching
any call to the methods in the com.google.ads package.
Upon such a call, the aspect blocks the banner using the
around advice that cancels the call (by not calling pro-
ceed() and returning null). The woven application does
not display the banner as shown in Figure

3.2 Modifying the Device Location

Temperature is an application that shows the current lo-
cal outdoor temperature, measured by a nearby weather sta-
tion. Temperature uses the current device location (see Fig-
ure . The aspect in Listing |2 and more specifically
the pointcut location, determines whether the application
calls the method getLastKnownLocation of the class Loca-
tionManager in the package android.location to determine
the location. Upon such a call, the advice changes the lati-
tude and longitude coordinates to some point in Greenland.
After weaving the application with the aspect, the woven
application shows different coordinates and temperature as

expected (see Figure [4(b))).

Listing 2: Change Location Aspect

1 aspect ChangelocationAspect{
2 // Pointcut to Android location method.
3 pointcut location(String provider):call(* android.

location.LocationManager.getLastKnownLocation(..))

4 && args(provider) && !within(ChangeLocationAspect);
5 // Advice to change the device location.

6 Location around(String provider):location(provider){
7 oa

8 Location location = new Location(provider);

9 // New latitude and longitude values in Greenland.
10 location.setLatitude (79.13826) ;

11 location.setLongitude (-46.40625) ;

12 return location;

3.3 URL and Bytes Consumed

We downloaded several games: Four in Line (G1), Tic-
Tac-Toe (G2), Matchup cards (G3), Bubble pop (G4), Mem-
ory pairs (G5), and Melimots (G6). These games display ad-
vertisements in the form of banners those content is retrieved
by connecting to internet. Our purpose was to disclose the

Total number of bytes sent: 4265

Total nuwber of hytes receiwved: 23907

The BRegquested Url was: http://googleads.g.doubleclick.net: S0/ mads/
cma?pregs=0Oesu_sd=1.5&islotname=alif6éSeatshaiedsu w=3z0emsid=com.
FourInsFow.wintrino&cap=msZCasjs=afma-sdk-a-v4.3.18isu=E3EEAEBES
Osformat=320x50_mbhenet=edsapp_name=4.android.com.FourInaRow. vin
=p&output=htmwliregion=mobile appéu tz=0&Lex=liclient sdk=1l&ipto=0
sdkAdwobhpiForidsejsv=21

Figure 5: File UrlBytes.txt created by the aspect

URL they connect to and measure the number of bytes ex-
changed with the remote servers. Each application behaves
as follows: it loads an URL and consumes a certain num-
ber of bytes encoding the advertisement. Listing [3]shows an
extract of the aspect that reveals and stores in a text file
the information about the URL and the bytes consumed.
Figure [5| shows an example of file created by the aspect.
[Traffic [G1 [G2 | G3 [G4 | G5 [G6 |
Sent 3,559 | 15,453 | 16,223 | 2,426 | 16,197 | 14,557
Received || 1,205 | 2,364 | 2,466 | 1,123 | 3,104 | 2,283
The above table shows how traffic statistics about the
games can be gathered. In average, to open its banners an
application sends 11,402.5 bytes and receives 2,105.8 bytes.

4. PERFORMANCE EVALUATION

Due to the embedded nature of the targeted systems, some
performance limitations arise in terms of time necessary to
complete the weave process and the amount of memory that
the Dalvik Virtual Machine allocates to the process. Two
hardware configurations were used to assess weaving per-
formance. First, we used a Samsung Galaxy Tab 10.1 (An-
droid device for embedded weaving) with 1 GB RAM, 1 Ghz
dual core NVIDIA®) Tegra™ 2 processor, 288 MB maximum
Dalvik VM heap size, running on Android Honeycomb 3.1.
Second, we used a Laptop Dell Latitude D620 (the weaving
cloud) with 2 GB of RAM, Intel Core 2 T7200 2.00 Ghz,
running Windows XP SP3. Based on this latest configura-
tion we set up two wireless-network configurations differing
by their transfer time. In the first configuration (referred
to as cloudl), the transfer rate from the Android device are
14,930 kbps for download and 15,892 kbps for upload. In
the second configuration (referred to as cloud2), the trans-
fer rate from the Android device are 1,615 kbps for download
and 1,068 kbps for upload.

10007 Embedded Weaving

@ Cloudl Weaving

Cloud2 Weaving o o o ° 0y P09 °*
100 ¢ . . 4
P ® e P * -
o . . % . e
= © o © -
w ¢ S
H ¢]
= " ¢ m pal
10 a & "]
= & g
. as
P L]
Ly g
-]
[y
oy o @y
. ga®
1
10 100 Size (KB) 1000

Figure 6: Comparing weaving performances

Figure@compares performances of the three weaving modes
using 57 free games retrieved from Google Play. The x-axis
indicates the size of the application in KB, while the y-axis

Listing 3: URL And Bytes Aspect

1 aspect UrlBytesAspect {

2 // Pointcut to the method that loads an URL

3 pointcut pageName (String page) (execution (* android.webkit.WebView.loadUrl(..))

4 || execution(* android.webkit.WebView.loadDataWithBaseURL(..)))

5 && args(page,..) && !'within(UrlBytesAspect);

6 500

7 startRX = android.net.TrafficStats.getTotalRxBytes(); // variable to count received bytes

8 startTX = android.net.TrafficStats.getTotalTxByteS(); // variable to count transferred (sent) bytes
9 500

10 // Advice that stores the Bytes consumed and the Url in the file UrlBytes.txt

11 after (String page): pageName(page) {

12 long totalRx = android.net.TrafficStats.getTotalTxBytes()- startTX;

13 long totalTx = android.net.TrafficStats.getTotalRxBytes() - startRX;

14 String data = "Total number of bytes sent: " + totalTx + "\n Total number of bytes received: " + totalRx
15 + "\n The Requested Url was: " + page + "\n";

16 FileOutputStream fOut = contextWrapper.openFileOutput ("UrlBytes.txt", Context.MODE_APPEND) ;

17 OutputStreamWriter osw = new OutputStreamWriter (£f0ut);

18 osw.append (data) ;

19

indicates the weaving time in seconds. Note the logarith-
mic scale used on both axis. All applications were woven
with the ad-blocker aspect (Listing|l)) in the three different
weaving modes (embedded, cloudl, and cloud2 weaving).

In all cases, cloud weaving is faster than embedded weav-
ingEl As the size of the application augments, using cloud
weaving becomes more and more preferable as it almost does
not depend on the size of the input application.

Note that, for all woven applications described in the pre-
vious section, no degradation of runtime performance was
noticed compared to the original application.

Memory limitations in embedded weaving. Some mem-
ory limitation may occur when performing the weaving pro-
cess, more precisely when the Dalvik VM tries to allocate
more memory than available on the heap. Should it happen,
Weave Droid throws an out of memory exception and the
weaving process aborts. For instance, on embedded weav-
ing of some applications of approximately 15 MB of size, the
weaving process requires more than 288 MB of memory. In
this case, cloud weaving is mandatory.

5. CONCLUSIONS AND PERSPECTIVES

Conclusions. To the best of our knowledge, Weave Droid is
the first tool to propose (embedded and in the cloud) aspect-
oriented programming (AOP) for mobile devices running the
Android operating system. Weave Droid proposes flexible
and user-friendly aspect weaving. It allows to retrieve as-
pects and applications from various repositories. Embed-
ded and cloud weaving are supported in order to adapt to
the context of the mobile device. Moreover, existing appli-
cations of AOP to program development can be reused in
the context of mobile application development (e.g., logging,
profiling, etc).

Future work and developments. In the near future, we
plan to make Weave Droid open-source and available for
Android developers to be used as a third-party tool and
modified. Moreover, several extensions are currently in the
roadmap of Weave Droid. For instance, we plan to 1) sup-
port customized invocation to the AspectJ compiler and sup-
port a larger set of its options, 2) support more aspect com-
pilers, 3) support additional protocols for transferring as-
pects and applications between the device, the repositories,
and the weaving cloud.

4Measured timings for cloud weaving comprise transfer time.

Some Benefits and Perspectives. More elaborated uses
of Weave Droid can be considered (e.g., commercial ones).
For instance, opposite to the ad blocker, one could imagine
aspect-based services gathering information about the user
behavior.

Our longer-term research purpose is to use Weave Droid
as an essential component in an embedded validation frame-
work such as runtime verification (RV) or testing. For in-
stance, most of the existing RV tools use AOP as a sup-
porting technology to instrument a monitored program and
observe the relevant events in its execution. Consequently,
weaving modes of Android opens new challenges and oppor-
tunities for the field of RV. Besides the opportunity of trans-
ferring existing RV frameworks to target mobile devices, the
weaving modes of Weave Droid allows to introduce some dy-
namicity in the verification process where monitored appli-
cations and requirements change as the target mobile device
evolves in space and time.

Additional research opportunities are opened by Weave
Droid in the context of security. For instance, Weave Droid
can be used to determine the non-special permissions used
by an application. No information about these permission is
available at installation time. Second, Weave Droid can be
a base brick of runtime reference monitors. As another ex-
ample, one could imagine implementing a security tool that
enforce a local policy by weaving some aspects implementing
the policy with any downloaded application.

6. ACKNOWLEDGMENTS

The authors would like to thank Mohamad Jaber, Yves
Ledru and the anonymous reviewers for their comments.

7. REFERENCES

[1] comScore Reports. U.S. mobile subscriber market
share, april 2012. http://www.comscore.com.

[2] S. Currea and Y. Falcone. WEAVE DROID, May 2012.
Available at http://droid.forge.imag.fr.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, pages
220-242, 1997.

[4] Xerox Corporation. Aspectj programming guide.
http://www.eclipse.org/aspectj/.

	Context and Motivations
	An overview of Weave Droid
	Examples
	Simple Ad Blocker
	Modifying the Device Location
	URL and Bytes Consumed

	Performance Evaluation
	Conclusions and perspectives
	Acknowledgments
	References

