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Abstract. Users wanting to monitor distributed or component-based systems of-
ten perceive them as monolithic systems which, seen from the outside, exhibit
a uniform behaviour as opposed to many components displaying many local be-
haviours that together constitute the system’s global behaviour. This level of ab-
straction is often reasonable, hiding implementation details from users who may
want to specify the system’s global behaviour in terms of an LTL formula. How-
ever, the problem that arises then is how such a specification can actually be
monitored in a distributed system that has no central data collection point, where
all the components’ local behaviours are observable. In this case, the LTL spec-
ification needs to be decomposed into sub-formulae which, in turn, need to be
distributed amongst the components’ locally attached monitors, each of which
sees only a distinct part of the global behaviour.
The main contribution of this paper is an algorithm for distributing and moni-
toring LTL formulae, such that satisfaction or violation of specifications can be
detected by local monitors alone. We present an implementation and show that
our algorithm introduces only a minimum delay in detecting satisfaction/violation
of a specification. Moreover, our practical results show that the communication
overhead introduced by the local monitors is generally lower than the number of
messages that would need to be sent to a central data collection point.

1 Introduction
Much work has been done on monitoring systems w.r.t. formal specifications such as
linear-time temporal logic (LTL [1]) formulae. For this purpose, a system is thought of
more or less as a “black box”, and some (automatically generated) monitor observes its
outside visible behaviour in order to determine whether or not the runtime behaviour
satisfies an LTL formula. Applications include monitoring programs written in Java or
C (cf. [2, 3]) or abstract Web services (cf. [4]) to name just a few.

From a system designer’s point of view, who defines the overall behaviour that a sys-
tem has to adhere to, this “black box” view is perfectly reasonable. For example, most
modern cars have the ability to issue a warning if a passenger (including the driver) is
not wearing a seat belt after the vehicle has reached a certain speed. One could imagine
using a monitor to help issue this warning based on the following LTL formalisation,
which captures this abstract requirement:
ϕ = G

(
speed low ∨ ((pressure sensor 1 high ⇒ seat belt 1 on)

∧ . . . ∧ (pressure sensor n high ⇒ seat belt n on))
)

The formula ϕ asserts that, at all times, when the car has reached a certain speed, and the
pressure sensor in a seat i ∈ [1, n] detects that a person is sitting in it (pressure sensor i
high), it has to be the case that the corresponding seat belt is fastened (seat belt i on).

Moreover, one can build a monitor for ϕ, which receives the respective sensor values
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and is able to assert whether or not these values constitute a violation—but, only if some
central component exists in the car’s network of components, which collects these sen-
sor values and consecutively sends them to the monitor as input! In many real-world
scenarios, such as the automotive one, this is an unrealistic assumption mainly for eco-
nomic reasons, but also because the communication on a car’s bus network has to be
kept minimal. Therefore one cannot continuously send unnecessary sensor information
on a bus that is shared by critical applications where low latency is paramount (cf. [5,
6]). In other words, in these scenarios, one has to monitor such a requirement not based
on a single behavioural trace, assumed to be collected by some global sensor, but based
on the many partial behavioural traces of the components which make up the actual
system. We refer to this as decentralised LTL monitoring when the requirement is given
in terms of an LTL formula.

The main constraint that decentralised LTL monitoring addresses is the lack of a
global sensor and a central decision making point asserting whether the system’s be-
haviour has violated or satisfied a specification. We already pointed out that, from a
practical point of view, a central decision making point (i.e., global sensor) would re-
quire all the individual components to continuously send events over the network, and
thereby negatively affecting response time for other potentially critical applications on
the network. Moreover from a theoretical point of view, a central observer (resp. global
sensor) basically resembles classical LTL monitoring, where the decentralised nature of
the system under scrutiny does not play a role. Arguably, there exist many real-world
component-based applications, where the monitoring of an LTL formula can be realised
via global sensors or central decision making points, e.g., when network latency and
criticality do not play an important role. However, here we want to focus on those cases
where there exists no global trace, no central decision making point, and where the goal
is to keep the communication, required for monitoring the LTL formula, minimal.

In the decentralised setting, we assume that the system under scrutiny consists of a
set of components C = {C1, C2, . . . , Cn}, communicating on a synchronous bus acting
as global clock. Each component emits events synchronously and has a local monitor
attached to it. The set of all events is Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σn, where Σi is the set
of events visible to the monitor at component Ci. The global LTL formula, on the other
hand, is specified over a set of propositions, AP , such that Σ = 2AP . Moreover, we
demand for all i, j ≤ n with i 6= j that Σi ∩ Σj = ∅ holds, i.e., events are local w.r.t.
the components where they are monitored.

At first, the synchronous bus may seem an overly stringent constraint imposed by
our setting. However, it is by no means unrealistic, since in many real-world systems, es-
pecially critical ones, communication occurs synchronously. For example, the FlexRay
bus protocol, used for safety-critical systems in the automotive domain, allows syn-
chronous communication (cf. [7, 5, 8]). What is more, experts predict “that the data
volume on FlexRay buses will increase significantly in the future” [6, Sec. 2], promot-
ing techniques to minimise the number of used communication slots. Hence, one could
argue that synchronous distributed systems such as FlexRay, in fact, motivate the pro-
posed decentralised monitoring approach. (Although, one should stress that the results
in this paper do not directly target FlexRay or any other specific bus system.)

Let as before ϕ be an LTL formula formalising a requirement over the system’s
global behaviour. Then every local monitor, Mi, will at any time, t, monitor its own

2



LTL formula, ϕti, w.r.t. a partial behavioural trace, ui. Let us use ui(m) to denote the
(m+ 1)-th event in a trace ui, and u = (u1, u2, . . . , un) for the global trace, obtained
by pair-wise parallel composition of the partial traces, each of which at time t is of
length t+1 (i.e., u = u1(0)∪ . . .∪un(0) ·u1(1)∪ . . .∪un(1) · · ·u1(t)∪ . . .∪un(t), a
sequence of union sets). Note that from this point forward we will use u only when, in
a given context, it is important to consider a global trace. However, when the particular
type of trace (i.e., partial or global) is irrelevant, we will simply use u, ui, etc. We also
shall refer to partial traces as local traces due to their locality to a particular monitor in
the system.

The decentralised monitoring algorithm evaluates the global trace u by considering
the locally observed traces ui, i ∈ [1, n], in separation. In particular, it exhibits the
following properties.
• If a local monitor yieldsϕti = ⊥ (resp.ϕti = >) on some componentCi by observing
ui, it implies that uΣω ⊆ Σω \ L(ϕ) (resp. uΣω ⊆ L(ϕ)) holds where L(ϕ)
is the set of infinite sequences in Σω described by ϕ. That is, a locally observed
violation (resp. satisfaction) is, in fact, a global violation (resp. satisfaction). Or, in
other words, u is a bad (resp. good) prefix for ϕ.
• If the monitored trace u is such that uΣω ⊆ Σω \ L(ϕ) (resp. uΣω ⊆ L(ϕ)), one

of the local monitors on some component Ci yields ϕt
′

i = ⊥ (resp. ϕt
′

i = >), t′ ≥ t,
for an observation u′i, an extension of ui, the local observation of u on Ci, because
of some latency induced by decentralised monitoring, as we shall see.

However, in order to allow for the local detection of global violations (and satisfac-
tions), monitors must be able to communicate, since their traces are only partial w.r.t.
the global behaviour of the system. Therefore, our second objective is to monitor with
minimal communication overhead (in comparison with a centralised solution where at
any time, t, all n monitors send the observed events to a central decision making point).

Outline. Preliminaries are in Sec. 2. LTL monitoring via formula rewriting (progres-
sion), a central concept to our paper, is discussed in Sec. 3. In Sec. 4, we lift it to the
decentralised setting. The semantics induced by decentralised LTL monitoring is out-
lined in Sec. 5, whereas Sec. 6 details on how the local monitors operate in this setting
and gives a concrete algorithm. Experimental results are presented in Sec. 7. Section 8
concludes and gives pointers to related work. Formal proofs are available in an extended
version of this paper, available as technical report [9].

2 Preliminaries
Each component of the system emits events at discrete time instances. An event σ is a
set of actions denoted by some atomic propositions from the set AP , i.e., σ ∈ 2AP . We
denote 2AP by Σ and call it the alphabet (of system events).

As our system operates under the perfect synchrony hypothesis (cf. [10]), we as-
sume that its components communicate with each other in terms of sending and receiv-
ing messages (which, for the purpose of easier presentation, can also be encoded by
actions) at discrete instances of time, which are represented using identifier t ∈ N≥0.
Under this hypothesis, it is assumed that neither computation nor communication take
time. In other words, at each time t, a component may receive up to n−1 messages and
dispatch up to 1 message, which in the latter case will always be available at the respec-
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tive recipient of the messages at time t + 1. Note that these assumptions extend to the
components’ monitors, which operate and communicate on the same synchronous bus.
The hypothesis of perfect synchrony essentially abstracts away implementation details
of how long it takes for components or monitors to generate, send, or receive messages.
As indicated in the introduction, this is a common hypothesis for certain types of sys-
tems, which can be designed and configured (e.g., by choosing an appropriate duration
between time t and t+ 1) to not violate this hypothesis (cf. [10]).

We use a projection function Πi to restrict atomic propositions or events to the
local view of monitor Mi, which can only observe those of component Ci. For atomic
propositions, Πi : 2AP → 2AP and we denote AP i = Πi(AP ) for i ∈ [1, n]. For
events, Πi : 2Σ → 2Σ and we denote Σi = Πi(Σ) for i ∈ [1, n]. We also assume
∀i, j ≤ n. i 6= j ⇒ AP i ∩ AP j = ∅ and consequently ∀i, j ≤ n. i 6= j ⇒ Σi ∩
Σj = ∅.Seen over time, each component Ci produces a trace of events, also called its
behaviour, which for t time steps is encoded as ui = ui(0) · ui(1) · · ·ui(t − 1) with
∀t′ < t. ui(t

′) ∈ Σi. Finite traces over an alphabet Σ are elements of the set Σ∗ and
are typically encoded by u, u′, . . ., whereas infinite traces over Σ are elements of the
set Σω and are typically encoded by w,w′, . . . The set of all traces is given by the set
Σ∞ = Σ∗ ∪ Σω . The set Σ∗ \ {ε} is noted Σ+. The finite or infinite sequence wt is
the suffix of the trace w ∈ Σ∞, starting at time t, i.e., wt = w(t) · w(t + 1) · · · . The
system’s global behaviour, u = (u1, u2, . . . , un) can now be described as a sequence
of pair-wise union of the local events in component’s traces, each of which at time t is
of length t+ 1 i.e., u = u(0) · · ·u(t).

Moreover since we use LTL to specify system behaviour, we also assume that the
reader is familiar with the standard definition of LTL (cf. [1, 9]) and the usual syntactic
“sugar”. We refer to the syntactically correct set of LTL formulae over a finite set of
atomic propositions, AP , by LTL(AP ). When AP does not matter or is clear from
the context, we also refer to this set simply by LTL. Finally, for some ϕ ∈ LTL(AP ),
L(ϕ) ⊆ Σω denotes the individual models of ϕ (i.e., set of traces). A set L ⊆ Σω is
also called a language (over Σ).

3 Monitoring LTL formulae by progression

Central to our monitoring algorithm is the notion of good and bad prefixes for an LTL
formula or, to be more precise, for the language it describes:

Definition 1. Let L ⊆ Σω be a language. The set of all good prefixes (resp. bad pre-
fixes) of L is given by good(L) (resp. bad(L)) and defined as follows:

good(L) = {u ∈ Σ∗ | u ·Σω ⊆ L}, bad(L) = {u ∈ Σ∗ | u ·Σω ⊆ Σω \ L}.

We will shorten good(L(ϕ)) (resp. bad(L(ϕ))) to good(ϕ) (resp. bad(ϕ)).
Although there exist a myriad of different approaches to monitoring LTL formulae,

based on various finite-trace semantics (cf. [11]), one valid way of looking at the moni-
toring problem for some formula ϕ ∈ LTL is the following: The monitoring problem of
ϕ ∈ LTL is to devise an efficient monitoring algorithm which, in a stepwise manner, re-
ceives events from a system under scrutiny and states whether or not the trace observed
so far constitutes a good or a bad prefix of L(ϕ). One monitoring approach along those
lines is described in [12]. We review an alternative monitoring procedure based on for-
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mula rewriting, which is also known as formula progression, or just progression in the
domain of planning with temporally extended goals (cf. [13]).

Progression splits a formula into a formula expressing what needs to be satisfied by
the current observation and a new formula (referred to as a future goal or obligation),
which has to be satisfied by the trace in the future. As progression plays a crucial role in
decentralised LTL monitoring, we recall its definition for the full set of LTL operators.
Definition 2. Let ϕ,ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event. Then, the progression
function P : LTL×Σ → LTL is inductively defined as follows:

P (p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P (ϕ1 ∨ ϕ2, σ) = P (ϕ1, σ) ∨ P (ϕ2, σ)
P (ϕ1Uϕ2, σ) = P (ϕ2, σ) ∨ P (ϕ1, σ) ∧ ϕ1Uϕ2

P (Gϕ, σ) = P (ϕ, σ) ∧G(ϕ)
P (Fϕ, σ) = P (ϕ, σ) ∨ F(ϕ)

P (>, σ) = >
P (⊥, σ) = ⊥
P (¬ϕ, σ) = ¬P (ϕ, σ)
P (Xϕ, σ) = ϕ

Note that monitoring using rewriting with similar rules as above has been described,
for example, in [14, 15], although not necessarily with the same finite-trace semantics in
mind that we are discussing in this paper. Informally, the progression function “mimics”
the LTL semantics on an event σ, as it is stated by the following lemmas.
Lemma 1. Let ϕ be an LTL formula, σ an event and w an infinite trace, we have
σ · w |= ϕ⇔ w |= P (ϕ, σ).
Lemma 2. If P (ϕ, σ) = >, then σ ∈ good(ϕ), if P (ϕ, σ) = ⊥, then σ ∈ bad(ϕ).

Moreover it follows that if P (ϕ, σ) /∈ {>,⊥}, then there exist traces w,w′ ∈ Σω ,
such that σ ·w |= ϕ and σ ·w′ 6|= ϕ hold. Let us now get back to [12], which introduces
a finite-trace semantics for LTL monitoring called LTL3. It is captured by the following
definition.
Definition 3. Let u ∈ Σ∗, the satisfaction relation of LTL3, |=3: Σ

∗ × LTL → B3,
with B3 = {>,⊥, ?}, is defined as

u |=3 ϕ =

> if u ∈ good(ϕ),
⊥ if u ∈ bad(ϕ),
? otherwise.

Based on this definition, it now becomes obvious how progression could serve as a
monitoring algorithm for LTL3.
Theorem 1. Let u = u(0) · · ·u(t) ∈ Σ+ be a trace, and v ∈ LTL be the verdict,
obtained by t + 1 consecutive applications of the progression function of ϕ on u, i.e.,
v = P (. . . (P (ϕ, u(0)), . . . , u(t)))). The following cases arise: If v = >, then u |=3

ϕ = > holds. If v = ⊥, then u |=3 ϕ = ⊥ holds. Otherwise, u |=3 ϕ = ? holds.
Note that in comparison with the monitoring procedure for LTL3, described in [12],
our algorithm, implied by this theorem, has the disadvantage that the formula, which
is being progressed, may grow in size relative to the number of events. However, in
practice, the addition of some practical simplification rules to the progression function
usually prevents this problem from occurring.

4 Decentralised progression
Conceptually, a monitor, Mi, attached to component Ci, which observes events over
Σi ⊆ Σ, is a rewriting engine that accepts as input an event σ ∈ Σi, and an LTL
formula ϕ, and then applies LTL progression rules. Additionally at each time t, in our
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n-component architecture, a monitor can send a message and receive up to n− 1 mes-
sages in order to communicate with the other monitors in the system, using the same
synchronous bus that the system’s components communicate on. The purpose of these
messages is to send future or even past obligations to other monitors, encoded as LTL
formulae. In a nutshell, a formula is sent by some monitor Mi, whenever the most ur-
gent outstanding obligation imposed by Mi’s current formula at time t, ϕti, cannot be
checked using events from Σi alone. Intuitively, the urgency of an obligation is defined
by the occurrences (or lack of) certain temporal operators in it. For example, in order
to satisfy p ∧Xq, a trace needs to start with p, followed by a q. Hence, the obligation
imposed by the subformula p can be thought of as “more urgent” than the one imposed
by Xq. A more formal definition is given later in this section.

When progressing an LTL formula, e.g., in the domain of planning to rewrite a tem-
porally extended LTL goal during plan search, the rewriting engine, which implements
the progression rules, will progress a state formula p ∈ AP , with an event σ such that
p /∈ σ, to ⊥, i.e., P (p, ∅) = ⊥ (see Definition 2). However, doing this in the decen-
tralised setting, could lead to wrong results. In other words, we need to make a distinc-
tion as to why p /∈ σ holds locally, and then to progress accordingly. Consequently, the
progression rule for atomic propositions is simply adapted by parameterising it with a
local set of atomic propositions AP i:

P (p, σ,AP i) =


> if p ∈ σ,
⊥ if p /∈ σ ∧ p ∈ AP i,
Xp otherwise,

(1)

where for every w ∈ Σω and j > 0, we have wj |= Xϕ if and only if wj−1 |= ϕ. In
other words, X is the dual to the X-operator, sometimes referred to as the “previously-
operator” in past-time LTL (cf. [16]). To ease presentation, the formula X

m
ϕ is a short

for
m︷ ︸︸ ︷

XX . . .X ϕ.
Our operator is somewhat different to the standard use of X: it can

only precede an atomic proposition or an atomic proposition which is preceded by fur-
ther X-operators. Hence, the restricted use of the X-operator does not give us the full
flexibility (or succinctness gains [17]) of past-time LTL. Using the X-operator, let us
now formally define the urgency of a formula ϕ using a pattern matching as follows:

Definition 4. Let ϕ be an LTL formula, and Υ : LTL→ N≥0 be an inductively defined
function assigning a level of urgency to an LTL formula as follows.

Υ (ϕ) = match ϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → max(Υ (ϕ1), Υ (ϕ2))
| Xϕ′ → 1 + Υ (ϕ′)
| → 0.

A formula ϕ is said to be more urgent than formula ψ, if and only if Υ (ϕ) > Υ (ψ)
holds. A formula ϕ where Υ (ϕ) = 0 holds is said to be not urgent.

Moreover, the above modification to the progression rules has obviously the desired
effect: If p ∈ σ, then nothing changes, otherwise if p /∈ σ, we return Xp in case that the
monitor Mi cannot observe p at all, i.e., in case that p /∈ AP i holds. This effectively
means, thatMi cannot decide whether or not p occurred, and will therefore turn the state
formula p into an obligation for some other monitor to evaluate rather than produce a
truth-value. Of course, the downside of rewriting future goals into past goals that have
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to be processed further, is that violations or satisfactions of a global goal will usually
be detected after they have occurred. However, since there is no central observer which
records all events at the same time, the monitors need to communicate their respective
results to other monitors, which, on a synchronous bus, occupies one or more time
steps, depending on how often a result needs to be passed on until it reaches a monitor
which is able to actually state a verdict. We shall later give an upper bound on these
communication times, and show that our decentralised monitoring framework does not
introduce any additional delay under the given assumptions (see Theorem 2).
Example 1. Let us assume we have a decentralised system consisting of components
A,B,C, s.t. APA = {a}, APB = {b}, and APC = {c}, and that a formula ϕ =
F(a ∧ b ∧ c) needs to be monitored in a decentralised manner. Let us further assume
that, initially, ϕ0

A = ϕ0
B = ϕ0

C = ϕ. Let σ = {a, b} be the system event at time 0; that
is, MA observes ΠA(σ) = {a} (resp. ΠB(σ) = {b}, ΠC(σ) = ∅ for MB and MC)
when σ occurs. The rewriting that takes place in all three monitors to generate the next
local goal formula, using the modified set of rules, and triggered by σ, is as follows:

ϕ1
A = P (ϕ, {a}, {a}) = P (a, {a}, {a}) ∧ P (b, {a}, {a}) ∧ P (c, {a}, {a}) ∨ ϕ

= Xb ∧Xc ∨ ϕ
ϕ1
B = P (ϕ, {b}, {b}) = P (a, {b}, {b}) ∧ P (b, {b}, {b}) ∧ P (c, {b}, {b}) ∨ ϕ

= Xa ∧Xc ∨ ϕ
ϕ1
C = P (ϕ, ∅, {c}) = P (a, ∅, {c}) ∧ P (b, ∅, {c}) ∧ P (c, ∅, {c}) ∨ ϕ

= Xa ∧Xb ∧ ⊥ ∨ ϕ = ϕ

But we have yet to define progression for past goals: For this purpose, each monitor
has local storage to keep a bounded number of past events. The event that occurred at
time t − k is referred as σ(−k). On a monitor observing Σi, the progression of a past
goal X

m
ϕ, at time t ≥ m, is defined as follows:

P (X
m
ϕ, σ,AP i) =


> if ϕ = p for some p ∈ AP i ∩Πi(σ(−m)),
⊥ if ϕ = p for some p ∈ AP i \Πi(σ(−m)),

X
m+1

ϕ otherwise,
(2)

where, for i ∈ [1, n], Πi is the projection function associated to each monitor Mi,
respectively. Note that since we do not allow X for the specification of a global system
monitoring property, our definitions will ensure that the local monitoring goals, ϕti, will
never be of the form XXXp, which is equivalent to a future obligation, despite the
initial X. In fact, our rules ensure that a formula preceded by the X-operator is either
an atomic proposition, or an atomic proposition which is preceded by one or many
X-operators. Hence, in rule (2), we do not need to consider any other cases for ϕ.

5 Semantics
In the previous example, we can clearly see that monitors MA and MB cannot deter-
mine whether or not σ, if interpreted as a trace of length 1, is a good prefix for the
global goal formula ϕ.3 Monitor MC on the other hand did not observe an action c and,
therefore, is the only monitor after time 0, which knows that σ is not a good prefix and
that, as before, after time 1, ϕ is the goal that needs to be satisfied by the system under
scrutiny. Intuitively, the other two monitors know that if their respective past goals were

3 Note that L(ϕ), being a liveness language, does not have any bad prefixes.
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satisfied, then σ would be a good prefix, but in order to determine this, they need to
send and receive messages to and from each other, containing LTL obligations.

Before we outline how this is done in our setting, let us discuss the semantics, ob-
tained from this decentralised application of progression. We already said that monitors
detect good and bad prefixes for a global formula; that is, if a monitor’s progression
yields > (resp. ⊥), then the trace seen so far is a good (resp. bad) prefix, and if neither
monitor yields a Boolean truth-value as verdict, we keep monitoring. The latter case
indicates that, so far, the trace is neither a good nor a bad prefix for the global formula.
Definition 5. Let C = {C1, . . . , Cn} be the set of system components, ϕ ∈ LTL be a
global goal, andM = {M1, . . . ,Mn} be the set of component monitors. Further, let
u = u1(0) ∪ . . . ∪ un(0) · u1(1) ∪ . . . ∪ un(1) · · ·u1(t) ∪ . . . ∪ un(t) be the global
behavioural trace, at time t ∈ N≥0. If for some component Ci, with i ≤ n, containing
a local obligation ϕti, Mi reports P (ϕti, ui(t), AP i) = > (resp.⊥), then u |=D ϕ = >
(resp. ⊥). Otherwise, u |=D ϕ = ?.

By |=D we denote the satisfaction relation on finite traces in the decentralised set-
ting to differentiate it from LTL3 as well as standard LTL which is defined on infinite
traces. Obviously, |=3 and |=D both yield values from the same truth-domain. However,
the semantics are not equivalent, since the modified progression function used in the
above definition sometimes rewrites a state formula into an obligation concerning the
past rather than returning a verdict. On the other hand, in the case of a one-component
system (i.e., all propositions of a formula can be observed by a single monitor), the def-
inition of |=D matches Theorem 1, in particular because our progression rule (1) is then
equivalent to the standard case. Monitoring LTL3 with progression becomes a special
case of decentralised monitoring, in the following sense:

Corollary 1. If |M| = 1, then ∀u ∈ Σ∗. ∀ϕ ∈ LTL. u |=3 ϕ = u |=D ϕ.

6 Communication and decision making
Let us now describe the communication mechanism that enables local monitors to de-
termine whether a trace is a good or a bad prefix. Recall that each monitor only sees a
projection of an event to its locally observable set of actions, encoded as a set of atomic
propositions, respectively.

Generally, at time t, when receiving an event σ, a monitor, Mi, will progress its
current obligation, ϕti, into P (ϕti, σ, AP i), and send the result to another monitor,
Mj 6=i, whenever the most urgent obligation, ψ ∈ sus(P (ϕti, σ, AP i)), is such that
Prop(ψ) ⊆ (AP j) holds, where sus(ϕ) is the set of urgent subformulae of ϕ and
Prop : LTL→ 2AP yields the set of occurring propositions of an LTL formula.

Definition 6. The function sus : LTL→ 2LTL is inductively defined as follows:

sus(ϕ) = match ϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → sus(ϕ1) ∪ sus(ϕ2)
| ¬ϕ′ → sus(ϕ′)
| Xϕ′ → {Xϕ′}
| → ∅

The set sus(ϕ) contains the past sub-formulae of ϕ, i.e., sub-formulae starting with a
future temporal operator are discarded. It uses the fact that, in decentralised progres-
sion, X-operators are only introduced in front of atomic propositions. Thus, only the
cases mentioned explicitly in the pattern matching need to be considered. Moreover, for

8



formulae of the form Xϕ′, i.e., starting with an X-operator, it is not needed to apply sus

to ϕ′ because ϕ′ is necessarily of the form X
d
p with d ≥ 0 and p ∈ AP , and does not

contain more urgent formulae than Xϕ′. Note that, if there are several equally urgent
obligations for distinct monitors, then Mi sends the formula to only one of the corre-
sponding monitors according to a priority order between monitors. This order ensures
that the delay induced by evaluating the global system specification in a decentralised
fashion is bounded, as we shall see in Theorem 2. For simplicity in the following, for
a set of component monitors M = {M1, . . . ,Mn}, the sending order is the natural
order on the interval [1, n]. This choice of the local monitor to send the obligation is
encoded through the function Mon : M× 2AP→M. For a monitor Mi ∈ M and a
set of atomic propositions AP ′ ∈ 2AP , Mon(Mi, AP

′) is the monitor Mjmin s.t. jmin

is the smallest integer in [1, n] s.t. there is a monitor for an atomic proposition in AP ′.
Formally: Mon(Mi, AP

′) = jmin = min{j ∈ [1, n] \ {i} | AP ′ ∩AP j 6= ∅}.
Once Mi has sent P (ϕti, σ, AP i), it sets ϕt+1

i = #, where # /∈ AP is a special
symbol for which we define progression by

P (#, σ, AP i) = #, (3)

and ∀ϕ ∈ LTL. ϕ ∧ # = ϕ. On the other hand, whenever Mi receives a formula,
ϕj 6=i, sent from a monitor Mj , it will add the new formula to its existing obligation,
i.e., its current obligation ϕti will be replaced by the conjunction ϕti ∧ϕj 6=i. Should Mi

receive further obligations from other monitors but j, it will add each new obligation as
an additional conjunct in the same manner.

Let us now summarise the above steps in the form of an explicit algorithm that
describes how the local monitors operate and make decisions.

Algorithm L (Local Monitor). Let ϕ be a global system specification, and M =
{M1, . . . ,Mn} be the set of component monitors. The algorithm Local Monitor, ex-
ecuted on each Mi, returns > (resp. ⊥), if σ |=D ϕti (resp. σ 6|=D ϕti) holds, where
σ ∈ Σi is the projection of an event to the observable set of actions of the respective
monitor, and ϕti the monitor’s current local obligation.

L1. [Next goal.] Let t ∈ N≥0 denote the current time step and ϕti be the monitor’s
current local obligation. If t = 0, then set ϕti := ϕ.

L2. [Receive event.] Read next σ.
L3. [Receive messages.] Let {ϕj}j∈[1,n],j 6=i be the set of received obligations at time

t from other monitors. Set ϕti := ϕti ∧
∧
j∈[1,n],j 6=i ϕj .

L4. [Progress.] Determine P (ϕti, σ, AP i) and store the result in ϕt+1
i .

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥.
L6. [Communicate.] Let Ψ ⊆ sus(ϕt+1

i ) be the set of most urgent obligations of ϕt+1
i .

Send ϕt+1
i to monitor Mon(Mi,∪ψ∈Ψ Prop(ψ)).

L7. [Replace goal.] If in step L6 a message was sent at all, set ϕt+1
i := #. Then go

back to step L1. ut
The input to the algorithm, σ, will usually resemble the latest observation in a consecu-
tively growing trace, ui = ui(0) · · ·ui(t), i.e., σ = ui(t). We then have that σ |=D ϕti
(i.e., the algorithm returns >) implies that u |=D ϕ holds (resp. for σ 6|=D ϕti).
Example 2. To see how this algorithm works, let us continue the decentralised moni-
toring process initiated in Example 1. Table 1 shows how the situation evolves for all
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Table 1: Decentralised progression of ϕ = F(a ∧ b ∧ c) in a 3-component system.
t: 0 1 2 3

σ: {a, b} {a, b, c} ∅ ∅

MA:
ϕ1

A = P (ϕ, σ,APA)

= Xb ∧Xc ∨ ϕ
ϕ2

A = P (ϕ1
B ∧#, σ, APA)

= X
2
c ∨ (Xb ∧Xc ∨ ϕ)

ϕ3
A = P (ϕ2

C ∧#, σ, APA)

= X
2
b ∨ (Xb ∧Xc ∨ ϕ)

ϕ4
A = P (ϕ3

C ∧#, σ, APA)

= X
3
b ∨ (Xb ∧Xc ∨ ϕ)

MB :
ϕ1

B = P (ϕ, σ,APB)

= Xa ∧Xc ∨ ϕ
ϕ2

B = P (ϕ1
A ∧#, σ, APB)

= X
2
c ∨ (Xa ∧Xc ∨ ϕ)

ϕ3
B = P (#, σ, APB)

= #

ϕ4
B = P (ϕ3

A ∧#, σ, APB)

= >

MC :
ϕ1

C = P (ϕ, σ,APC)

= ϕ

ϕ2
C = P (ϕ, σ,APC)

= Xa ∧Xb ∨ ϕ
ϕ3

C = P (ϕ2
A ∧ ϕ2

B ∧#, σ, APC)

= X
2
a ∧X

2
b ∨ ϕ

ϕ4
C = P (#, σ, APC)

= #

three monitors, when the global LTL specification in question is F(a ∧ b ∧ c) and the
ordering between components is A < B < C. An evolution of MA’s local obligation,
encoded as P (ϕ1

B ∧#, σ, APA) (see cell MA at t = 1) indicates that communication
between the monitors has occurred: MB (resp. MA) sent its obligation to MA (resp. to
another monitor), at the end of step 0. Likewise for the other obligations and monitors.
The interesting situations are marked in grey: In particular at t = 0, MC is the only
monitor who knows for sure that, so far, no good nor bad prefix occurred (see grey cell
at t = 0). At t = 1, we have the desired situation σ = {a, b, c}, but because none of the
monitors can see the other monitors’ events, it takes another two rounds of communica-
tion until both MA and MB detect that, indeed, the global obligation had been satisfied
at t = 1 (see grey cell at t = 3).
This example highlights a worst case delay between the occurrence and the detection of
a good (resp. bad) trace by a good (resp. bad) prefix, caused by the time it takes for the
monitors to communicate obligations to each other. This delay depends on the number
of monitors in the system, and is also the upper bound for the number of past events
each monitor needs to store locally to be able to progress all occurring past obligations:
Theorem 2. Let, for any p ∈ AP , X

m
p be a local obligation obtained by Algorithm L

executed on some monitor Mi ∈M. At any time t ∈ N≥0, m ≤ min(|M|, t+ 1).
Proof. For a full proof cf. [9]. Here, we only provide a sketch, explaining the intuition
behind the theorem. Recall that X-operators are only introduced directly in front of
atomic propositions according to rule (1) when Mi rewrites a propositional formula p
with p /∈ AP i. Further X-operators can only be added according to rule (2) whenMi is
unable to evaluate an obligation of the form X

h
p. The interesting situation occurs when

a monitor Mi maintains a set of urgent obligations of the form {Xh
p1, . . . ,X

j
pl} with

h, j ∈ N≥0, then, according to step L6 of Algorithm L,Mi will transmit the obligations
to one monitor only thereby adding one additional X-operator to the remaining obli-
gations: {Xh+1

p2, . . . ,X
j+1

pl}. Obviously, a single monitor cannot have more than
|M|−1 outstanding obligations that need to be sent to the other monitors at any time t.
So, the worst case delay is initiated during monitoring, if at some time all outstanding
obligations of each monitor Mi, i ∈ [1, |M|], are of the form {Xp1, . . . ,Xpl} with
p1, . . . , pl /∈ AP i (i.e., the obligations are all equally urgent), in which case it takes
|M|−1 time steps until the last one has been chosen to be sent to its respective monitor
Mj . Using an ordering between components ensures here that each set of obligations
will decrease in size after being transmitted once. Finally, a last monitor, Mj will re-

ceive an obligation of the form X
|M|

pk with 1 ≤ k ≤ l and pk ∈ AP j . ut
Consequently, the monitors only need to memorise a bounded history of the trace read
so far, i.e., the last |M| events.
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Example 2 also illustrates the relationship to the LTL3 semantics discussed earlier
in Sec. 3. This relationship is formalised by the two following theorems stating the
soundness and completeness of the algorithm.
Theorem 3. Let ϕ ∈ LTL and u ∈ Σ∗, then u |=D ϕ = >/⊥ ⇒ u |=3 ϕ = >/⊥,
and u |=3 ϕ = ?⇒ u |=D ϕ = ?.
In particular, the example shows how the other direction of the theorem does not nec-
essarily hold. Consider the trace u = {a, b} · {a, b, c}: clearly, u |=3 F(a∧ b∧ c) = >,
but we have u |=D F(a∧ b∧ c) = ? in our example. Again, this is a direct consequence
of the delay introduced in our setting. However, Algorithm L detects all verdicts for a
specification as if the system was not distributed.
Theorem 4. Let ϕ ∈ LTL and u ∈ Σ∗, then u |=3 ϕ = >/⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤
n ∧ u · u′ |=D ϕ = >/⊥, where n is the number of components in the system.

7 Experimental results
DECENTMON is an implementation, simulating the above distributed LTL monitoring
algorithm in 1,800 LLOC, written in the functional programming language OCaml. It
can be freely downloaded and run from [18]. The system takes as input multiple traces
(that can be automatically generated), corresponding to the behaviour of a distributed
system, and an LTL formula. Then the formula is monitored against the traces in two
different modes: a) by merging the traces to a single, global trace and then using a
“central monitor” for the formula (i.e., all local monitors send their respective events to
the central monitor who makes the decisions regarding the trace), and b) by using the
decentralised approach introduced in this paper (i.e., each trace is read by a separate
monitor). We have evaluated the two different monitoring approaches (i.e., centralised
vs. decentralised) using two different set-ups described in the remainder of this section.
Evaluation using randomly generated formulae. DECENTMON randomly generated
1,000 LTL formulae of various sizes in the architecture described in Example 1.
How both monitoring approaches com- centralised decentralised diff. ratio

|ϕ| |trace| #msg. |trace| #msg. |trace| #msg.
1 1.369 4.107 1.634 0.982 1.1935 0.2391
2 2.095 6.285 2.461 1.647 1.1747 0.262
3 3.518 10.554 4.011 2.749 1.1401 0.2604
4 5.889 17.667 6.4 4.61 1.0867 0.2609
5 9.375 28.125 9.935 7.879 1.0597 0.2801
6 11.808 35.424 12.366 9.912 1.0472 0.2798

Table 2: Benchmarks for random formulae

pared on these formulae can be seen
in Table 2. The first column shows the
size of the monitored LTL formulae.
Note, our system measures formula size
in terms of the operator entailment4 in-
side it (state formulae excluded), e.g.,
G(a ∧ b) ∨ Fc is of size 2. The en-
try |trace| denotes the average length
of the traces needed to reach a verdict. For example, the last line in Table 2 says that we
monitored 1,000 randomly generated LTL formulae of size 6. On average, traces were
of length 11.808 when the central monitor came to a verdict, and of length 12.366 when
one of the local monitors came to a verdict. The difference ratio, given in the second
last column, then shows the average delay; that is, on average the traces were 1.0472
times longer in the decentralised setting. The number of messages, #msg., in the cen-

4 Our experiments show that this way of measuring the size of a formula is more representative
of how difficult it is to progress it in a decentralised manner. Formulae of size above 6 are not
realistic in practice.
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tralised setting, corresponds to the number of events sent by the local monitors to the
central monitor (i.e., the length of the trace times the number of components) and in the
decentralised setting to the number of obligations transmitted between local monitors.
What is striking here is that the amount of communication needed in the decentralised
setting is ca. only 25% of the communication overhead induced by central monitoring,
where local monitors need to send each event to a central monitor.

Evaluation using specification patterns. In order to evaluate our approach also at the
hand of realistic LTL specifications, we conducted benchmarks using LTL formulae
following the well-known LTL specification patterns ([19], whereas the actual formu-
lae underlying the patterns are available at this site [20] and recalled in [18]). In this
context, to randomly generate formulae, we proceeded as follows. For a given specifi-
cation pattern, we randomly select one of the formulae associated to it. Such a formula
is “parametrised” by some atomic propositions. To obtain the randomly generated for-
mula, using the distributed alphabet, we randomly instantiate the atomic propositions.

The results of this test are reported in Table 3: for each kind of pattern (absence,
existence, bounded existence, universal, precedence, response, precedence chain, re-
sponse chain, constrained chain), we generated again 1,000 formulae, monitored over
the same architecture as used in Example 1.

Discussion. Both benchmarks substantiate the claim that decentralised monitoring of
an LTL formula can induce a much lower communication overhead compared to a
centralised solution. In fact, when considering the more realistic benchmark using the
specification patterns, the communication overhead was significantly lower compared
to monitoring randomly generated formulae. The same holdstrue for the delay: in case
of monitoring LTL formulae corresponding to specification patterns, the delay is al-
most negligible; that is, the local monitors detect violation/satisfaction of a monitored
formula at almost the same time as a global monitor with access to all observations.

Besides the above, we conducted further experiments to determine which are the
parameters that make decentralised monitoring (less) effective w.r.t. a centralised so-
lution, and whether or not the user can control them or at least estimate them prior to
monitoring. To this end, we first considered a policy change for sending messages: Un-
der the new policy, components send messages to the central observer only when the
truth values have changed w.r.t. a previous event. The experimental results generally

Table 3: Benchmarks for LTL specification patterns.
centralised decentralised diff. ratio

pattern |trace| #msg. |trace| #msg. |trace| #msg.

absence 156.17 468.51 156.72 37.94 1.0035 0.0809
existence 189.90 569.72 190.42 44.41 1.0027 0.0779

bounded existence 171.72 515.16 172.30 68.72 1.0033 0.1334
universal 97.03 291.09 97.66 11.05 1.0065 0.0379

precedence 224.11 672.33 224.72 53.703 1.0027 0.0798
response 636.28 1,908.86 636.54 360.33 1.0004 0.1887

precedence chain 200.23 600.69 200.76 62.08 1.0026 0.1033
response chain 581.20 1,743.60 581.54 377.64 1.0005 0.2165

constrained chain 409.12 1,227.35 409.62 222.84 1.0012 0.1815
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vary with the size of the formulae, but the decentralised case induced only around half
the number messages under this policy. Moreover, the advantage remains in favour of
decentralised monitoring as the size of the local alphabets was increased. We then ex-
tended this setting by considering specific probability distributions for the occurrence
of local propositions. As one would expect, the performance of decentralised monitor-
ing deteriorates when the occurrence of a local proposition has a very high or a very low
probability since it induces a low probability for a change of the truth value of a local
proposition to occur. Similar to the first setting, as the size of local alphabets grows, the
performance of decentralised monitoring improves again.

Clearly, further experiments are needed to determine the conditions under which
the decentralised case unambiguously outperforms alternatives, but the above gives first
indications. The detailed results are available and continuously updated at [18].

8 Conclusions and related work
This work is by no means the first to introduce an approach to monitoring the behaviour
of distributed systems. For example, the diagnosis (of discrete-event systems) has a
similar objective (i.e., detect the occurrence of a fault after a finite number of discrete
steps) (cf. [21–23]). In diagnosis, however, one tries to isolate root causes for failure
(i.e., identify the component in a system which is responsible for a fault). A key concept
is that of diagnosability: a system model is diagnosable if it is always the case that
the occurrence of a fault can be detected after a finite number of discrete steps. In
other words, in diagnosis the model of a system, which usually contains both faulty and
nominal behaviour, is assumed to be part of the problem input, whereas we consider
systems more or less as a “black box”. Diagnosability does not transfer to our setting,
because we need to assume that the local monitors always have sufficient information to
detect violation (resp. satisfaction) of a specification. Also, it is common in diagnosis of
distributed systems to assert a central decision making point, even if that reflects merely
a Boolean function connecting the local diagnosers’ verdicts, while in our setting the
local monitors directly communicate without a central decision making point.

A natural counterpart of diagnosability is that of observability as defined in decen-
tralised observation [24]: a distributed system is said to be x-observable, where x ranges
over different parameters such as whether local observers have finite or infinite mem-
ory available to store a trace (i.e., jointly unbounded-memory, jointly bounded-memory,
locally unbounded-memory, locally finite-memory), if there exists a total function, al-
ways able to combine the local observers’ states after reading some trace to a truthful
verdict w.r.t. the monitored property. Again, the main difference here is that we take
observability for granted, in that we assume that the system can always be monitored
w.r.t. a given property, because detailed system topology or architectural information
is not part of our problem input. Moreover, unlike in our setting, even in the locally-
observable cases, there is still a central decision making point involved, combining the
local verdicts. Note also that, to the best of our knowledge, both observation and diag-
nosis do not concern themselves with minimising the communication overhead needed
for observing/diagnosing a distributed system.

A specific temporal logic, MTTL, for expressing properties of asynchronous multi-
threaded systems has been presented in [25]. Its monitoring procedure takes as input a
safety formula and a partially ordered execution of a parallel asynchronous system.
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It then establishes whether or not there exist runs in the execution that violate the
MTTL formula. While the synchronous case can be interpreted as a special case of the
asynchronous one, there are some noteworthy differences between [25] and our work.
Firstly, we take LTL “off-the-shelf”; that is, we do not add modalities to express prop-
erties concerning the distributed/multi-threaded nature of the system under scrutiny.
On the contrary, our motivation is to enable users to conceive a possibly distributed
system as a single, monolithic system by enabling them to specify properties over the
outside visible behaviour only—independent of implementation specific-details, such
as the number of threads or components—and to automatically “distribute the monitor-
ing” process for such properties for them. Secondly, we address the fact that in some
distributed systems it may not be possible to collect a global trace or insert a global
decision making point, thereby forcing the automatically distributed monitors to com-
municate. But at the same time we try and keep communication at a minimum. This
aspect, on the other hand, does not play a role in [25] where the implementation was
tried on parallel (Java) programs which are not executed on physically separated CPUs,
and where one can collect a set of global behaviours to then reason about. Finally, our
setting is not restricted to safety formulae, i.e., we can monitor any LTL formula as long
as its set of good (resp. bad) prefixes is not empty. However, we have not investigated
whether or not the restriction of safety formulae is inherent to [25] or made by choice.
Other recent works like [26] target physically distributed systems, but do not focus on
the communication overhead that may be induced by their monitoring. Similarly, this
work also mainly addresses the problem of monitoring systems which produce partially
ordered traces (à la Diekert and Gastin), and introduces abstractions to deal with the
combinational explosion of these traces.

To the best of our knowledge, our work is the first to address the problem of au-
tomatically distributing LTL monitors, and to introduce a decentralised monitoring ap-
proach that not only avoids a global point of observation or any form of central trace
collection, but also tries to keep the number of communicated messages between moni-
tors at a minimum. What is more, our experimental results show that this approach does
not only “work on paper”, but that it is feasible to be implemented. Indeed, even the
expected savings in communication overhead could be observed for the set of chosen
LTL formulae and the automatically generated traces, when compared to a centralised
solution in which the local monitors transmit all observed events to a global monitor.
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