
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Fully-automated Runtime Enforcement of Component-based
Systems with Formal and Sound Recovery?

Yliès Falcone1, Mohamad Jaber2

1 Univ. Grenoble-Alpes, Inria, LIG, F-38000, Grenoble, France - e-mail: Ylies.Falcone@imag.fr
2 American University of Beirut, CMPS, Beirut, Lebanon - e-mail: mj54@aub.edu.lb

The date of receipt and acceptance will be inserted by the editor

Abstract. We introduce runtime enforcement of specifica-
tions on component-based systems (CBS) modeled in the BIP
(Behavior, Interaction and Priority) framework. Runtime en-
forcement is an increasingly popular and effective dynamic
validation technique aiming to ensure the correct runtime be-
havior (w.r.t. a formal specification) of a system using a so-
called enforcement monitor. BIP is a powerful and expressive
component-based framework for the formal construction of
heterogeneous systems. Because of BIP expressiveness how-
ever, it is difficult to enforce complex behavioral properties at
design-time.

We first introduce a theoretical runtime enforcement
framework for component-based systems where we delineate
a hierarchy of enforceable properties (i.e., properties that can
be enforced) according to the number of observational steps a
system is allowed to deviate from the property (i.e., the notion
of k-step enforceability). To ensure the observational equiva-
lence between the correct executions of the initial system and
the monitored system, we show that i) only stutter-invariant
properties should be enforced on CBS with our monitors,
and ii) safety properties are 1-step enforceable. Second, given
an abstract enforcement monitor for some 1-step enforceable
property, we define a series of formal transformations to in-
strument (at relevant locations) a CBS described in the BIP
framework to integrate the monitor. At runtime, the monitor
observes and automatically avoids any error in the behavior
of the system w.r.t. the property. Third, our approach is fully
implemented in RE-BIP, an available tool integrated in the
BIP tool suite. Fourth, to validate our approach, we use RE-
BIP to i) enforce deadlock-freedom on a dining philosophers
benchmark, and ii) ensure the correct placement of robots on
a map.

? The work reported in this article has been done in the context of the
COST Action ARVI IC1402, supported by COST (European Cooperation in
Science and Technology). The work presented in this paper is supported by
the University Research Board (URB) at American University of Beirut.

1 Introduction

Users wanting to build complex and heterogeneous systems
dispose of a variety of complementary verification techniques
to detect bugs and errors. Techniques are often categorized as
static or dynamic according to the analyzed information. Both
take as input some system representation, perform some anal-
ysis, and yield a verdict indicating the (partial) correctness of
the system in addition to some form of feedback to the user.
Upon the detection of an error in the system, the user’s ac-
tivity enters a new phase consisting in correcting the system
and then submitting the corrected system to the analysis tech-
nique. This process is usually time-consuming and not guar-
anteed to converge within the time frame associated to system
implementation. Hence, it is often the case that bugs remain
in systems in operation.

Motivations. We aim at marrying software synthesis and dy-
namic analysis to tackle the aforementioned issue and to
provide users with a technique that can guarantee the cor-
rectness of (off-the-shelf) systems at runtime. Similar to
use runtime verification (cf. [40,31,38,5]) to complement
model-checking, we use runtime enforcement (cf. [42,33,
22,28]) to complement model repair. While model repair
targets correctness-by-construction, runtime enforcement, as
proposed in this paper, targets correctness-at-operation. Run-
time enforcement is a dynamic technique aiming at ensuring
the correct runtime behavior of systems using a so-called en-
forcement monitor. At runtime, the monitor consumes infor-
mation from the execution (e.g., events) and modifies it when-
ever necessary by, e.g., suppressing forbidden events. Enforc-
ing properties at runtime has been only studied for monolithic
systems. Moreover, existing research efforts take instrumen-
tation for granted and do not formally define how to actually
modify the runtime behavior of the monitored system.

We target component-based systems (CBSs) expressed in
the Behavior, Interaction and Priority (BIP) framework [10,
9,4]. BIP allows to build complex systems by coordinating

the behavior of a set of atomic components. Behavior is de-
scribed with Labeled Transition Systems that are extended
with data and C functions. The coordination between compo-
nents is done with interactions and priorities between inter-
actions. This layered architecture confers a strong expressive-
ness to BIP [10]. Moreover, BIP has a rigorous operational se-
mantics: the behavior of a composite component is formally
described as the composition of the behaviors of its atomic
components. However, because of BIP expressiveness, it re-
mains difficult to enforce at design-time complex behavioral
properties.

Dynamic validation techniques for CBSs. Our general objec-
tive is to propose dynamic verification techniques to comple-
ment existing static verification techniques for BIP systems.
More precisely, we are interested in checking and guarantee-
ing the conformance of the executions of a BIP system w.r.t. a
property ϕ. Figure 1 illustrates the differences between run-
time verification and runtime enforcement for BIP systems.
In both techniques, we consider as input an initial BIP sys-
tem (center of the figure). Only some of the states of the sys-
tem (marked pink) have an effect on the satisfaction/violation
of ϕ. In previous work, we proposed a runtime verification
approach for BIP systems [26] (illustrated on the left-hand
side of Fig. 1). From ϕ and the model of the BIP system, we
identify the components (green components) that have to be
instrumented. At runtime, the instrumented system produces
events that feed a (synthesized) verification monitor at run-
time (componentM), which, in turn, produces verdicts indi-
cating property satisfaction/violation. As illustrated in Fig. 1,
the states traversed by the execution of the system at runtime
are colored as follows: (1) light blue for current satisfaction,
(2) dark blue for definitive satisfaction, and (3) red for vi-
olation. In the execution of the system, intermediate states
are added between an executing state whenever the monitor
should re-evaluate the property. We have shown in [26] that
the initial and runtime verified systems are bisimilar (i.e., no
trace is added nor removed). A drawback of this approach is
that, upon the violation of ϕ, the system continues its execu-
tion in violating states.

To circumvent this limitation, we propose an original run-
time enforcement technique specific to CBSs in general and
instantiate it for BIP systems in particular. The right-hand
side of Fig. 1 illustrates how runtime enforcement is applied
to an existing BIP system. Similarly to the runtime verifi-
cation technique proposed in [26], the runtime enforcement
technique proposed in this paper instruments the system so
that it can interact with an enforcement monitor. We synthe-
size two new BIP components: a runtime enforcement mon-
itor and a so-called “disabler” as BIP components. The run-
time enforcement monitor (E) is in charge of checking the
property ϕ and influencing the execution of the system ac-
cording to the result. More precisely, in case of violation,
the enforcement monitor rolls the system back to its previous
state, and, in case, of satisfaction, the enforcement monitor
lets the system progress. Whenever, the system goes through
a transition that leads to a violation (and is rolled back), the

disabler prevents this transition from being executed again so
to prevent livelocks. Contrarily to the runtime verified sys-
tem, some traces of the initial system are absent from the sys-
tem where the property is enforced: the resulting system only
produces the behaviors that are correct w.r.t. ϕ.

Contributions. This paper shows how to easily integrate cor-
rectness properties into a CBS. Our approach favors the de-
sign and correctness of safety-critical systems by allowing
a separation of concerns for system designers. Indeed, the
functional part of the system and its safety requirements can
be designed in separation, and then latter integrated together
with our approach. The resulting supervised system prevents
any error from happening. More specifically, the contribu-
tions of this paper are as follows:

– to introduce runtime enforcement for CBSs to avoid er-
rors at runtime;

– to introduce a new runtime enforcement paradigm where
actions of the system can be canceled (by rolling the sys-
tem back) and alternative executions can be explored: the
runtime enforcement paradigm defined in this paper pre-
vents the occurrence of misbehavior;

– to instrument CBSs to observe and minimally alter their
behavior;

– to define formal transformations that takes as input a CBS
and a desired property to produce a supervised system
where the property is enforced: the resulting system pro-
duces only the correct executions (of the initial system)
w.r.t. the considered property.

– to implement the instrumentation and the transformations
in RE-BIP, an available toolset;

– to validate the whole approach by enforcing properties
over non-trivial systems (where a static hand-coding of
the properties using connectors and priorities would have
not been tractable).

Challenges. When synthesizing enforcement monitors for
CBSs, the main challenges are:

– to handle the possible interactions and synchronizations
between components: when intervening on the behavior
of a component by e.g., suppressing the execution of a
transition, we need to ensure that the synchronized com-
ponents are also prevented from performing a connected
transition;

– to preserve the observational equivalence between the
(correct executions of the) initial system and the moni-
tored system: for this purpose, i) we leverage priorities in
BIP, and ii) we identify the set of stutter-invariant proper-
ties for which enforcement monitors can be synthesized
and integrated into a system;

– to define an efficient and complete instrumentation tech-
nique: the monitor receives all events of interest of the
property while not degrading the performance of the sys-
tem.

Note, this paper is an extended version of a paper that ap-
peared in the 30th ACM/SIGAPP Symposium On Applied

2

BIP
M

Property
ϕ

...
...

...
...

...
...

...
...

...
...

...
...

E

D

...
...

...

RV RE

Fig. 1. Runtime verification (RV) versus runtime enforcement (RE) for BIP systems.

Computing - Software Testing and Verification Track [17].
More specifically, this paper brings the following additional
contributions. First, we extend our abstract runtime enforce-
ment framework for component-based systems. Second, for
the runtime enforcement of BIP systems, we introduce the
notion of disabler, which is a component preventing instru-
mented BIP systems to livelock. Third, we release RE-BIP,
a toolset for the runtime enforcement of safety properties on
component-based systems expressed in the BIP framework.
Fourth, we validate our approach by i) illustrating how to
enforce deadlock freedom on a dining-philosophers example
and ii) to enforce the correct placement of robots on a map.
Finally, we provide proofs for the propositions of this paper.

Paper organization. The remainder of this paper is struc-
tured as follows. Section 2 introduces some preliminaries
and notations. In Sec. 3, we recall the necessary concepts
of the BIP framework. Section Sec. 4 presents the language
used to describe properties and the instrumentation principles
of a CBS for a property. Section 5 presents, at an abstract
level, a runtime enforcement framework for component-
based systems. Section 6 instantiates the framework proposed
in Sec. 5: it shows how to instrument a BIP system to incor-
porate an enforcement monitor. Section 7 describes RE-BIP,
a full implementation of our framework and its evaluation us-
ing two benchmarks. Section 8 discusses related work and
presents the complementary advantages of our runtime en-
forcement approach over existing validation techniques. Sec-
tion 9 draws some conclusions and perspectives. Appendix A
contains the proof of correctness of our enforcement monitors
for BIP systems.

2 Preliminaries and Notation

We introduce some preliminary concepts and notations.

Functions and partial functions. For two domains of ele-
ments E and F , we note [E → F] (resp. [E ⇁ F])
the set of functions (resp. partial functions) from E to F .
When elements of E depend on the elements of F , we
note {e ∈ E}f∈F ′ , where F ′ ⊆ F , for {e ∈ E | f ∈ F ′}
or {e}f∈F ′ when clear from context. For two functions v ∈
[X → Y] and v′ ∈ [X ′ → Y ′], the substitution function
noted v/v′, where v/v′ ∈ [X ∪ X ′ → Y ∪ Y ′], is de-
fined as: v/v′(x) = v′(x) if x ∈ X ′ and v(x) otherwise.
A predicate over some domain E is a function in the set
[E → {true, false}] where true and false are the usual
Boolean constants. Given, some predicate p over some do-
mainE and some element e ∈ E, we abbreviate p(e) = true

(resp. p(e) = false) by p(e) (resp. ¬p(e)).

Sequences. N denotes the set of natural numbers. Given a
set of elements E, a sequence of length n ∈ N over E is
denoted e1 · e2 · · · en where ∀i ∈ [1, n] : ei ∈ E, and
the empty sequence is noted εE , or ε when clear from con-
text. When a sequence s is a prefix of a sequence s′, we
note it s � s′. When elements of a sequence are assign-
ments, the sequence is delimited by square brackets, e.g.,
[x1 := expr1 ; . . . ;xn := exprn]. Concatenation of assign-
ments or sequences of assignments is denoted by “; ”. The
set of all (finite) sequences over E is noted E∗.

3

Transition Systems. Labeled Transition System (LTS) are
used to define the semantics of (BIP) systems. An LTS de-
fined over an alphabetΣ is a 3-tuple 〈Lab,Sta,Trans〉where
Lab is a set of labels, Sta is a non-empty set of states and
Trans ⊆ Sta × Lab × Sta is the transition relation. A
transition 〈s, e, s′〉 ∈ Trans means that the LTS can move
from state s to state s′ by consuming label e. We abbrevi-
ate 〈s, e, s′〉 ∈ Trans by s e→Trans s

′ or by s e→ s′ when
clear from context. Moreover, s e→ is a short for ∃s′ ∈ Sta :
s

e→ s′. The traces of LTS L = 〈Lab,Sta,Trans〉, noted
traces(L), are the finite sequences over Lab∪Sta of the form

s0 · e0 · s1 · · · sn ,

for some n ∈ N, where si ∈ Sta and ei ∈ Lab. A trace
starts from the initial state s0 , and follows transition relation
Trans. A state s ∈ Sta is reachable in L if s occurs in one of
the traces of L.

3 Behavior Interaction Priority

BIP [4] allows to construct systems by superposing three lay-
ers of modeling: Behavior, Interaction, and Priority. The be-
havior layer consists of a set of atomic components repre-
sented by transition systems extended with C functions and
data and labeled with communication ports. The interaction
layer models the collaboration (i.e., synchronization and data
transfer) between components. The priority layer specifies
scheduling policies on the interaction layer.

3.1 Atomic Components

An atomic component B is endowed with a set of local vari-
ables B.vars ranging over a domain Data. Atomic compo-
nents synchronize and exchange data through ports.

Definition 1 (Port). A port 〈p, xp〉 in B is defined by a port
identifier p, and a set of attached local variables xp, where
xp ⊆ B.vars . We denote 〈p, xp〉 as p, and xp as p.vars .

Definition 2 (Atomic component). An atomic component is
a tuple

〈
P,L, T,X, {gτ}τ∈T , {fτ}τ∈T

〉
, where:

– 〈P,L, T 〉 is an LTS over a set of ports P : L is a set of
control locations and T ⊆ L×P×L is a set of transitions,

– X is a finite set of variables,
– for each transition τ ∈ T , gτ is a Boolean condition over
X: the guard of τ , and fτ ∈ {x := fx(X) | x ∈ X}∗:
the computation of τ , a sequence of assignments to local
variables in X .

For a transition τ = 〈l, p, l′〉 ∈ T , l (resp. l′) is referred to
as the source (resp. destination) location and p is a port for
interacting with another component. Moreover, τ involves a
transition 〈l, p, gτ , fτ , l′〉 which can be executed only if gτ
holds.

comp1

l

l′l′′

x > 0

p

[y := x+ t]
q

x

y

z

t

p q

Fig. 2. Atomic component.

In the sequel, l
p→T l′ (resp. l

p→T) is a short for
〈l, p, l′〉 ∈ T (resp. ∃l′ ∈ L : l

p→T l′). Given a tran-
sition τ = 〈l, p, gτ , fτ , l′〉, τ.src, τ.port , τ.guard , τ.func,
and τ.dest denote l, p, gτ , fτ , and l′, respectively. Also, the
set of variables used in a transition is defined as var(fτ) =
{x ∈ X | x := fx(X) ∈ fτ}. We use the dot notation to re-
fer to elements of a component: for an atomic component
B =

〈
P,L, T,X, {gτ}τ∈T , {fτ}τ∈T

〉
, B.P refers to P ,

B.L refers to L, etc; for an atomic component B (without
definition of the elements), B.ports denotes the set of ports
of B, B.locs denotes its set of locations, etc.

Example 1 (Atomic component). Figure 2 depicts an atomic
component with variables x, y, z, and t, two ports p and q (p
is attached to variables x and z), and three control locations
l, l′, and l′′. At location l, the transition labeled by port q
is possible (the guard evaluates to true by default) and the
(dashed) transition labeled by port p is possible provided x is
positive. When an interaction through p takes place, variable
y is assigned to the value of x + t .

Definition 3 (Semantics of atomic components). The
semantics of atomic component 〈P,L, T,X, {gτ}τ∈T ,
{fτ}τ∈T 〉 is the LTS 〈P,Q, T0〉, where: (1) Q =
L × [X → Data] × (P ∪ {null}); and (2) T0 =
{〈〈l, v, p〉 , p′(vp′), 〈l′, v′, p′〉〉 ∈ Q × P × Q | ∃τ =
〈l, p′, l′〉 ∈ T : gτ (v) ∧ v′ = fτ (v/vp′)}, where vp′ ∈
[p′.vars → Data].

A configuration is a triple 〈l, v, p〉 ∈ Q where l ∈ L,
v ∈ [X → Data] is a valuation of variables in X , and p ∈ P
is the port of the last-executed transition (or null otherwise).

The evolution 〈l, v, p〉
p′(vp′)→ 〈l′, v′, p′〉, where vp′ is a valu-

ation of the variables in p′.vars , is possible if there exists a
transition 〈l, p′, gτ , fτ , l′〉, s.t. gτ (v) = true. Valuation v is
modified to v′ = fτ (v/vp′).

3.2 Composite Components

Assuming some atomic componentsB1, . . . , Bn, we connect
the components in {Bi}i∈I with I ⊆ [1, n] using a connector.
A connector γ is used to specify possible interactions, i.e.,
the sets of ports that have to be jointly executed. Two types

4

u u u u
s r1 r2 r3

N u u u
s r1 r2 r3

Rendezvous Broadcast

u u u u
s r1 r2 r3

N u u u
s r1 r2 r3

Rendezvous Broadcast

Fig. 3. Using connectors to obtain rendezvous and broadcast.

of ports (synchron, trigger) are defined in order to specify
the feasible interactions of a connector. A trigger port (repre-
sented by a triangle) is active: the port can initiate an interac-
tion without synchronizing. A synchron port (represented by
a circle) needs synchronization with other ports to initiate an
interaction.

Definition 4 (Connector). A connector γ is a tuple
〈Pγ , t, G, F 〉, where:

– Pγ = {pi | pi ∈ Bi.P}i∈I s.t. ∀i ∈ I : Pγ ∩ Bi.P =
{pi},

– t ∈ [Pγ → {true, false}] s.t. t(p) = true if p is trig-
ger (and false otherwise),

– G is an expression over variables in ∪i∈I pi.vars (the
guard),

– F is an update function for variables in ∪i∈I pi.vars .

Figure 3 depicts two connectors:

– Rendezvous: only the maximal interaction {s, r1, r2, r3}
is possible,

– Broadcast: all interactions containing trigger port s
are possible, that is

{
{s} , {s, r1} , {s, r2} , {s, r3} ,

{s, r1, r2} , {s, r2, r3} , {s, r1, r3} , {s, r1, r2, r3}
}

.

Definition 5 (Interaction). A set of ports a = {pj}j∈J ⊆
Pγ for some J ⊆ I is an interaction of γ if either there exists
j ∈ J s.t. pj is trigger, or, for all j ∈ J , pj is synchron and
{pj}j∈J = Pγ .

An interaction a has a guard and two functions Ga, Fa, ob-
tained by projecting G and F on the variables of the ports
involved in a. We denote by I(γ) the set of interactions of γ
and I(γ1) ∪ . . . ∪ I(γn) by I(γ1, . . . , γn). Synchronization
through an interaction involves two steps: evaluating Ga, and
applying update function Fa.

Definition 6 (Composite component). A composite com-
ponent consists of a set of atomic components {Bi}i∈I and
a set of connectors Γ . The connection of the components in
{Bi}i∈I using set of connectors Γ is denoted by Γ ({Bi}i∈I).

The composite component defined from atomic compo-
nents {Bi}i∈[1,n] and a set of connectors Γ is noted
Γ ({B1, . . . , Bn}).

Definition 7 (Semantics of composite components). A
state q of composite component Γ ({B1, . . . , Bn}) is an n-
tuple 〈q1, . . . , qn〉 where qi = 〈li, vi, pi〉 is a state of Bi.
The semantics of Γ ({B1, . . . , Bn}) is an LTS 〈Q,A,−→〉,
where:

– Q = B1.Q× . . .×Bn.Q,

– A = ∪γ∈Γ {a ∈ I(γ)} is the set of all possible interac-
tions,

– −→ is the least set of transitions satisfying the following
rule:

∃γ ∈ Γ : γ = 〈Pγ , t, G, F 〉 ∃a ∈ I(γ) : a = {pi}i∈I Ga(v(X))

∀i ∈ I : qi
pi(vi)−→ i q

′
i ∧ vi = Fai(v(X)) ∀i 6∈ I : qi = q′i

〈q1, . . . , qn〉
a−→ 〈q′1, . . . , q′n〉

X is the set of variables attached to the ports of a, v is
the global valuation, and Fai is the restriction of F to the
variables of pi.

Interaction a can be fired, whenever all its ports are enabled
and its guard (Ga(v(X))) holds. Then, involved components
evolve according to a and not involved components remain in
the same state. Several interactions can be enabled at the same
time. Priorities reduce non-determinism: one of the interac-
tions with the highest priority is chosen in a non-deterministic
manner.

Definition 8 (Priority). A priority model π over Γ ({B1,
. . . , Bn}) is a partial order π ⊆ Γ × Γ on the set of in-
teractions Γ . Adding priority model π to Γ ({B1, . . . , Bn})
defines a new composite component π

(
Γ ({B1, . . . , Bn})

)
whose behavior is defined by 〈Q,A, −→π〉, where −→π is
the least set of transitions satisfying the following rule:

q
a−→ q′ ¬

(
∃a′ ∈ A,∃q′′ ∈ Q :

〈
a, a′

〉
∈ π ∧ q a′−→ q′′

)
q

a−→π q
′

Interaction a is enabled whenever a is maximal according to
π. In BIP, maximal progress is expressed at the level of con-
nectors.

Definition 9 (Maximal progress). Given a connector γ and
a priority model π, we have:

∀a, a′ ∈ I(γ) : (a ⊂ a′ ∧ 〈a′, a〉 /∈ π) =⇒ a ≺ a′.

Finally, system is composed of a composite component and
an initial state.

Definition 10 (System). A system 〈B, Init〉 consists of a
composite component B and an initial state Init ∈ B1.L ×
. . .×Bn.L.

Hierarchical connectors [10]. Given a connector γ we de-
note by γ.export the exported port of connector γ, which is
used to build hierarchical connectors. In that case, we use up-
ward and downward update functions instead of update func-
tions only.

u
N N N

uexport

s r1 r2 r3

�

An example of hierarchical con-
nectors is depicted on the right. All
interactions containing s and an
interaction of γ are possible, i.e.,{
{s, r1} , {s, r2} , {s, r3} , {s, r1, r2} , {s, r1, r3} , {s, r2, r3},
{s, r1, r2, r3}

}
.

5

4 Properties and Instrumentation of Component-Based
Systems

In this section, we define the basis of a specification language
that can be used to express properties of CBSs (Sec. 4.1).
To remain general, we refrain from introducing any particu-
lar operator for specifying temporal behavior but specify the
basic ingredients of an adequate specification language for
CBSs (namely the atomic propositions and events). More-
over, given a property of interest, we specify at a high-level,
the expected behavior of an instrumentation process for CBSs
(Sec. 4.2).

Preliminaries and notation. A property Π over Σ is a sub-
set of Σ∗. If a sequence σ belongs to Π , we note it Π(σ).
To evaluate sequences of system events against properties,
we shall use an expressive truth-domain B4 [5] allowing to
characterize a sequence according to whether or not it cur-
rently satisfies the property, and whether its possible future
continuations will certainly satisfy or violate the property.
Truth-domain B4 contains truth-values true (>), false (⊥),
currently-true (>c), and currently-false (⊥c). Given a se-
quence σ ∈ Σ and Π ⊆ Σ∗, the evaluation of σ against
Π [24] is defined as:

[[σ]]ΠB4
=

> if Π(σ) ∧ ∀σ′ ∈ Σ∗ : Π(σ · σ′),
>c if Π(σ) ∧ ∃σ′ ∈ Σ∗ : ¬Π(σ · σ′),
⊥c if ¬Π(σ) ∧ ∃σ′ ∈ Σ∗ : Π(σ · σ′),
⊥ if ¬Π(σ) ∧ ∀σ′ ∈ Σ∗ : ¬Π(σ · σ′).

Safety properties are the prefix closed subsets ofΣ∗. We note
Safety(Σ) the set of safety properties over Σ.

4.1 Specifying Properties of Component-Based Systems

Following [26], we consider events as Boolean expressions
over atomic propositions. Atomic propositions express con-
ditions on components (e.g., a condition on the lastly exe-
cuted port, current locations of atomic components, values of
variables). More formally, an event of π(C) is defined as a
state formula over the atomic propositions over components
involved in π(C). Let AP be the set of atomic propositions
defined with the following grammar (where ∗ ∈ {=,≤}):

Atom ::= cpnt1.var1 ∗ cpnt2.var2 | cpnt.var ∗ a val
| cpnt.loc = a loc | cpnt.port = a port

cpnt.var ::= x ∈ ∪i∈[1,n]Bi.vars
a val ::= v ∈ Data
a loc ::= s ∈ ∪i∈[1,n]Bi.locs

a port ::= p ∈ ∪i∈[1,n]Bi.ports
In the sequel, we suppose that all atomic propositions ap-

pearing in the property affect its truth-value. We use Prop :
Σ → 2AP for the set of atomic propositions used in an event
e ∈ π(C). More formally, Prop is defined inductively using
the rules in Table 1. For ap ∈ Prop(e), used(ap) is the set
of pairs formed by the components and the variables (or loca-

tions or ports) used to define ap. The set used(ap) is defined
using a pattern-matching:

used (ap) = match ap with

| cpnt1.var1 ∗ cpnt2.var2 → {(cpnt1, var1), (cpnt2, var2)}
| cpnt.var ∗ val→ {(cpnt, var)}
| cpnt.loc = a loc→ {(cpnt, loc)}
| cpnt.port = a port→ {(cpnt, port)}

In the following, we shall use regular properties which are
properties that can be (equivalently) defined by a regular ex-
pression or a finite-state automaton.

4.2 Instrumentation of Component-Based Systems

At the abstract level considered in this section, we specify
the requirement on the instrumentation of CBSs for a given
property of interest. Such requirement shall guide the design
of an actual instrumentation of BIP systems for runtime en-
forcement, as done in Sec. 6.

Intuitively, instrumentation should allow to assess
whether each atomic action of the considered system mod-
ified the state of the system in such a way that new informa-
tion is relevant for the evaluation of the property of interest.
Hence, the instrumentation should consider the semantics of
the system and examine each atomic action. If the action is
relevant to the property (because it may modify the truth-
value of the property), it should use the information in the
state reached after the action to produce the corresponding
event for the property.

Let us recall that the semantics of a BIP system is ex-
pressed as an LTS where the states of the LTS are the global
states of the BIP system and labels of the LTS are the in-
teractions between components in the BIP system (atomic
steps). Instrumentation can be modeled as a function inst :
Lab×Sta→ Σ∪{ε} that takes as input a label and a state of
the LTS (semantics of a CBS) and generates either the event
that holds in the specification or ε if none of the events in the
property is concerned.1 More precisely, given a property Π
defined over an alphabet Σ, inst ((la, q′)) is defined as fol-
lows:{

e if ∃e ∈ Σ,∃ap ∈ Prop(e) : used(ap) ∩ def(la) 6= ∅
ε otherwise

where e ∈ Σ is the event that holds according to the informa-
tion in q′ and la and def(la) is the classical set of variables
that are defined on transition la . Considering the events of the
property in Example 2,

– for a label la1 that modifies variable comp1 .x (e.g., la1

is of the form comp1 .x := . . .) and a state q′1 where
comp1 .x is equal to −2, we have inst ((la1 , q

′
1)) =

comp1 .x < 0;
– for a label la2 that does not modify variable comp1 .x , we

have inst ((la2 , q
′
2)) = ε, for any state q′2.

1 In Sec. 6, we shall concretely define the instrumentation function for
CBSs defined in the BIP framework.

6

Prop(component1.var1 == component2.var2)
def
= {component1.var1 == component2.var2},

Prop(component.var == val) def
= {component.var == val},

Prop(component.var ≥ val) def
= {component.var ≥ val},

Prop(component.loc == a location) def
= {component.loc == a location},

Prop(component.port == a port) def
= {component.port == a port},

Prop(e1 ∨ e2)
def
= Prop(e1) ∪ Prop(e2),

Prop(e1 ∧ e2)
def
= Prop(e1) ∪ Prop(e2),

Prop(e1 =⇒ e2)
def
= Prop(e1) ∪ Prop(e2),

Prop(¬e) def
= Prop(e).

Table 1. Rules defining function Prop.

5 Abstract Runtime Enforcement for Component-Based
Systems

We introduce an abstract runtime enforcement framework
specific to CBSs that i) defines a hierarchy of enforceable
properties stemming from the constraints arising when en-
forcing properties on CBSs (Sec. 5.1), and ii) defines how to
compose an enforcement monitor with the behavior of a CBS
to incorporate monitors (Sec. 5.2).

5.1 Enforceable Properties for Component-Based Systems

k-step tolerance and stutter-invariance delineate enforceable
properties. 2

k-step tolerance. k-step tolerance models the maximal num-
ber of steps for which the system can deviate from the prop-
erty and can still be rolled back. The number of steps may
depend on the criticality of the system, the controlability en-
dowed to our enforcement monitors on the system, or the
number of system states that the monitor can memorize.
Moreover, when a monitor intervenes, it should not destroy
any (future) correct behavior and should determine that a de-
viation is definitive. In other words, when a property is k-step
tolerant, on any execution sequence, if the last k prefixes of
the execution sequence do not satisfy the property, on the last
event the monitor can decide about the action to be taken: ei-
ther the next event leads to property satisfaction (verdict >c
or >) and the monitor does not intervene, or the next event
leads the property to property violation (verdict ⊥) and the
monitor rolls back the system. It is thus legitimate for the
monitor to intervene.

Definition 11 (k-step tolerance). Property Π is k-step tol-
erant, if

max
{
|σ| | σ ∈ Σ∗ ∧ ∃σ′ ∈ Σ∗ : (1) ∧ (2)

}
< k,

2 Contrarily to other runtime enforcement frameworks such as [42,33],
we do not consider specifications over infinite sequences but finite se-
quences. Considering only finite sequences avoids dealing with the enforce-
ability issues due to the semantics of the specification formalism (over in-
finite sequences). For monolithic systems, using enforcement monitors with
storing capabilities such as the one in [33] or [28], all properties over finite
sequences are enforceable (see [25] for a detailed explanation).

where:

(1) [[σ′]]ΠB4
= >c, and

(2) ∀σp ∈ Σ∗ : σp � σ ∧ σp 6= ε =⇒ [[σ′ · σp]]ΠB4
= ⊥c.

The set of k-step tolerant properties over alphabet Σ is noted
Tol(k ,Σ). Π ⊆ Σ∗ is k-step-tolerant, if the length of its
maximal factor σ for which there exists a sequence σ′ (with-
out the factor) that evaluates to >c (condition (1)) and all se-
quences σ′ · σp obtained by appending a (non-empty) prefix
σp of σ to σ′ evaluate to ⊥c (condition (2)). Constant k addi-
tionally represents the maximal “roll-back distance”, i.e., the
number of observational steps, an enforcement monitor can
roll the system back.

Proposition 1 (On k-step tolerant properties). There ex-
ists a hierarchy of properties organized according to k-step
tolerance:

1. ∀k, k′ ∈ N : k ≤ k′ =⇒ Tol(k ,Σ) ⊆ Tol(k ′,Σ); and
2. for regular properties, k-step tolerance is decidable.

Proof.

1. The proposition is a straightforward consequence of k-
step tolerance (Definition 11).

2. For a regular property, to decide whether it is k-step toler-
ant or not, one should compute a deterministic finite-state
automaton recognizing the sequences contained in the
property. Then, one computes the paths between two ac-
cepting states that go (only) through non-accepting states.
If the length of the maximal path is strictly lower than k,
then the property is k-step tolerant.

In the following, we consider monitors that can memorize one
state of the system and thus restore it up to one observational
step.

Proposition 2. Safety properties are 1 step-tolerant in the
sense of Definition 11: Safety(Σ) = Tol(1 ,Σ).

Proof. Following the definition of finitary safety proper-
ties [34], for a safety property Π ∈ Safety(Σ), we have:

∀σ ∈ Σ∗ :
σ ∈ Π =⇒ (∀σ′ ∈ Σ∗ : (σ′ � σ =⇒ σ′ ∈ Π)) .

7

(Manna and Pnueli show that this is a necessary and sufficient
condition [34].) That is, safety properties are prefix-closed
languages. Using the definition of function [[·]]ΠB4

, for a safety
property Π , codom([[·]]ΠB4

) ⊆ {⊥,>c,>}.

Remark 1 (k-step tolerant properties, with k > 1). Gener-
ally, k-step tolerant properties when k > 1 are neither safety
nor co-safety properties, but are rather “transactional proper-
ties”.

For a 1-step tolerant property, following Proposition 2, when
a monitor detects a deviation on one event, it is legitimate to
intervene because all deviations from the normal behavior are
definitive. In other words, at any time a monitor ensures that,
either the system has performed a correct execution, or if the
last “observable” event brings the system into an incorrect
state, then the system is brought back to an equivalent state
where it is allowed again to deviate from the correct behavior
by one event.

However, k-step tolerance is not the only requirement for
a property to be enforceable on component-based systems.
Properties should also be stutter-invariant, as discussed next.

Stutter-invariance. Stutter-invariance [44] stems from the
required instrumentation of CBSs for enforcement monitor-
ing. Monitors should be able to observe the changes in the
system that can impact the satisfaction of atomic proposi-
tions. Since monitors should be able to revert the global state
of a system one step in the past, instrumenting a transition
implies to instrument all synchronized transitions (through
a port/interaction). This is a consequence of BIP semantics.
Note, even if an instrumented transition does not interfere
with the variables observed by the monitor, it is necessary
to instrument it for recovering purposes. Those transitions
might be synchronized with other transitions through some
interactions. In that case, when executing one of these (in-
strumented) interactions, the monitor receives the same event
while the system has not changed. Thus, the evaluation of the
property should not change.

Definition 12 (Stutter-invariance [44]). Two sequences of
events σ, σ′ ∈ Σ∗ are stutter-equivalent if there exist
a0, . . . , ak ∈ Σ for some k ∈ N s.t. σ and σ′ belong to the
set defined by regular expression a+0 · a

+
1 · · · a

+
k . A property

Π ⊆ Σ∗ is stutter-invariant, if for any stutter-equivalent se-
quences σ, σ′ ∈ Σ∗, we have (σ ∈ Π and σ′ ∈ Π) or (σ /∈ Π
and σ′ /∈ Π).

Remark 2. Determining whether a property is stutter-
invariant is decidable for regular properties using an
automata-based representation [44]. Determining whether a
property is a safety property is obviously decidable for regu-
lar properties. For these purposes, the automata-based repre-
sentation of the property is the monitor.

Enforceable properties on CBSs. Properties enforced on
CBSs should comply to the k-step tolerance and stutter-
invariance principles previously discussed. Naturally, we can
define a notion of k-step enforceability as follows.

>c >c

⊥

comp1 .x < 0

comp1 .x < 0comp1 .x > 0

comp1 .x = 0 comp1 .x ≥ 0

Fig. 4. Runtime oracle.

Definition 13 (k-step enforceability). The set of k-step en-
forceable properties on CBSs is the set of stutter-invariant k-
step tolerant properties.

Note, as a consequence of Proposition 1, there exists a hier-
archy of k-step enforceable properties with k ∈ N.

Based on Proposition 2, in the following, we focus on 1-
step enforceable properties, i.e., the set of stutter-invariant
safety properties as the enforceable properties on CBSs.3

5.2 Abstract Runtime Enforcement for Component-Based
Systems

Runtime oracle. A runtime oracle is a deterministic finite-
state machine that consumes events and produces verdicts.

Definition 14 (Runtime oracle [25]). An oracle O is a tu-
ple
〈
ΘO, θOinit, Σ,−→O,B4, verdict

O
〉

. The finite set ΘO de-

notes the control states and θOinit ∈ ΘO is the initial state. The
complete function −→O: ΘO × Σ → ΘO is the transition
function. In the following, we abbreviate −→O (θ, a) = θ′ by
θ

a−→O θ′. Function verdictO : ΘO → B4 is an output func-
tion, producing verdicts (i.e., truth-values) in B4 from control
states.

Runtime oracles are independent from any formalism used
to generate them and are able to check any linear-time prop-
erty [24].4 Intuitively, evaluating a property with an oracle
works as follows. An execution sequence is processed in a
lockstep manner. On each received event, the oracle produces
an appraisal on the sequence read so far. Similar runtime ora-
cles have been defined and used in [5,24] for the runtime ver-
ification of monolithic systems, and in [26] for the runtime
verification of CBSs. For the formal semantics of oracles and
a formal definition of sequence checking, we refer to [5,24,
26].

Example 2 (Runtime oracle). Figure 4 shows an example of a
runtime oracle corresponding to the property defined by regu-
lar expression e∗1 ·e∗2, where e1 (resp. e2) denotes that variable
x in component comp1 is strictly positive (resp. strictly neg-
ative). The underlying property is a safety property (and is
thus 1-step tolerant) and is stutter-invariant.

3 The complexity of the instrumentation depends on the number of steps
one wants to be able to roll-back the system (see Sec. 6). Considering more
than one step is left for future work.

4 The runtime oracle is synthesized from a specification, using some
monitor-synthesis algorithm. We assume the oracle to be consistent: in any
state, it should evaluate logically-equivalent events in the same way.

8

Enforcement Monitor. An enforcement monitor (EM) is a
finite-state machine that transforms a sequence of events from
the program to one that evaluates to “good verdicts” of the or-
acle (>,>c). The remaining description of the EM and how
it interacts with the system serves as an abstract description
of our instrumentation of CBSs in Sec. 6. Compared to en-
forcement monitors synthesized from properties [42,33,28],
the ones introduced in this paper feature the ability to emit
cancellation events to revert the system back to a state where
the underlying property is satisfied.

Definition 15 (Enforcement monitor). The EM associated
to runtime oracle O =

〈
ΘO, θOinit, Σ,−→O,B4, verdict

O
〉

is

a tuple E =
〈
ΘE , θOinit, Σ ∪Σ ∪ {com},−→E

〉
where:

– ΘE ⊆ ΘO ∪ ΘO where Θ
O

=
{
θe | e ∈ Σ ∧ θ ∈ ΘO

}
is a set of fresh states (copies of states in ΘO) s.t. ΘE is
reachable from θOinit with −→E ,

– Σ = {e | e ∈ Σ} is the set of cancellation events,
– −→E is the transition function defined as

−→E= θ1 ∪ θ2,with
θ1 = {〈θ, e, θc〉 , 〈θc, com, θ′〉 | ∃ 〈θ, e, θ′〉 ∈−→O

∧ verdictO(θ′) ∈ {>,>c}}
θ2 = {〈θ, e, θe〉 , 〈θe, e, θ〉 | ∃θ′ ∈ Θ : 〈θ, e, θ′〉 ∈−→O

∧ verdictO(θ′) = ⊥}.

An EM follows the structure of a runtime oracle. For each
transition 〈θ, e, θ′〉 in−→O leading to a state associated to ver-
dict true or currently-true (i.e., verdictO(θ′) ∈ {>,>c}), we
add: (1) a transition 〈θ, com, θc〉 leading to a fresh interme-
diate state θc and; (2) a transition 〈θc, com, θ′〉 going to state
θ′ labeled by the committing event, i.e., com . For each tran-
sition 〈θ, e, θ′〉 leading to a state θ′ associated to verdict false
(i.e., verdictO(θ′) = ⊥), we add: (1) a transition 〈θ, e, θe〉
leading to a fresh intermediate state θe and; (2) a transition
〈θe, e, θ〉 back to state θ labeled by the corresponding cancel-
lation event. Note that, as long as the enforcement monitor
remains in states in ΘO, the underlying property is satisfied
(i.e., the current trace of the system evaluates to > or >c).

Composing a system with a monitor. We define the compo-
sition of a system with an enforcement monitor as follows.

Definition 16 (Composing a system with an en-
forcement monitor). Given a system LTS L =
〈Lab,Sta,Trans〉, and an enforcement monitor
E =

〈
ΘO ∪ΘO, θOinit, Σ ∪Σ ∪ {com},−→E

〉
for a

safety property where states in ΘO are associated to verdicts
currently-true and true (>c and>) and states in Θ

O
are asso-

ciated to verdict bad (⊥), the composition, noted L ⊗inst E ,
is the LTS

〈
Lab ∪ {ε},Sta× (ΘO ∪ΘO),Mon

〉
where the

transition relation Mon ⊆
(
Sta× (ΘO ∪ΘO)

)
× Lab ×(

Sta× (ΘO ∪ΘO)
)

is defined by the three following

semantic rules (where e = inst ((la, q′))):

q
la−→Trans q

′ e = ε

〈q, θ〉 la−→Mon 〈q′, θ〉
(1)

q
la−→Trans q

′ θ
e−→E θc θc

com−−−→E θ′ θ′ ∈ ΘO

〈q, θ〉 la−→Mon 〈q′, θ′〉
(2)

q
la−→Trans q

′ θ
e−→E θe θe ∈ Θ

O
θe

e−→E θ
〈q, θ〉 ε−→Mon 〈q, θ〉

(3)

At runtime, an enforcement monitor executes in a lockstep
manner with the system. The above rules can be understood
as follows:

– Rule (1). When the system emits an event la that is not
of interest for the enforcement monitor (i.e., an event s.t.
inst ((la, q′)) = ε), the enforcement monitor lets the sys-
tem execute without intervening.

– Rule (2). When the system emits an event la that leads to
a state θ′ associated to either verdict currently-true or ver-
dict true according to the oracle (θ′ ∈ ΘO), the enforce-
ment monitor simply follows the system by executing the
committing event.

– Rule (3). When the system emits an event la that leads
to a state θe associated to verdict false according to the
oracle (θe ∈ Θ

O
), the enforcement monitor executes a

cancellation event. State q′ can be understood as an un-
stable state: it is a state where the system never actually
stays in because the enforcement monitor inserts immedi-
ately a cancellation event. When the enforcement monitor
executes event e, the rule says that the effect of the execu-
tion step that leads to event e should be “reverted” on the
system: the system and monitor return to their previous
state.

Remark 3. The rules in Definition 16 describe the semantics
of S = L⊗inst E w.r.t. L and E . On the practical side, the im-
plementation of S consists of i) S which is an instrumented
version of L, and ii) E the enforcement monitor. The imple-
mentation of L must contain transitions to communicate with
E , and consequently, those transitions change any state of L
to a corresponding non-stable state where a decision must be
taken (rollback or commit/continue). If the next state of L
is a bad state according to the underlying property, L, roll-
backs by executing e. Otherwise, it commits the next state.
Henceforth, the implementation of the semantics of S must
explicitly include the communication between L and E .

In the following section, we shall define how to imple-
ment S following the above rules for a system L and an en-
forcement monitor E .

On the behavior of the monitored system. Consider a safety
property over Σ and a system emitting events over Lab com-
posed with the enforcement monitor (obtained from the prop-
erty), using an instrumentation function inst : Lab× Sta →
Σ ∪ {ε}.

9

Proposition 3 (Weak simulation between the mon-
itored system and the initial system). Systems
L = 〈Lab,Sta,Trans〉 with initial state s0 ∈ Sta and

L ⊗inst E =
〈
Lab ∪ {ε},Sta× (ΘO ∪ΘO),Mon

〉
with

initial state r0 ∈ Sta × (ΘO ∪ ΘO) as per Definition 16
are such that L simulates L ⊗inst E due to the existence of a
relation R ⊆ (Sta × (ΘO ∪ ΘO)) × Sta that satisfies the
following conditions:

1. (r0, s0) ∈ R
2. ∀(r, s) ∈ R,∀la ∈ Lab,∀r′ ∈ Sta × (ΘO ∪ ΘO) :

r
la−→Mon r

′ =⇒ (∃s′ ∈ Sta : s
la−→Trans s

′ ∧ (r′, s′) ∈
R)

3. ∀(r, s) ∈ R : r
ε−→Mon r

′ =⇒ (r′, s) ∈ R.

The proof of this proposition is in Appendix A.2 (p. 22).
Consequently, any execution of the composition seen

through the instrumentation function inst does not deviate
from the property. Moreover, traces of the composition are
stutter-free traces of the initial LTS, that is, traces where du-
plicate states following an ε transition are removed. Note that
the initial LTS deviates by at most 1 event before being cor-
rected.

Corollary 1. Given Π ∈ Safety(Σ), its enforcement moni-
tor E , and a system LTS L, we have:

∀σ ∈ traces(L⊗inst E) : inst(σ) ∈ Π
∧ stutter-free(σ↓) ∈ traces(L),

where:

– function inst is extended to traces in the usual way,
– σ↓ is trace σ where the information about the monitor

state is erased, and
– stutter-free(σ↓) is the stutter-free version of σ↓

where states following an ε label are removed:
stutter-free(ε) = ε, stutter-free(q) = q, stutter-free(t ·
la ·q) = stutter-free(t) · la ·q, and stutter-free(t ·ε ·q) =
stutter-free(t).

Summary. This section presents an abstract runtime enforce-
ment framework for component-based systems. Section 4.1
presents how to formally retrieve from a property the set
of locations, variables, and ports in atomic components that
should be observed to evaluate the property (functions used
and Prop). These functions shall guide the instrumentation
of concrete component-based systems, as exemplified in the
next section for BIP systems. Section 5.1 delineates the set
of enforceable properties for component-based systems. We
show that, contrarily to monolithic systems, only stutter-free
properties can be enforced on component-based systems be-
cause of the constraints stemming from the synchroniza-
tion between components. Moreover, we introduce a new
paradigm for runtime enforcement where monitors are al-
lowed to roll-back the monitored systems up to k execution
steps (the notion of k-step tolerance). Section 5.2 formalizes
how such monitors enforce a 1-step enforceable property on a

system which behavior is described by an LTS. Enforcement
is defined in such a way that the executions of the composed
system are the executions of the initial system that follow the
property.

6 Runtime Enforcement for BIP Systems

We integrate a runtime oracle O = 〈ΘO, θOinit, Σ,−→O,
B4, verdict

O〉 for some (enforceable) property into a BIP
system

(
π(Γ ({B1, . . . , Bn})),

〈
l10, . . . , l

n
0

〉)
through a se-

ries of formal transformations. Certain transformations are
defined w.r.t. an atomic component B = 〈P,L, T,X,
{gτ}τ∈T , {fτ}τ∈T 〉.

6.1 Analysis and Extraction of Information

For a property expressed over Σ(π(Γ ({B1, . . . , Bn}))):

– mon vars(Bi) is the set of variables used in the property
related to component Bi, formally:

mon vars(Bi)
def
=
{
Bi.x | ∃e ∈ Σ,∃ap ∈ Prop(e) :

(Bi, x) ∈ used(ap)
}
,

– occur is the set of all monitored variables, formally:

occur
def
=

⋃
i∈[1,n]

mon vars(Bi).

For instance for the property described by the runtime oracle
in Fig. 4, we have mon vars(comp1) = {comp1 .x}.

6.2 Instrumenting Transitions

To instrument the system in such a way that enforcement is
as efficient as possible, we should only instrument the tran-
sitions that may modify some monitored variables. We de-
note by select trans(B) the set of the transitions that should
be instrumented in B. A transition is instrumented if ei-
ther (1) it modifies some monitored variables, or (2) some
monitored variables are assigned to its port. If the property
refers to the (current) location or to an executed port of a
component B (e.g., if B.loc = l0 appears in the property),
then all transitions of B should be instrumented. Formally:
select trans(B)

def
=

B.trans if {B.loc, B.port} ∩mon vars(B) 6= ∅,

{τ ∈ B.trans | (var(τ.func) ∪ τ.port .vars)

∩ mon vars(B) 6= ∅} otherwise.

For the component in Fig. 2,

select trans(comp1) = {(l, p, x > 0, [y := x+ t], l′)} ,

since variable x is attached to port p and comp1 .x ∈
mon vars (comp1).

10

Instrumenting a transition consists in splitting it into four
transitions. First, we reconstruct the initial transition. Second,
we create a transition to interact with the monitor through
port pm. Finally, we create two transitions: one to recover
(through port pr) when the property is violated and another
to continue (through port pc) otherwise. In case of recovery,
the modified variables are restored. Ports pm, pr, and pc are
special; their purpose is detailed in Sec. 6.3.

Definition 17 (Instrumenting a transition). For any tran-
sition τ = 〈l, g, p, f, l′〉 in T , inst trans(τ) ={
τ i, τm, τ c, τ r

}
, where:

– τ i =
〈
l, g, p, f i, lm

〉
, where f i is equal to f followed by:

– [loc := “l′”] if Bi.loc ∈ mon vars(Bi) ∧ Bi.port /∈
mon vars(Bi),

– [port := “p”] if Bi.loc /∈ mon vars(Bi)∧Bi.port ∈
mon vars(Bi),

– [loc := “l′”; port := “p”] if Bi.loc ∈
mon vars(Bi) ∧Bi.port ∈ mon vars(Bi).

– τm = 〈lm, true, pm, [], lr〉,
– τ c = 〈lr, true, pc, [], l′〉,
– τ r = 〈lr, true, pr, fr, l〉, where fr = [x1 := xtmp

1 ; . . . ;
xj := xtmp

j], with {x1, . . . , xj} = {x | x ∈ p.vars∨x :=
fx(X) ∈ f}.

Example 3 (Instrumenting a transition). Figure 5 illustrates
the instrumentation of the dashed transition in Fig. 2. Upon a
recovery transition (with port pr), the component restores all
the variables that are modified when executing the associated
transition. Recall that some of the variables could be modified
indirectly through the port of the transition (p), e.g., x and z.

Recall that an interaction synchronizes a set of transitions and
its execution implies firing all its corresponding transitions.
Hence, recovering implies to restore the previous global state
of the system. For this purpose, instrumenting a transition
τ ∈ select trans(Bi) implies the instrumentation of all tran-
sitions synchronizing with τ through an interaction. We de-
fine rec trans to be the set of all transitions that should be
instrumented. We also define rec comp to be the set of com-
ponents that contain at least one instrumented transition, and
rec i to be the set of connectors synchronizing on at least one
instrumented transition. Formally:

(1) rec trans-i
def
= ∪i∈[1,n] select trans(Bi),

(2) rec trans
def
= rec trans-i ∪{τ | ∃γ ∈ Γ,∃τk ∈

rec trans-i : {τ.port , τk.port} ⊆ Pγ},
(3) rec comp

def
= {Bi | Bi.T ∩ rec trans 6= ∅},

(4) rec i
def
= {a ∈ Γ | ∃τ ∈ rec trans : τ.port ∈ Pγ}.

6.3 Instrumenting Atomic Components

Let T rB = rec trans∩B.trans be the set of transitions that
should be instrumented in B (noted T r when clear from
context). We create new temporary/recovery variables used
to store the values of the variables that could be modified

l′′ l lm lr l′
q

x > 0

p

[y := x+ t] pm pc

pr

[x := xtmp; y := ytmp; z := ztmp]z x

y

ztmpxtmp

ytmp

p q pm pc pr

Fig. 5. Instrumenting an atomic component.

on an instrumented transition. More precisely, for each vari-
able that can be modified through a function or attached to a
port of an instrumented transition, we create a corresponding
temporary variable for it. Given a set of transitions, we de-
fine the set of variables that should be recovered as follows:
rec vars(T ′)

def
=
⋃
τ∈T ′ τ.port .vars ∪ var(τ.func). If the en-

forcement monitor needs to observe the (current) location or
the port being executed, we create two new variables5 port
and loc that store the name of the next location and the name
of the port being executed, respectively. We create three new
ports:

1. pm is used to send the values of monitored variables to
the monitor,

2. pc is used to receive a continue notification from the mon-
itor,

3. pr is used to receive a recovery notification from the mon-
itor.

Finally, we split each of its instrumented transitions in T r

according to Definition 17, and we create new locations ac-
cordingly.

Definition 18 (Instrumenting an atomic component). We
define the instrumentation function inst that transforms an
input atomic component: inst def

={
B if B /∈ rec comp,〈
P inst, Linst, T inst, X inst, {gτ}τ∈T inst , {fτ}τ∈T inst

〉
otherwise.

where:

– X inst = X ∪ {v | Bi .v ∈ mon vars(Bi)}∪ {xtmp | x ∈
rec vars(T r)} where, if Bi.loc ∈ mon vars(Bi) (resp.
Bi.port ∈ mon vars(Bi)), loc (resp. port) is initialized
to li0 (resp. null), recovery/temporary variables are ini-
tialized to the values of their corresponding variables,

– P inst = P ∪ {〈pm,mon vars(Bi)}, 〈pc, ∅〉 , 〈pr, ∅〉〉,
– Linst = L ∪ {lmτ | τ ∈ T r} ∪ {lrτ | τ ∈ T r},
– T inst = (T \ T r) ∪ (

⋃
τ∈T r inst trans(τ)).

Example 4 (Instrumenting an atomic component). Figure 5
shows the instrumentation of atomic component comp1 (see
Example 1 and Fig. 2). Note that only the dashed transition
of comp1 is instrumented. Also, the variables attached to port
pm (i.e., only comp1 .x in this example) are those extracted

5 Variables created by the transformations have fresh name w.r.t. existing
variables of the input system.

11

l0

p

pm pc

pr

[z := ztmp]

p

pm pc

pr

[x := xtmp]

[ztmp := z;xtmp := x]

[ztmp := z;xtmp := x]

Fig. 6. Injecting backup into an atomic component.

from the oracle (see Fig. 4), i.e., monitored variables of that
component. Moreover, the function of the recovery transition
(i.e., labeled with with pr) recovers the variables that could be
modified, i.e., x, y, and z since variables x and z are attached
to port p and y is assigned on the transition.

In the sequel, we consider an instrumented atomic compo-
nent Binst = inst(B). After instrumenting an atomic compo-
nent, we must also create a backup (in temporary variables)
of the variables that could be modified after executing an in-
strumented transition. For each transition, we select all tran-
sitions of the destination that are instrumented, and backup
the variables that could be modified on them.

Definition 19 (Backup injection). We define the backup in-
jection function inj that transforms an input (already instru-
mented) atomic component s.t. inj(Binst) = Brec =

〈
P inst,

Linst, T rec, X inst, {gτ}τ∈T rec , {fτ}τ∈T rec

〉
, where:

T rec =
{〈

l, g, p, f ; [xtmp

1 := x1; . . . ;x
tmp

j := xj], l
′〉

| τ = 〈l, g, p, f, l′〉 ∈ T inst ∧ {x1, . . . , xj} =
rec vars(

{
τ i ∈ Binst.T r | τ i.src = l′ ∧ τ i.port ∈ P

}
)
}
.

Next, we consider Brec = inj(Binst) with injected backup.

Example 5 (Backup injection). Figure 6 shows backup injec-
tion (see the dotted transitions). Variables x and z are backed
up on transitions entering l0 because they are modified on two
outgoing transitions.

6.4 Creating an Enforcement Monitor in BIP from an
Oracle

We present how a runtime oracle O is transformed into a
BIP enforcement monitor E that mimics the behavior of the
enforcement monitor associated to O (see Definitions 14
and 15). The generated BIP enforcement monitor receives
events from the instrumented atomic components and pro-
cesses them to produce the same verdicts as the initial ab-
stract oracle. Depending on the state of E , it notifies the in-
strumented atomic components to continue or to recover.

pm

comp1.x > 0
pc

[comp1.x
tmp := comp1.x]

comp1.x = 0
pr

[comp1.x := comp1.x
tmp]

pm

comp1.x < 0
pc

[comp1.x
tmp := comp1.x]

comp1.x ≥ 0
pr

[comp1.x := comp1.x
tmp]

comp1 .x < 0

pc

pm

comp1.x

comp1.x
tmp

pm pc pr

Fig. 7. Enforcement monitor.

The enforcement monitor contains a copy of the moni-
tored variables and a backup/temporary copy of them. When
the instrumented system executes an interaction that synchro-
nizes at least one instrumented transition, it interacts with the
enforcement monitor through port pm and sends the modified
values of monitored variables. Depending on those values, the
enforcement monitor produces a verdict and notifies the orig-
inal system to continue or to recover, accordingly. In case of
recovery (resp. continue), the supervised system should also
recover (resp. backup) its monitored variables. The behavior
of the enforcement monitor is formalized as follows.

Definition 20 (Building an enforcement monitor). From
oracle O, we define enforcement monitor E =

〈
P,L, T,X,

{gτ}τ∈T , {fτ}τ∈T
〉

as an atomic component:
– X = occur∪Xtmp with Xtmp = {xtmp | x ∈ occur},
– P = {〈pm, occur〉 , 〈pc, ∅〉 , 〈pr, ∅〉},
– L = L> ∪Lm with L> = {q | q ∈ ΘO ∧ verdictO(q) ∈
{>,>c}} and Lm = {qm | q ∈ L>},

– T = Tm ∪ T r ∪ T c with
– Tm =

{
〈q, pm, true, [], qm〉 | q ∈ L>

}
,

– T c =
{
〈qm, pc, e, f c, q′〉 | q

e−→O q′ ∧
verdictO(q′) = >

}
, where f c = [xtmp

1 := x1; . . . ;

xtmp

j = xj] if Xtmp =
{
xtmp

1 , . . . , xtmp

j

}
,

– T r =
{
〈qm, pr, e, fr, q〉 | q e−→O q′∧verdictO(q′) =

⊥
}

, where fr = [x1 := xtmp

1 ; . . . ;xj := xtmp

j] if
Xtmp =

{
xtmp

1 , . . . , xtmp

j

}
.

Example 6 (Building an enforcement monitor). Figure 7 de-
picts the enforcement monitor in BIP generated from the run-
time oracle in Fig. 4. From the initial state, the enforcement
monitor synchronizes with the system by receiving the value
of comp1 .x through port pm. Then, it either recovers (when
comp1 .x = 0), or continues otherwise. In case of continue
(resp. recovery), variable comp1 .x is backed up (resp. recov-
ered).

6.5 Integration - Spin recovery

We define the connection between the instrumented atomic
components π(Γ ({Brec

1 , . . . , Brec
n })) and enforcement mon-

itor E . We connect the pm ports of the instrumented com-
ponents with port pm of E (γm). All the ports of that con-
nector should be trigger to make all interactions possible.

12

Because of maximal progress, all the enabled pm ports of
the instrumented components will be synchronized with port
pm of E . The update function of that connector transfers the
updated values of the monitored variables from the instru-
mented atomic components to E .

Then, we connect all continue ports (pc) of instrumented
components, with a connector with trigger ports and con-
nected hierarchically to port pc of E . The ports of the hier-
archical connector are synchron so that the synchronization
between ports pc of instrumented components requires port
pc of E to be enabled. This is necessary because the instru-
mented components will be ready to execute both the con-
tinue and the recovery ports based on the decision taken by
E . Similarly, we connect the recovery ports.

Finally, the priority model is augmented by giving more
priority to the interactions defined by the monitored, con-
tinue, and recovery connections. Modifying the priority
model ensures that, after the execution of an interaction syn-
chronizing some instrumented transition, E notifies first the
system to recover or continue before involving other interac-
tions synchronizing instrumented transitions.

Note that, when some of the ports pm of the instrumented
atomic components are enabled, the port pm of E is also en-
abled. However, the instrumented atomic components could
be in a state where none of their pm ports are enabled. To
prevent E from moving without synchronizing with the com-
ponents, the port pm of E is synchron.

Definition 21 (Integration - Spin Recovery). The compos-
ite component is πrec(Γ rec(Brec

1 , . . . , Brec
n , E)), where:

– Γ rec = Γ ∪ {γm, γc1 , γc2 , γr1 , γr2}, where:
– γm = 〈Pγm , tγm , true, Fγm〉, where:
• Pγm = {〈Bi.pm,mon vars(Bi)〉}Bi∈rec comp ∪
{E .pm}, tγm(E .pm) = false and ∀p ∈ Pγm \
{E .pm} : tγm(p) = true,
• Fγm , the update function, is the identity data

transfer from the variables in the ports of the in-
teracting components to the corresponding vari-
ables in the oracle port.

– γc1 = 〈Pγc1 , tγc1 , true, []〉, γc2 =
〈Pγc2 , tγc2 , true, []〉, where:
• Pγc1 = {〈Bi.pc, ∅〉}Bi∈rec comp and ∀p ∈
Pγc1 : tγc1 (p) = true,
• Pγc2 = {γc1 .export , E .pc} and
tγc2 (γc1 .export) = tγc2 (E .pc) = false.

– γr1 = 〈Pγr1 , tγr1 , true, []〉 , γr2 =
〈Pγr2 , tγr2 , true, []〉, where:
• Pγr1 = {〈Bi.pr, ∅〉}Bi∈rec comp and ∀p ∈
Pγr1 : tγr1 (Bi.p

r) = true,
• Pγr2 = {γr1 .export , E .pr} and
tγr2 (γr1 .export) = tγr2 (E .pr) = false,

– πrec = π ∪ {〈a, a′〉 | a ∈ ∪γ∈rec iI(γ) ∧ a′ ∈
I(γm, γc1 , γc2 , γr1 , γr2)}.

An example of integration with spin recovery is provided in
the following sub-section.

Remark 4 (Inefficiency of spin recovery). The instrumented
system defined with spin recovery may be inefficient in some

cases. For instance, when E notifies the system to recover,
the system may execute again one of the previously-executed
“bad” interactions.

Remark 5 (Spin recovery may introduce livelocks). If the
system reaches a state, where no further transition is possi-
ble, it will enter in a livelock as all transitions will be tried
and rolled back indefinitely.

The next section specifically addresses the issues mentioned
in Remarks 4 and 5 by introducing an alternative way of con-
necting components and an enforcement monitor.

6.6 Integration - With Disabler

The system resulting from the integration with spin recovery
may exhibit undesirable behaviors at runtime. For instance,
when E notifies the system to recover, the system may exe-
cute again one of the previously executed bad interactions. To
solve this issue, we create a disabler component that comes
as an optimization for the monitored system. The idea is to
keep disabled the interactions that led to a property violation
(aka bad interactions) and that we have recovered from, un-
til a interaction leading to a state where the property holds
(aka good interaction) is found. Note: the system should con-
tain at least one possible good interaction, which can possibly
be taken after recovering, if no good interaction exists then
the system would reach a deadlock state after the system has
exhausted all available interactions. For this purpose, we as-
sume that all connectors of the input BIP system contain only
synchron ports, hence each connector represents only one in-
teraction. In the following, we use the terms connector and
interaction interchangeably.

For each interaction (a ∈ rec i) connected to an instru-
mented transition, we associate a transition in the disabler.
This transition will be labeled with a port connected to the
interaction that corresponds to that transition. That is, to ex-
ecute that interaction, the port of the corresponding transi-
tion of the disabler should be ready as well. Upon executing
that interaction the id representing the interaction is sent to
the disabler. We also create a continue port pc and a recover-
able port pr that will be synchronized with E in case of con-
tinue and recovery, respectively. The disabler synchronizes
with E on the recovery and continue ports. On a recovery, E
synchronizes with the instrumented components and with the
disabler. The disabler will set the guard of the correspond-
ing last received id to false. Consequently, after recovery,
the last executed interaction cannot not be taken again. On
continue, E informs the disabler that it should enable all its
ports, by re-setting their corresponding guards to true, and
now all interactions become valid. For each recoverable in-
teraction, i.e., a ∈ rec i we assign a positive integer for it:
index : rec i→ [0, | rec i | − 1].

Definition 22 (Disabler construction). Given the set of re-
coverable interactions rec i we construct the disabler D =〈
P,L, T,X, {gτ}τ∈T , {fτ}τ∈T

〉
, where:

13

– P = {pr} ∪ {pc} ∪ {〈pγ , ∅〉 | γ ∈ rec i},
– L = {l},
– X = {enab, id}, where enab is an array of Boolean vari-

ables initialized to true and its size is equal to | rec i |,
– T = T r ∪ T c ∪ T inter, where:

– T r = {τ r}, where τ r = 〈l, true, pr,
[
enab[id] :=

false
]
, l〉,

– T c = {τ c}, where τ c = 〈l, true, pc,
[
enab[0] :=

true; . . . ; enab[| rec i | − 1] := true
]
, l〉,

– T inter =
{
〈l, enab[index(γ)], pγ , [id := index(γ)], l〉

| γ ∈ rec i
}

.

Example 7 (Disabler). Figure 8 provides an example of dis-
abler (component D). We have rec i = {a0, a1} (a0 and a1
contain ports that are attached to instrumented transitions).
The disabler contains transitions that correspond to a0 and
a1. Those transitions are labeled with ports pa0 , pa1 which
are connected to interactions a0 and a1. Moreover, the dis-
abler contains an array of Boolean variables of size 2. The
transitions that correspond to rec i are guarded with the ele-
ments of the array accordingly. In case of recovery, e.g., after
executing a0 (resp. a1), the corresponding Boolean variable
is set to false, and hence, interaction a0 (resp. a1) is dis-
abled. In case of continue, all the elements of the array are
set to true.

As in Definition 21, we connect the instrumented system with
E , but we also connect the instrumented interactions to their
corresponding ports of the disabler. Moreover, we connect the
continue port (resp. the recovery port) of E with the continue
port (resp. the recovery port) of the disabler. As in Defini-
tion 21, we augment the priority model.

Definition 23 (Integration - with Disabler). Given a BIP
enforcement monitor E and π(Γ ({Brec

1 , . . . , Brec
n })) a com-

posite component obtained as described above, that is,Brec
i =

inj(inst(Bm1)), and disabler D, we build the composite com-
ponent πrec(Γ rec(Brec

1 , . . . , Brec
n , E ,D)), where:

– Γ rec = (Γ \ rec i) ∪ Γ rec i ∪ {γm, γc1 , γc2 , γr1 , γr2},
– Γ rec i = {γrec i = (Pγrec i , tγrec i , Gγ , Fγ) | γ =
(Pγ , tγ , Gγ , Fγ) ∈ rec i} where Pγrec i = Pγ ∪
{pγ | pγ ∈ γ ∈ rec i} and ∀p ∈ Pγrec i : tγrec i(p) =
false,

– γm = (Pγm , tγm , true, Fγm) , with
• Pγm = {〈Bi.pm,mon vars(Bi)〉}Bi∈rec comp ∪
{E .pm},
• tγm(E .pm) = false, and ∀p ∈ Pγm \ {E .pm} :
tγm(p) = true,
• Fγm , the update function, is the identity data

transfer from the variables in the ports of the in-
teracting components Bi (i ∈ [1, n]) to the cor-
responding variables in the oracle port,

– γc1 = (Pγc1 , tγc1 , true, []), γc2 = (Pγc2 , tγc2 ,
true, []), with
• Pγc1 = {〈Bi.pc, ∅〉}Bi∈rec comp and ∀p ∈
Pγc1 : tγc1 (p) = true,
• Pγc2 = {γc1 .export , E .pc,D.pc} and ∀p ∈
Pγc1 : tγc2 (p) = false.

– γr1 = (Pγr1 , tγr1 , true, []), γr2 = (Pγr2 , tγr2 ,
true, []), with
• Pγr1 = {〈Bi.pr, ∅〉}Bi∈rec comp and ∀p ∈
Pγr1 : tγr1 (p) = true,
• Pγr2 = {γr1 .export , E .pr,D.pr} and ∀p ∈
Pγr2 : tγr2 (p) = false,

– πrec = π ∪ {〈a, a′〉 | a ∈ ∪γ∈rec iI(γ) ∧ a′ ∈ I(γm) ∪
I(γc1) ∪ I(γc2) ∪ I(γr1) ∪ I(γr2)}.

Example 8 (Integration - With Disabler). Figure 8 shows the
supervised system where an enforcement monitor E and dis-
abler D have been integrated. In case of spin recovery, we
do not include D and its connections. In this example, we as-
sume that the monitored variables are modified only when ex-
ecuting interactions a0 and a1. Consequently, component B3

remains unchanged. Notice that the expressiveness and mod-
ularity of BIP design allows us to add and remove D without
modifying the behaviors of components.

Remark 6. If the system reaches a state, where no further
transition is possible, it will enter in a deadlock as all tran-
sitions will be tried, rolled back, and disabled successively
by the disabler.

Remark 7. When added, the disabler D might disable an in-
teraction that violates the property and the scheduler would
select the next one in terms of priority. For example, con-
sider a composite component with two interactions a0 and
a1 such that a0 has more priority than a1. If a0 is always
enabled, then a1 could not be enabled according to BIP se-
mantics. However, in the supervised system, if a0 leads to a
bad state,D will disable that interaction. Consequently, inter-
action a1 becomes enabled. This can be seen as a powerful
primitive to enforce the correctness of a system by allowing
low priority interactions. However, if the property should be
enforced while preserving the priority model, then on recov-
ery, D must disable all interactions with less priority than the
last executed one.

6.7 On the Correctness and Behavior of the Supervised
System

Correctness of our approach relies on our instrumentation
technique and stems from the facts that we consider safety
properties and that, as it was similarly expressed at the ab-
stract level, our enforcement monitors roll-back the system
by one step as soon as the system emits an event that violates
the property.

More formally, the correctness of our transformations
can be expressed by mapping the concepts in this section
to the concepts of our abstract runtime enforcement frame-
work (Proposition 1). Consider S the supervised system re-
sulting from the previous transformations and the safety prop-
erty over the alphabet used to synthesize the runtime oracle
used as input to our transformations. Instrumenting atomic
components of a BIP system and integrating it with the en-
forcement monitor results in an LTS that is as obtained with
the composition operator defined in Definition 16.

14

(.xml)

B3B1 B2

O

Binst
1

pa0 pa1

[pa1 .id := 1;]

pr

[enab[id] := false;]

pa1

enab[1] = true
pc

[enab[0] := enab[1] := true;]

Binst
2

a1

a0

[pa0 .id := 0;]

prpc

B3

pm pc pr
E

D enab[0] = true
pa0

pm pc pr pm pc pr

enab[2]

id

Fig. 8. Supervised system [with/without] disabler (spin recovery – without disabler).

Proposition 4 (Correctness of the transformations). Con-
sider the mapping described above, Proposition 1 holds for
Π , the abstracted LTS and the abstract enforcement monitor.
Moreover, the supervised BIP system weakly simulates the re-
striction of the initial BIP system to its traces satisfying Π .

Proof. The proof of this proposition is in Appendix A.3
(p. 22).

7 Implementation and Evaluation

In this section, we present RE-BIP, our implementation of the
transformations presented in Sec. 6 and its evaluation when
enforcing properties on some BIP systems.

7.1 RE-BIP: a Toolset for Runtime Enforcement of BIP
Systems

RE-BIP6 is a Java implementation (8,000 LOC) of the trans-
formations described in Sec. 6, and, is part of the BIP distri-
bution. RE-BIP takes as input a BIP system and an abstract
oracle (an XML file) and then outputs a new BIP system
whose behavior is supervised at runtime (see Fig. 9). RE-BIP
uses the following modules (see Fig. 9):

– Analysis module: from the runtime oracle of the property,
it collects the variables that should be monitored;

– Instrumentation module: according to the analysis, it in-
struments some of the atomic components;

– Enforcement Monitor Creation module: from the runtime
oracle (given as an XML file), it generates the corre-
sponding enforcement monitor in BIP;

– Integration module: according to the user’s input, it cre-
ates the supervised system with or without the disabler.

6 http://ujf-aub.bitbucket.org/re-bip/

7.2 Enforcing Deadlock-Freedom on Dining Philosophers

Modeling the dining philosophers problem in BIP. Figure 10
shows a model of the dining philosophers problem in BIP.

Figure 10(a) represents the behavior of a philosopher.
From location init , a philosopher can take the right fork (port
getr) and moves to location r. From location r, a philoso-
pher can take the left fork (port get l) and moves to location
rl . From location rl , a philosopher can release the two forks
(port release and moves to the initial location (init).

Figure 10(b) represents the behavior of a fork. From loca-
tion init , a fork can be taken by either the right or left philoso-
pher (i.e., port get) and moves to location busy . From loca-
tion busy , the fork can be released by the philosopher that
took it (i.e., port release) and moves to location init .

Figure 10(c) shows an instance of the dining philosophers
problem in BIP with two forks and two philosophers. The
system is obtained by connecting the get port of each fork
with either the getl or getr port of a philosopher. Forks and
philosophers are connected in such a way that the forks are
between the philosophers.

Clearly, at runtime the system may deadlock. As one can
observe, enforcing deadlock freedom at design-time is intri-
cate and would require significant modifications to the sys-
tem. Moreover, it is unlikely that such modifications scale-up
well with the number of philosophers and forks.

Enforcing deadlock-freedom with RE-BIP. Enforcing
deadlock-freedom with our approach just requires to specify
it as an input property. A system, as presented in the previous
paragraph, enters a deadlock state if all philosophers are in
location r. Note, deadlock-freedom is 1-step enforceable

In our experiments, we varied the numbers of philoso-
phers and forks and compared the execution times before and
after enforcing deadlock-freedom, with two possible integra-
tion of the monitor (with and without disabler). The BIP sys-
tem without monitor (which may deadlock) is referred to as

15

continuerecovery

Disabler

continuerecovery

monitor

continuerecovery

monitor

Enforcement
Monitor

Enforcement
Monitor

BIP Program

Analysis

continue

Instrumentation

recovery

Disabler

Set of
Recoverable

Transitions Creation

Disabler

continuerecovery

monitor

.XML File

Enforcement Monitor

Creation

Enforcement
Monitor

?

Integration

Oracle
Runtime

Fig. 9. Toolset for runtime enforcement (RE-BIP).

init r rl
getr getl

release

releasegetr getl

(a) Philosopher

init busy
get

release

get release

(b) Fork

releaseget F0 F1

P1
getl getr

getlgetr
P0

get

(c) Dining philosophers in BIP

Fig. 10. Dining philosophers with possible deadlock.

the initial system, whereas the system with enforcement mon-
itor is referred to as the supervised system. We ran the initial
and supervised systems several times (to obtain average val-
ues), in such a way that each execution contains 10, 000 fork
cycles (i.e., 10, 000 acquisitions and releases).

In Fig. 11, we present some experimental results when us-
ing RE-BIP to enforce deadlock-freedom on instances of the
dining philosophers problem. The x-axis represents the num-
ber of philosophers (and number of forks). The y-axis repre-
sents execution time (in seconds). Our results show that the
supervised system introduces a reasonable overhead (e.g., 4%
in case of 900 philosophers with disabler). In this example,
enabling the disabler i) does not introduce deadlocks (there
is always at least one good interaction after recovery because
a philosopher with a fork on its right can take the fork on
its left), and ii) reduces significantly the overhead (from 35%
without disabler to 4% with disabler) by disabling the last
executed interaction which leads to a deadlock state.

7.3 Enforcing the Correct Placement of Robots

Figure 12 shows a robotic system modeled in BIP. The system
contains three robots (referred to as R1, R2, and R3) placed
on a map of size n×n. A robot can move up, down, left, and
right. Each robot Ri is synchronized with a local controller

16

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

ec
on

ds
)

Number of Philosophers

Initial
Without Disabler

With Disabler

Fig. 11. Performance of enforcement monitors on dining philosophers.

Ci to start and stop it. When a robot starts, it randomly makes
1, 000 moves. The system contains also a global controller C
that synchronizes with local controllers to count the number
of active robots. In this model, collisions between robots are
possible. To avoid collisions, the system must satisfy the fol-
lowing invariant stating that any two (distinct) robots should
have at least one different coordinate:

∀i, j ∈ [1, 3] : i 6= j =⇒ Ri.x 6= Rj .x ∨Ri.y 6= Rj .y.

Enforcing the above invariant at design-time would require
modifying the behaviors of robots as well as the architecture
by adding new interactions. However, using our method, we
can take the system off-the-shelf and create a monitor that
emits a verdict ⊥ in case of collision of two robots, other-
wise its verdict is>c, and, the system is automatically instru-
mented to avoid collision between robots. This permits a sep-
aration of concerns between the main functionalities of the
system and additional behaviors (e.g., avoid collision, avoid
ambush coordinates, limit the number of active robots, etc.).
Table 2 shows the execution times (in seconds) to perform
2 × 105 correct (i.e., no collision) steps. We generated four
configurations (Supervised, Supervised-d, Supervised-o, and
Supervised-o-d) of the supervised system. We use -o (resp.
-d) to denote that the system is optimized (i.e., instrumenting
only the minimal set of transitions (resp. to denote that the
disabler is integrated in the system). For each configuration,
we ran the system on maps of different sizes (n = 2, 5, and
100). Obviously, the number of collisions and rollbacks de-
creases with the size of the map. For example, if we consider
configuration Supervised-o and the map of size n = 2 we
obtain 400, 280 rollbacks and the execution time to perform
2 × 105 correct steps is 224 seconds. In this case, enabling
the disabler (i.e., Supervised-o-d configuration) reduces the
number of rollbacks and hence the execution time (177 sec-
onds). Clearly, the optimized configurations outperform the
non-optimized ones. For maps of sizes 5 and 100 the disabler
slightly reduces the number of collisions since the probabil-
ity to take again the same step that has lead to a collision
is reduced. Thus, in that case, enabling the disabler does not
improve the execution time but adds a reasonable overhead
because of the interactions with the disabler.

8 Related Work

8.1 Model Repair

Recent efforts (e.g., [18]) aim at adapting model-checking
abstraction techniques to model repair. Our approach fun-
damentally differs from model repair in two main respects.
First, our approach operates at runtime: we do not statically
modify systems as our properties are expressive enough so
that model-checking is undecidable or does not scale. Sec-
ond, our objective is to minimally alter the initial behavior
of the system. Correct executions are preserved and yield
observationaly-equivalent executions.

8.2 Theories of Fault-tolerance

Given a fault-tolerant program that complies to some safety
and liveness properties upon the occurrence of faults, the
authors of [11] decompose the program into detectors and
correctors preserving and ensuring the satisfaction of safety
and liveness properties, respectively. The approach assumes
a fault-model as input (i.e., a labeling of all system transi-
tions as normal, faulty, and recovery), and then characterizes
the conditions for a system to converge to a normal behav-
ior. The considered systems are non-masking, i.e., i) faults
are recovered within a finite number of recovery actions, and
ii) and the system always progresses. Both the later and our
approach target BIP systems. However, [11] takes as input
fault-tolerant programs and assumes fault-tolerance being en-
coded inside the target program. In [2], the system is seen as a
collection of guarded commands. In [11], fault detection and
recovery span across multiple components. Both approaches
fall short in meeting the modularity requirement of CBSs. In-
deed, programs in [2] do not have their own state-space. The
fault models considered in [11] assumes fault detection and
recovery to concern several components with inter-dependent
interactions.

8.3 Supervisory Control

The runtime enforcement approach proposed in this paper has
similarities with supervisory control. In a supervisory con-
trol approach, a model of the supervised system is used to
synthesize a controller. At runtime, the controller executes in
parallel with the supervised system. Should the system try to
perform an illegal action, the controller disables it, and the
system is stopped. Several approaches have applied supervi-
sory control to component-based systems, e.g., [13,30] for
integrating synchronous reconfiguration managers in Fractal
systems, [29] for enforcing coherency strategies of autonomic
managers administrating components. The focus of [13,30] is
rather on adaptive systems where controllers operate on the
configuration of components that evolve dynamically, while
the focus of this paper is rather on statically defined compo-
nents and safety-critical properties which involve the internal

17

tick

R1

up down left right

[y := y + 1;]
up

[x := x+ 1;]
rightleft

yx

[x := x− 1;]

down
[y := y − 1;]

start stop

C2 C3C1

C

tick

stop

stopstart

tick = 1000

[tick := 0;]
[tick := tick + 1;]

tick

stop

stopstart

tick = 1000

tick [tick := 0;]
[tick := tick + 1;]

tick

stop

stopstart

tick = 1000

tick [tick := 0;]
[tick := tick + 1;]

[active := active+ 1;]

stop

[active := active− 1;]

start

up down left right

[y := y + 1;]
up

[x := x+ 1;]
rightleft

yx

[x := x− 1;]

down
[y := y − 1;]

R2

up down left right

[y := y + 1;]
up

[x := x+ 1;]
rightleft

yx

[x := x− 1;]

down
[y := y − 1;]

R3

start start start

tick tick tick

active

Fig. 12. Robotic application in BIP.

Table 2. Execution times (seconds) and numbers of rollbacks of the supervised robots.
````````````Size (n)

Configuration Supervised Supervised-d Supervised-o Supervised-o-d
#Rollback Time #Rollback Time #Rollback Time #Rollback Time

2 399998 345 267001 282 400280 224 266549 177
5 18039 129 16007 128 18022 82 15630 83

100 68 122 53 120 35 76 50 78

states of components. The focus of [29] is on controlling co-
ordination properties (e.g., mutual exclusion) expressed on
the states of autonomic managers of components, while the
focus of this paper is on properties expressed on the internal
states and interactions between components; and our moni-
tors hence consider the effect of interactions when enforcing
properties.

More generally, comparing supervisory control and our
runtime enforcement approach, both controllers and our en-
forcement monitors let an undesired action happen before
acting. However, enforcement monitors allow to roll the sys-
tem back, reverting the effect of undesired actions, and al-
lowing to explore alternative executions; hence providing a
longer (correct) usage of the system. Note, while we did not
illustrate it in this paper, our runtime enforcement monitors,
can of course also be used to terminate the execution of the
system upon the detection of an error. Moreover, supervisory
control needs a model of the system under scrutiny, while our
runtime enforcement approach could also be used with gray-

box components where, for instance, only the interactions be-
tween component would be known in the model. Note, con-
sidering gray box components would entail important conse-
quences on our framework. First, an obvious consequence is
that the enforced properties can refer to atomic propositions
that may be assessed at runtime; e.g., if only interactions are
known, the property should not refer to component locations.
Moreover, regarding the observation of the system to assess
the property, instrumentation should rather be defined on in-
teractions, and in BIP systems, not all variables are exported
through the ports of interactions. Furthermore, one could not
state any guarantee on the internal state of the components,
and hence the simulation relation would not hold anymore.

8.4 Supervisory Approaches to Fault-tolerance

Some techniques are based on supervisory-control theory and
controller synthesis [16]. Similarly to our approach, the ob-
jectives are to synthesize a mechanism that is maximally per-

18



missive and ensures fault-tolerance by disabling the control-
lable transitions that would either make the system diverge
from the expected behavior or prevent it from reaching the
expected behavior. In supervisory approaches the fault is due
to a system action (cf. [43]). Faults are uncontrollable events
and after their occurrence, the controller recovers the system
within a finite number of steps. Moreover, the non-faulty part
of the system needs to be both available and distinguishable
from the system. Such approaches fall in the scope of our
framework where monitors can enforce the non-occurrence
of a particular action. Moreover, as BIP systems usually con-
tain data, guards and assignments, it is generally not possible
to statically compute the faulty behavior in the system.

8.5 Runtime Enforcement for Monolithic Systems

Enforceable properties. Several sets of enforceable proper-
ties were defined with their associated enforcement moni-
tors [42,33,28]. Restrictions to the set of enforceable speci-
fications stem from the fact that the considered specifications
are over infinite executions sequences and enforcement mon-
itors have to take consistent decisions for possible infinite
continuations of their observation. As shown in [25], when
considering specifications over finite sequences, all proper-
ties become enforceable. In this paper, we consider specifi-
cations over finite sequences but point out restrictions arising
from the features of CBSs.

Enforcement paradigm. The runtime enforcement paradigm
defined in this paper improves previous ones. Indeed, upon
the detection of bad behaviors, in previous paradigms events
are “accumulated” in a memory until a future event makes the
property satisfied (in case of progress properties) or to halt
the execution (in case of safety properties). The enforcement
paradigm defined in this paper avoids the occurrence of faults
by reverting the effect of events that lead to a deviation from
the desired behaviors, restoring the system in a state before
the fault occurrence.

8.6 Dynamic Techniques for CBSs

The approach in [20] defines FTPL, a customization of Linear
Temporal Logic to specify the correctness of component re-
configurations in Fractal. Then, the approach in [21] verifies
at runtime the correctness of architectures.

Independently, the approach in [26] introduces runtime
verification for BIP systems with monitors for checking
the conformance of the runtime behavior against linear-time
properties. All these approaches allowed only the detection of
errors and not their correction using recovery. As [26] is only
concerned with (the simpler problem) of runtime verification,
it considers all properties as monitorable. In this paper, we
introduce a notion of enforceable properties specific to CBSs
and parameterized by a number of tolerance steps. While the
purpose of the transformations in [26] is to introduce a verifi-
cation monitor and transmit snapshots of the system to it, the

transformations in Sec. 6 additionally grant the (enforcement)
monitor with primitives to backup the system state and con-
trol it. As seen in Sec. 6, to preserve the system consistency
on a roll-back, not only the parts of the system involved with
the property are instrumented but also the “connected” parts.
Finally, the approach in this paper provides stronger correct-
ness guarantees.

The approach in [14] proposes a protocol to enforce the
correct reconfigurations of a component-based systems. Sim-
ilarly to our approach, [14] shows how to enforces proper-
ties on CBSs. However, this approach fundamentally differs
from ours because, similarly to [32], [14] targets architec-
tural invariants (for instance “All started components have all
their mandatory imports wired.” as mentioned in [14] while
we target behavioral correctness properties. Moreover, com-
ponents in [14] are seen as black boxes, their semantics is
not used for enforcement purposes. Moreover, the interaction
model considers only binary-unidirectional connections. On
the contrary, our approach considers and uses the internal be-
havior of components and their interactions. Our approach
targets behavioral properties about the internal states of com-
ponents. Note, the architecture of BIP component is statically
defined and cannot evolve at runtime.

9 Conclusions and Future Work

9.1 Conclusions

This paper introduces an abstract runtime enforcement frame-
work for component-based systems and presents an instanti-
ation of this framework for components described in the Be-
havior Interaction Priority framework. Our approach consid-
ers an input system whose behavior may deviate from a de-
sired specification.

We identify the set of stutter-invariant safety properties
as enforceable on component-based systems. Restrictions on
the set of enforceable specifications come from i) the number
of steps the system is allowed to deviate from the specifica-
tion (before being corrected) and ii) the constraints imposed
by instrumentation. We introduce a series of formal transfor-
mations of a (non-monitored) system to integrate an enforce-
ment monitor, using the oracle of the specification as input.

Although several verification tools (e.g., DFinder [7,8])
exist to verify the correctness of a model w.r.t. specifications,
a re-design of the model is required if the model does not
satisfy the specifications. Moreover, those tools fail if the
local computations on components are not visible (for in-
stance when calling function from compiled libraries), which
is the case in most of the complex models. However, enforc-
ing properties with our approach just requires to specify them
as an input. Moreover, our method works even if local com-
putations on components are not visible.

As a result, runtime enforcement provides an interest-
ing complementary validation method as the validity of
the specification is generally either undecidable or leads to
an intractable state-explosion problem. Experimental results

19



demonstrate the usefulness of the approach. Both bench-
marks show that introducing runtime enforcement monitors
with our method introduces a reasonable overhead while en-
forcing the good behavior of the monitored systems. Our
benchmark on robots additionally shows that the adequacy of
introducing a disabler (to complement an enforcement mon-
itor) augments with the likelihood of error in the system
(smaller maps in our experiments). When the system pro-
duces fewer errors (larger maps in our experiments), a dis-
abler imposes an additional (reasonable) overhead on the sys-
tem.

9.2 Perspectives

An assumption of this paper is that events are formed with
state-based information (using e.g., the current location, val-
ues of variables). If the desired property refers to events in-
volving event-based information (e.g., execution of a func-
tion, exchange of messages), adequate cancellation of events
have to be also provided.

Another interesting problem is to consider more expres-
sive properties (i.e., non-safety) such as k-step enforceable
properties (with k > 1) to allow transactional behavior. It will
entail to find an alternative instrumentation technique and
avoid hard-coding the connections between the initial system
and the monitor. We will consider more dynamic connections
between components using the (recent) dynamic version of
BIP [15], combined with a memorization mechanism to store
the state-history of components.

Another avenue for future work related to expressive-
ness is to consider timed properties/automata [1] (where the
physical time elapsing between events influences the satis-
faction of the underlying property) and inspire from existing
approaches to runtime enforcement of timed properties for
monolithic systems [35,37,36], possibly with uncontrollable
events [3,39].

We also plan to specialize the approach presented in this
paper to security-oriented properties. For instance, we will
inspire from runtime enforcement of opacity properties for
monolithic systems [27] and apply it to secureBIP [41], a se-
cured version of the BIP framework.

Moreover, we will work towards the decentralization of
the enforcement monitor to allow them to take decisions
alone. The expected benefit is to reduce communication in
the system. For this purpose, we shall inspire from [6,23,19]
which considers the problem of decentralizing verification
monitors in monolithic systems, and also from [12] which
distributes a centralized scheduler of components for a given
distributed architecture.

Finally, we shall consider optimization techniques to fur-
ther reduce the performance impact on the initial system. For
this purpose, we consider using various static analysis on both
the specification and the system to reduce the needed instru-
mentation.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

2. Anish Arora and Sandeep S. Kulkarni. Detectors and cor-
rectors: A theory of fault-tolerance components. In ICDCS
98: Proceedings of the 18th International Conference on Dis-
tributed Computing Systems, pages 436–443, 1998.

3. David A. Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zali-
nescu. Enforceable security policies revisited. ACM Trans. Inf.
Syst. Secur., 16(1):3, 2013.

4. Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Com-
baz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis.
Rigorous Component-Based System Design Using the BIP
Framework. IEEE Software, 28(3):41–48, 2011.

5. Andreas Bauer, Martin Leucker, and Christian Schallhart. Com-
paring LTL semantics for runtime verification. Journal of Logic
and Computation, 20(3):651–674, 2010.

6. Andreas Klaus Bauer and Yliès Falcone. Decentralised LTL
monitoring. In FM 2012: Proceedings of 18th International
Symposium on Formal Methods, pages 85–100, 2012.

7. Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. D-finder: A tool for compositional deadlock de-
tection and verification. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, 21st International Con-
ference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, volume 5643 of Lecture Notes in Computer Sci-
ence, pages 614–619. Springer, 2009.

8. Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-
Hung Nguyen, Joseph Sifakis, and Rongjie Yan. D-finder 2:
Towards efficient correctness of incremental design. In Mi-
haela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann,
and Rajeev Joshi, editors, NASA Formal Methods - Third Inter-
national Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings, volume 6617 of Lecture Notes in Com-
puter Science, pages 453–458. Springer, 2011.

9. Simon Bliudze and Joseph Sifakis. The algebra of connectors—
structuring interaction in BIP. IEEE Transactions on Comput-
ers, 57(10):1315–1330, 2008.

10. Simon Bliudze and Joseph Sifakis. A notion of glue expressive-
ness for component-based systems. In CONCUR - Concurrency
Theory, Proceedings of the 19th International Conference, vol-
ume 5201 of LNCS, pages 508–522. Springer, 2008.

11. Borzoo Bonakdarpour, Marius Bozga, and Gregor Gößler. A
theory of fault recovery for component-based models. In SSS
2012: Proceedings of the 14th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, volume
7596 of LNCS, pages 314–328. Springer, 2012.

12. Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean
Quilbeuf, and Joseph Sifakis. A framework for automated
distributed implementation of component-based models. Dis-
tributed Computing, 25(5):383–409, 2012.

13. Tayeb Bouhadiba, Quentin Sabah, Gwenaël Delaval, and Éric
Rutten. Synchronous control of reconfiguration in Frac-
tal component-based systems: a case study. In Samarjit
Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebas-
tian Fischmeister, editors, Proceedings of the 11th International
Conference on Embedded Software, EMSOFT 2011, part of the
Seventh Embedded Systems Week, ESWeek 2011, Taipei, Tai-
wan, October 9-14, 2011, pages 309–318. ACM, 2011.

14. Fabienne Boyer, Olivier Gruber, and Damien Pous. Robust
reconfigurations of component assemblies. In David Notkin,

20



Betty H. C. Cheng, and Klaus Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, pages 13–22. IEEE / ACM, 2013.

15. Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph
Sifakis. Modeling dynamic architectures using Dy-BIP. In
SC: Proceedings of Conference on High Performance Comput-
ing Networking, Storage and Analysis, volume 7306 of LNCS,
pages 1–16. Springer, 2012.

16. Christos G. Cassandras and Stephane Lafortune. Introduction to
Discrete Event Systems. Springer-Verlag, Secaucus, NJ, USA,
2006.

17. Hadil Charafeddine, Khalil El-Harake, Yliès Falcone, and Mo-
hamad Jaber. Runtime enforcement for component-based sys-
tems. In Roger L. Wainwright, Juan Manuel Corchado, Alessio
Bechini, and Jiman Hong, editors, Proceedings of the 30th
Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015, pages 1789–1796. ACM, 2015.

18. George Chatzieleftheriou, Borzoo Bonakdarpour, Scott A.
Smolka, and Panagiotis Katsaros. Abstract model repair. In
NFM, volume 7226 of LNCS, pages 341–355. Springer, 2012.

19. Christian Colombo and Yliès Falcone. Organising LTL mon-
itors over distributed systems with a global clock. In Borzoo
Bonakdarpour and Scott A. Smolka, editors, Runtime Verifi-
cation - 5th International Conference, RV 2014, Toronto, ON,
Canada, September 22-25, 2014. Proceedings, volume 8734 of
Lecture Notes in Computer Science, pages 140–155. Springer,
2014.

20. Julien Dormoy, Olga Kouchnarenko, and Arnaud Lanoix. Using
temporal logic for dynamic reconfigurations of components. In
FACS 2010: Proceedings of the 7th International Symposium on
Formal Aspects of Component Software, volume 6921 of LNCS,
pages 200–217. Springer, 2010.

21. Julien Dormoy, Olga Kouchnarenko, and Arnaud Lanoix. Run-
time verification of temporal patterns for dynamic reconfigura-
tions of components. In FACS 2011: Proceedings of 8th Inter-
national Symposium on the Formal Aspects of Component Soft-
ware. Revised Selected Papers, volume 7253 of LNCS, pages
115–132. Springer, 2011.

22. Yliès Falcone. You should better enforce than verify. In RV,
volume 6418 of LNCS, pages 89–105. Springer, 2010.

23. Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez. Ef-
ficient and generalized decentralized monitoring of regular lan-
guages. In Proceedings of Formal Techniques for Distributed
Objects, Components, and Systems - 34th IFIP WG 6.1 Interna-
tional Conference, FORTE 2014., volume 8461 of LNCS, pages
66–83, 2014.

24. Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
Runtime verification of safety-progress properties. In RV 2009:
Proceedings of the 9th International Workshop on Runtime Ver-
ification. Selected Papers, volume 5779 of LNCS, pages 40–59.
Springer, 2009.

25. Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
What can you verify and enforce at runtime? STTT, 14(3):349–
382, 2012.

26. Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Mar-
ius Bozga, and Saddek Bensalem. Runtime verification of
component-based systems in the BIP framework with formally
proved sound and complete instrumentation. SOSYM, 2013.

27. Yliès Falcone and Hervé Marchand. Enforcement and valida-
tion (at runtime) of various notions of opacity. Discrete Event
Dynamic Systems, 25(4):531–570, 2015.

28. Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and
Jean-Luc Richier. Runtime enforcement monitors: composi-
tion, synthesis, and enforcement abilities. Formal Methods in
System Design, 38(3):223–262, 2011.

29. Soguy Mak Karé Gueye, Noel De Palma, and Éric Rutten.
Component-based autonomic managers for coordination con-
trol. In Rocco De Nicola and Christine Julien, editors, Coordi-
nation Models and Languages, 15th International Conference,
COORDINATION 2013, Held as Part of the 8th International
Federated Conference on Distributed Computing Techniques,
DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings,
volume 7890 of Lecture Notes in Computer Science, pages 75–
89. Springer, 2013.

30. Sébastien Guillet, Florent de Lamotte, Nicolas Le Griguer, Éric
Rutten, Jean-Philippe Diguet, and Guy Gogniat. Modeling and
synthesis of a dynamic and partial reconfiguration controller.
In Dirk Koch, Satnam Singh, and Jim Tørresen, editors, 22nd
International Conference on Field Programmable Logic and
Applications (FPL), Oslo, Norway, August 29-31, 2012, pages
703–706. IEEE, 2012.

31. Klaus Havelund and Allen Goldberg. Verify your runs. In
VSTTE 2005: Proceedings of the First IFIP TC 2/WG 2.3 Con-
ference on Verified Software: Theories, Tools, Experiments. Re-
vised Selected Papers and Discussions, pages 374–383, 2008.

32. Olga Kouchnarenko and Jean-François Weber. Adapting
component-based systems at runtime via policies with tempo-
ral patterns. In José Luiz Fiadeiro, Zhiming Liu, and Jinyun
Xue, editors, Formal Aspects of Component Software - 10th In-
ternational Symposium, FACS 2013, Nanchang, China, October
27-29, 2013, Revised Selected Papers, volume 8348 of Lecture
Notes in Computer Science, pages 234–253. Springer, 2013.

33. Jay Ligatti, Lujo Bauer, and David Walker. Run-time en-
forcement of nonsafety policies. ACM Trans. Inf. Syst. Secur.,
12(3):19:1–19:41, January 2009.

34. Zohar Manna and Amir Pnueli. A hierarchy of temporal proper-
ties. In PODC 90:Proceedings of the Ninth Annual ACM Sym-
posium on Principles of Distributed Computing, pages 377–
410, 1990.

35. Ilaria Matteucci. Automated synthesis of enforcing mecha-
nisms for security properties in a timed setting. Electron. Notes
Theor. Comput. Sci., 186:101–120, July 2007.

36. Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé
Marchand. Runtime enforcement of parametric timed prop-
erties with practical applications. In Jean-Jacques Lesage,
Jean-Marc Faure, José E. R. Cury, and Bengt Lennartson, ed-
itors, 12th International Workshop on Discrete Event Systems,
WODES 2014, Cachan, France, May 14-16, 2014., pages 420–
427. International Federation of Automatic Control, 2014.

37. Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marc-
hand, Antoine Rollet, and Omer Nguena-Timo. Runtime en-
forcement of timed properties revisited. Formal Methods in
System Design, 45(3):381–422, 2014.

38. Amir Pnueli and Aleksandr Zaks. PSL Model Checking and
Run-Time Verification Via Testers. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM 2006: Proceedings of
the 14th International Symposium on Formal Methods, volume
4085 of LNCS, pages 573–586. Springer, 2006.

39. Matthieu Renard, Yliès Falcone, Antoine Rollet, Srinivas
Pinisetty, Thierry Jéron, and Hervé Marchand. Enforcement
of (timed) properties with uncontrollable events. In Martin
Leucker, Camilo Rueda, and Frank D. Valencia, editors, The-
oretical Aspects of Computing - ICTAC 2015 - 12th Interna-

21



tional Colloquium Cali, Colombia, October 29-31, 2015, Pro-
ceedings, volume 9399 of Lecture Notes in Computer Science,
pages 542–560. Springer, 2015.

40. Runtime Verification. http://www.runtime-verification.org,
2001-2015.

41. Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and
Marius Bozga. Model-driven information flow security for
component-based systems. In Saddek Bensalem, Yassine Lakh-
neck, and Axel Legay, editors, From Programs to Systems. The
Systems perspective in Computing - ETAPS Workshop, FPS
2014, in Honor of Joseph Sifakis, Grenoble, France, April 6,
2014. Proceedings, volume 8415 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2014.

42. Fred B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, February 2000.

43. Qin Wen, Ratnesh Kumar, Jing Huang, and Haifeng Liu. A
framework for fault-tolerant control of discrete event systems.
IEEE Trans. Automat. Contr., 53(8):1839–1849, 2008.

44. Thomas Wilke. Classifying discrete temporal properties. In
STACS, volume 1563 of LNCS, pages 32–46. Springer, 1999.

A On the Correctness and Behavior of the Supervised
System

At an abstract level, the correctness of runtime enforcement
of a property ϕ on a BIP system S stems from two facts
regarding the behavior of the synthesized BIP enforcement
monitor:

– the enforcement monitor correctly observes S (see
Sec. A.1); and

– the enforcement monitor intervenes on S only when ϕ is
violated and then restores S to the previous correct state
(see Sec. A.3), otherwise it lets S execute normally.

Moreover, the observation and intervention of the monitor are
done in such a way that the executions of S are preserved.

More precisely, from an input BIP system and a monitor,
using the transformations in Sec. 6, we synthesize a system
which runtime semantics is the composition between the ini-
tial system and the monitor, as described in Definition 16.
Hence, the weak bisimulation and trace inclusion properties
described at the abstract level in Sec. 5 apply to the trans-
formed BIP system.

A.1 Correctness of the Observation [26]

Correctly observing the system behavior relies on our instru-
mentation technique and follows the same correctness argu-
ments as in [26]. We do not reiterate the proof but briefly
recall the main arguments. First, in the instrumented system,
the value of variables are the same as in the original system.
Instrumentation only modifies the system to transfer the val-
ues of variables to the monitor. Second, the chosen priority
model ensures the consistency of the events fed to the moni-
tor: events are sent each time the system performs a transition
relevant to the property, and the order of events faithfully re-
flects the execution.

A.2 Proof of Proposition 3 (p. 10)

Proof. Let us consider the smallest relation R ⊆ (Sta ×
(ΘO ∪ ΘO)) × Sta defined as follows: ((q0, θOinit), q0) ∈ R
and:

(a) (r, s) ∈ R =⇒ (r′, s′) ∈ R, whenever s la−→Trans

s′ ∧ r la−→Mon r
′, or

(b) (r, s) ∈ R =⇒ (r′, s) ∈ R, whenever r ε−→Mon r
′.

The proof is a direct consequence of Definition 16 and the
chosen definition of R. The three conditions of Proposition 3
hold for relation R.

– Condition 1. holds because q0 and θOinit are the initial
states of respectively 〈Lab,Sta,Trans〉 and the monitor.

– Let us consider (r, s) ∈ R, la ∈ Lab, and r′ ∈ Sta ×
(ΘO ∪ ΘO) such that r la−→Mon r

′. Let r and r′ be 〈q, θ〉
and 〈q′, θ′〉 for some q, q′ ∈ Sta and θ, θ′ ∈ ΘO ∪
Θ
O

. According to the semantics rules in Definition 16,
r

la−→Mon r
′ is possible only at two conditions. The first

case is when rule (1) applies, that is when L moves from
q to q′ by la and θ = θ′ (i.e., the instrumentation function
does not produce an event), for some la ∈ Lab. Accord-
ing to (a), we have (〈q′, θ〉 , q′) ∈ R. Similarly, when rule
(2) applies, we can find (〈q′, θ′〉 , q′) ∈ Rwhere θ′ is such
that ∃θc ∈ ΘO,∃e ∈ Σ : θ

e−→E θc ∧ θc
com−−−→E θ′, with

θ′ ∈ ΘO. Hence, condition 2. holds.
– Let us consider (r, s) ∈ R and r′ ∈ Sta × (ΘO ∪ ΘO)

such that r ε−→Mon r
′. Let r and r′ be 〈q, θ〉 and 〈q′, θ′〉 for

some q, q′ ∈ Sta and θ, θ′ ∈ ΘO ∪ΘO. According to the
semantics rules in Definition 16, r ε−→Mon r′ is possible
only if q la−→Trans q

′ ∧ θ e−→E θe ∧ θe ∈ Θ
O ∧ θe

e−→E θ,
for some la ∈ Lab, e = inst(la, q′), θe ∈ Θ

O
, and we

have r = r′. Hence, condition 3. holds.

A.3 Correctness of the Intervention

In the following, we focus on the correctness of the behavior
of enforcement monitors. The correctness stems from the fact
that we consider safety properties and that, as it was similarly
expressed at an abstract level in Proposition 1, enforcement
monitors roll-back the system by one step as soon as the sys-
tem emits an event that violates the property.

Intuitively, the correctness proof of the transformations
consists in showing that the supervised BIP system behaves in
the same way as the composition of an abstract enforcement
monitor with the LTS of the initial system. That is, the behav-
ior of the supervised systems follows the semantics rules in
Definition 16.

A.3.1 Preliminaries: Partitioning Interactions

Recall that a trace of length l of a BIP system 〈B, Init〉whose
runtime semantics is π(C) = 〈Q,A,−→π〉 is the sequence
of alternating states/configurations and interactions q0 · a0 ·

22



q1 · a1 · · · al−1 · ql such that: q0 = Init , and, ∀i ∈ [0, l − 1] :

qi ∈ Q ∧ ∃ai ∈ A : qi
ai−→π q

i+1.
According to the transformations defined in Sec. 6, a trace

q0·a0·q1·a1 · · · al−1·ql of the monitored systemCrec satisfies
the following property.

Lemma 1. If E .pm ∈ ai, then all other ports involved in ai

are pm ports.

Proof. The lemma holds by construction, according to Def-
initions 21 (p. 13) and 23 (p. 14).

Similar lemmas hold for E .pc and E .pr. A consequence of
Lemma 1 is that the interactions of the supervised system
can be grouped into four categories: the initial, recovery, con-
tinue, and monitor interactions. Consequently, we denote by
αm (resp. αc, αr) any interaction involving E .pm (resp. E .pc,
E .pr).

Lemma 2. Let us consider i ∈ [1,m] s.t. qi · ai · qi+1, then
E .pm ∈ ai iff qi+1 ·ai+1 ·qi+2 where {E .pr, E .pc}∩ai+1 6= ∅.

Proof. First, according to Definitions 21 and 23 (p. 13 and
14), interactions αc and αr have more priority than the inter-
actions of the initial BIP system. Second, according to Def-
inition 17 (p. 11), any instrumented transition of an atomic
component consists of two transitions (one for recovery and
one for continue) just after a transition for interacting with
the monitor (i.e., labeled with port pm).

Lemma 2 states that, after an interaction with the monitor
(ai is an αm interaction), only two kinds of interactions can
happen: either a recovery or a continue interaction (i.e., ai+1

is an αr or an αc interaction).

A.3.2 Proof of Proposition 4 (p. 15)

Let us consider a trace q0 · a0 · q1 · a1 · · · al−1 · ql of the
supervised system and the next step of the system after this
trace which consists in performing an interaction a. We dis-
tinguish two cases according to whether a is connected to an
instrumented transition (i.e., a ∈ rec i) or not.

1. If a /∈ rec i, then the execution of a does not modify the
variables that affect the satisfiability of the property. This
stems from the following facts. First, according to Defi-
nitions 21 and 23 (p. 13 and 14 respectively), interaction
αm has more priority than the interactions of the initial
BIP system. Second, according to Definition 17 (p. 11),
any instrumented transition of an atomic component con-
sists of its previous transition followed by a transition
to interact with the monitor (i.e., labeled with port pm).
After instrumentation, such interaction and the following
state are mapped to ε. Consequently the first rule in Defi-
nition 16 (p. 9) applies.

2. If a ∈ rec i, then a is followed by the execution of
an αm interaction (i.e., an interaction with the enforce-
ment monitor). After instrumentation, such interaction
and the following state (where the values of variables are

sent through port E .pm of the enforcement monitor) are
mapped to an event e ∈ Σ in Definition 16. Recall that,
according to Lemma 2, an αm interaction is followed by
either an αc or an αr interaction. We distinguish two sub-
cases:
– The first sub-case is when a involves transitions that

do not modify the variables of the property but at least
one of these transitions has a port that is in an interac-
tion modifying some variables of the property. Hence,
e corresponds to the last emitted event in the trace.
Because of stutter-invariance, the system keeps satis-
fying the property. Consequently, αm is followed by
an αc interaction. This situation corresponds to rule
number 2 in Definition 16.

– The second sub-case is when a involves transitions
that modify some variables of the property. We distin-
guish two subsub-cases.

– The first subsub-case is when e brings the mon-
itor to a good (with verdict >) or currently good
state (with verdict >c). Then, the system exe-
cutes interaction αc that moves the system to a
next good state that is the same as in the original
system. This situation is similar to the previous
first sub-case and also corresponds to rule num-
ber 2 in Definition 16.

– The second subsub-case is when e brings the
monitor to a bad state (with verdict ⊥). Then,
the system executes interaction αr that restores
the values of the variables and brings the system
back to its (correct) previous state. The execution
of a recovery transition corresponds to e in rule
number 3 in Definition 16.

23


