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Abstract. The First International Competition on Runtime
Verification (CRV) was held in September 2014, in Toronto,
Canada, as a satellite event of the 14th international conference
on Runtime Verification (RV’14). The event was organized in
three tracks: (1) offline monitoring, (2) online monitoring of C
programs, and (3) online monitoring of Java programs. In this
paper we report on the phases and rules, a description of the
participating teams and their submitted benchmark, the (full)
results, as well as the lessons learned from the competition.

1 Introduction

Runtime verification1 [51,66,45,82,46,7], from here on re-
ferred to as RV, refers to a class of lightweight scalable tech-
niques for analysis of execution traces. The core idea is to in-
strument a program to emit events during its execution, which
are then processed by a monitor. This paper focuses specifi-
cally on specification-based trace analysis, where execution
traces are verified against formal specifications written in for-
mal logical systems. Other forms of RV, not treated in this
paper, include for example algorithm-based trace analysis,
such as detecting concurrency issues such as data races and
deadlocks; specification mining from traces; and trace visual-
ization.

Send offprint requests to:
1 http://runtime-verification.org

Specification-based trace analysis is a topic of particu-
lar interest due to the many different logics and supporting
tools that have been developed over the last decade, includ-
ing the following to just mention a few [74,71,10,67,75,41,
70,34,38,36,44,6,28,42,9,5,50]. Unlike proof-oriented tech-
niques, such as theorem proving or model checking, that aim
to verify exhaustively whether a property is satisfied for all
the possible system executions, specification-based RV auto-
matically checks only if a single execution trace is correct,
and it therefore does not suffer from the classic manual labor
and state-explosion problems, typically associated with theo-
rem proving and model checking. The achieved scalability of
course comes at the cost of less coverage.

As illustrated in Fig. 1, an RV process consists of three
main steps: monitor synthesis, system instrumentation, and
monitoring. In the first step, a monitor is synthesized from
a requirement expressed in a formal specification language
(e.g., regular expression, automaton, rule set, grammar, or
temporal logic formula), or it is programmed directly in a
general-purpose programming language [69,46]. A monitor
is a program or a device that receives as input a sequence of
events (observations) and emits verdicts regarding the satis-
faction or violation of the requirement. In the second step, the
system is instrumented using event information extracted from
requirements. The instrumentation aims at ensuring that the
relevant behavior of the system can be observed at runtime.
In the third step, the program is executed with the instrumen-
tation activated. In online monitoring, the monitor runs in
parallel with (or is embedded into) the program, analyzing the
event sequence as it is produced. In offline monitoring, the

http://runtime-verification.org
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event sequence is written to persistent memory, for example
a log file, which at a later point in time is analyzed by the
monitor. In online monitoring, monitor verdicts can trigger
fault protection code. In offline monitoring, verdicts can be
summarized and visualized in reports, or trigger the execution
of other programs. Instrumentation and monitoring generally
increase the memory utilization and introduce a runtime over-
head that may alter the timing-related behavior of the system
under scrutiny. In real-time applications, overhead control
strategies are generally necessary to mitigate the overhead by,
for example, using static analysis to minimize instrumentation,
or switching on and off the monitor [83,8,62].

During the last decade, many important tools and tech-
niques have been developed. However, due to lack of standard
benchmark suites as well as scientific evaluation methods to
validate and test new techniques, we believe that the RV com-
munity is in pressing need to have an organized venue whose
goal is to provide mechanisms for comparing different aspects
of existing tools and techniques.

For these reasons, inspired by the success of similar events
in other areas of computer-aided verification (e.g., SAT [59],
SV-COMP [20], SMT [2], RERS [53,54]), Ezio Bartocci, Bor-
zoo Bonakdarpour, and Yliès Falcone organized the First In-
ternational Competition on Runtime Verification (CRV 2014)
with the aim to foster the process of comparison and evalua-
tion of software runtime verification tools. The objectives of
CRV’14 were the following:

– To stimulate the development of new efficient and practi-
cal runtime verification tools and the maintenance of the
already developed ones.

– To produce benchmark suites for runtime verification tools,
by sharing case studies and programs that researchers and
developers can use in the future to test and to validate their
prototypes.

– To discuss the measures employed for comparing the tools.
– To compare different aspects of the tools running with

different benchmarks and evaluating them using different
criteria.

– To enhance the visibility of presented tools among dif-
ferent communities (verification, software engineering,
distributed computing and cyber security) involved in soft-
ware monitoring.

CRV’14 was held in September 2014, in Toronto, Canada,
as a satellite event of the 14th international conference on
Runtime Verification (RV’14). The event was organized in
three tracks: (1) offline monitoring, (2) online monitoring
of C programs, and (3) online monitoring of Java programs.
This paper conveys the experience on the procedures, the
rules, the participating teams, the benchmarks, the evaluation
process and the results of CRV’14. This paper complements
and significantly extends a preliminary report that was written
before RV’14 [4].

Paper organization. The rest of this paper is organized as
follows: Section 2 gives an overview of the phases and the
rules of the competition. Section 3 introduces the participating
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Fig. 1. Runtime verification main phases.

teams. Section 4 presents the benchmarks used in all the three
tracks of the competition. Section 5 defines the method used to
compute the score. Section 6 reports on the results. Section 7
discusses lessons learned. Finally, Section 8 concludes the
paper.

2 Phases and Rules of the Competition

Taking inspiration from the software verification competition
(SVCOMP) started in 2012 [19] we have arranged the the
overall process along three different phases for each track:

1. collection of benchmarks (Section 2.1),
2. training and monitor submissions (Section 2.2),
3. evaluation (Section 2.3).

The first phase (Dec. 15, 2013 - March 1, 2014) aims to stimu-
late each team to develop at most five benchmarks per track
that may challenge the tools of the other teams. In the second
phase (March 2, 2014 - May 30, 2014), the teams have the
possibility to further develop and improve their tools using the
benchmarks of the adversary teams. This cross-fertilizes new
ideas between the teams, since each team is exposed to the
same problems and challenges previously faced by the other
teams. The goal of the last phase (June 1, 2014 - Sept. 23,
2014) is to provide a framework for a fair and automatic eval-
uation of the participating tools. In the following we describe
the phases in more detail.

2.1 Collection of Benchmarks

In the first phase, the teams participating in each track prepare
and upload in a shared repository a set of benchmarks. We
now provide a description of the requirements of a benchmark
for the online and offline monitoring tracks.
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an_event_name, a_field_name = a_value, a_field_name = a_value
an_event_name, a_field_name = a_value, a_field_name = a_value

Fig. 2. Example of trace in CSV format

an_event_name
a_field_name = a_value
a_field_name = a_value

an_event_name
a_field_name = a_value
a_field_name = a_value

Fig. 3. Example of trace in custom format

<log>
<event>
<name>an_event_name</name>
<field>
<name>a_field_name</name>
<value>a_value</value>

</field>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
</event>
<event>

<name>an_event_name</name>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
</event>

</log>

Fig. 4. Example of trace in XML format

Online monitoring of C and Java programs tracks. In the case
of C and Java tracks, each benchmark contribution is required
to contain the following:

– A program package containing the program source code
(the program to be monitored), a script to compile it, a
script to run the executable, and an English description of
the functionality of the program.

– A specification package containing a collection of files,
each describing a property: an English description of the
property, a formal representation of it in the logical system
supported by the team, instrumentation information, and
the expected verdict (the evaluation of the property on the
program execution).

The instrumentation information describes of a mapping
from concrete events in the program (for example method
calls) to the abstract events referred to in the specification.
For instance, if one considers the HasNext property on Java
iterators (that a call of the method next on an iterator should
always be preceded by a call of the method hasNext that
returns true), the mapping should indicate that the hasNext
event in the property refers to a call to the hasNext() method
on an Iterator object, and similarly for the next event. Several
concrete events can be mapped to the same abstract event.

Offline monitoring track. In the case of offline track, each
benchmark contribution is required to contain the following:

– A trace, in either CSV, custom, or XML format, and a
description of the event kinds contained in the trace. The
three trace formats are illustrated in Fig. 2, 3, and 4.

– A specification package containing a collection of files
describing a property: an English description of the prop-
erty, a formal representation of it in the logical system
supported by the team, and the expected verdict (the eval-
uation of the property on the trace).

2.2 Training Phase and Monitor Collection Phase

During this phase, all participants can apply their tools to all
the available benchmarks in the repository, and possibly mod-
ify their tools to improve their performance. At the phase end,
they submit their contributions as monitors for the benchmarks.
A contribution is related one of the benchmarks uploaded in
the first phase, and contains a monitor for the property in the
benchmark together with two scripts, one for building and one
for running the monitor.

2.3 Benchmark Evaluation Phase

The evaluation of the teams’ contributions is performed on
DataMill2 [73], a distributed infrastructure for computer per-
formance experimentation targeted at scientists that are inter-
ested in performance evaluation. DataMill aims to allow the
user to easily produce robust and reproducible results at low
cost. DataMill executes experiments multiple times, obtaining
average values, and generally deploys results from research
on how to set up such experiments. Each participant has the
possibility to set up and try their tool using DataMill. The final
evaluation is performed by the competition organizers.

2 http://datamill.uwaterloo.ca

http://datamill.uwaterloo.ca
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3 Participating Teams and Tools

In this section we provide a description of participating teams
and tools.

3.1 C Track

Table 1 summarizes the teams and tools participating in the
track of online monitoring of C programs. The tools are de-
scribed in the rest of this subsection.

3.1.1 RITHM

RITHM (Runtime Time-triggered Heterogeneous Monitor-
ing) [71] is a tool for runtime verification of C programs.
RITHM is developed at the Real-time Embedded Software
Group at University of Waterloo, Canada.

RITHM takes a C program and a set of properties ex-
pressed in a fragment of first-order LTL as input. RITHM
instruments the C program with respect to the definition of
predicates supplied along with LTL properties, and it synthe-
sizes an LTL monitor. The program then can be monitored at
runtime by the synthesized monitor, where the instrumented
program sends events in its execution trace to the monitor.
Further, RITHM monitors a fragment of first order LTL spec-
ifications as described in [68]. RITHM monitor can be run
on Graphics Processing Units or multicore Central Processing
Units [68] for accelerating the verification of an execution
trace [18].

3.1.2 E-ACSL

E-ACSL [41] (Executable ANSI/ISO C Specification Lan-
guage) is both a formal specification language and a moni-
toring tool which are designed and developed at CEA LIST,
Software Security Labs. They are integrated to the Frama-C
platform [63], which is an extensible and collaborative plat-
form dedicated to source-code analysis of C software.

The formal specification language is a large subset of the
ACSL specification language [16] and is designed in a way
that each annotation can be verified at runtime [80]. It is a
behavioral first-order typed specification language which sup-
ports, in particular, function contracts, assertions, user-defined
predicates and built-in predicates (such as \valid(p) which
indicates that the pointer p points to a memory location that
the program can write and read).

The plug-in E-ACSL [81] automatically converts a C
program p1 specified with E-ACSL annotations to another
C program p2 which monitors each annotation of p1 at run-
time. More precisely, for each annotation a, p2 computes the
truth value of a and passes it as an argument to the C function
e acsl assert. By default, this function stops the program
execution with a precise error message if a is 0 (i.e., false) and
just continues the execution otherwise. The generated code

is linked against a dedicated memory library which can effi-
ciently compute the validity of complex memory-related prop-
erties (e.g., use-after-free or initialization of variables) [64,
56].

3.1.3 RTC

RTC [70] (Runtime checking for C programs) is a runtime
monitoring tool that instruments unsafe code and monitors
the program execution. RTC is built on top of the ROSE
compiler infrastructure. RTC finds memory bugs, arithmetic
overflows and under-flows, and runtime type violations. Most
of the instrumentations are directly added to the source file and
only require a minimal runtime system. As a result, the instru-
mented code remains portable. The team behind RTC consists
of researchers from the University of Alabama at Birming-
ham, North Carolina State University, Lawrence Livermore
National Laboratory, and Matlab.

3.2 Java Track

Table 2 summarizes the teams and tools participating in the
track of online monitoring of Java programs. The tools are
described in the rest of this subsection.

3.2.1 Larva

Larva [34] is a Java and AspectJ-based RV tool whose spec-
ification language (DATEs [33]) is a flavour of automata en-
riched with stopwatches. The automata are symbolic in that
they allow the use of local state in terms of Java variables
and data structures. Furthermore, Larva allows the full use of
Java for the specification of conditions which decide when
transitions trigger. Similarly, for each transition, an action can
be specified so that when it triggers, the local state can be
updated, possibly also carrying out actions on the monitored
system, e.g., to handle a detected problem.

The tool design and development has been inspired by case
studies in the financial industry [32] where there are frequent
soft real-time constraints such as limits on the amount of
money spent within a particular period and entity life-cycles
such as limiting the kind of operations users are allowed to
perform while suspended.

Over the years, a set of tools have been built to support and
augment Larva including conversion from other specification
languages (such as duration calculus [29]) to Larva specifica-
tion language, and extensions to support event extraction from
databases as well as saving the monitor state to a database
when it is not feasible to keep it in memory [31].

3.2.2 jUnitRV

jUnitRV [38] is a tool extending the unit testing framework
jUnit with runtime verification capabilities. Roughly, jUnitRV

provides a new annotation @Monitors listing monitors that are
synthesized from temporal specifications. The monitors check
whether the currently executed tests satisfy the correctness
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properties underlying the monitors. As such, jUnit’s concept of
plain assert-based verification limited to checking properties
of single states of a program is extended significantly towards
checking properties of complete execution paths.

To support specifications beyond propositional properties
jUnitRV uses a generic approach to enhance traditional runtime
verification techniques towards first-order theories in order to
reason about data. This allows especially for the verification
of multi-threaded, object-oriented systems. The framework
lifts the monitor synthesis for propositional temporal logics
to a temporal logic over structures within some first-order the-
ory. To evaluate such temporal properties, SMT (Satisfiability
Modulo Theory) solving and classical monitoring of proposi-
tional temporal properties is combined. jUnitRV implements
this framework for linear-time temporal logic based on the Z3
SMT solver [37]. The framework is described in detail in [39,
40].

3.2.3 JAVAMOP

JAVAMOP, with its core component RV-Monitor [67], is a
formalism-independent RV tool designed to effectively moni-
tor multiple parametric properties simultaneously. It is devel-
oped both by University of Illinois at Urbana Champaign and
Runtime Verification, Inc.3.

JAVAMOP specifications support a variety of formalisms
such as finite state machine, linear temporal logic, string rewrit-
ing systems, etc., which gives users a lot of freedom to ex-
press different kinds of properties. At the same time, several
optimizations ([30,61,67]) were proposed to make monitors
creation, garbage collection, and internal data structure ac-
cess more efficient. Besides, JAVAMOP can generate a single
Java agent out of multiple specifications. The Java agent can
be easily attached to the Java virtual machine to run with
Java programs. All these efforts make JAVAMOP capable of
monitoring multiple properties simultaneously on large Java
applications.

3.2.4 Monitoring at Runtime with QEA (MARQ)

The MARQ tool [75] monitors specifications written in the
Quantified Event Automata (QEAs) [3] specification language.
It has been developed at the University of Manchester by
Giles Reger and Helena Cuenca Cruz with input from David
Rydeheard.

QEAs combine a quantifier list with an extended finite
state machine over parametric events. Trace acceptance is
defined via the trace slicing approach, extended to allow exis-
tential quantification and a notion of free variables.

Syntax of QEA. We give a brief explanation of the syntax
used and will not repeat it below. A QEA consists of a quan-
tifier list and a state machine. They can have multiple Forall
or Exists quantifications with an optional Where constraint
restricting the considered values. States can be accept states,

3 https://www.runtimeverification.com

indicating that a trace is accepted if any path reaches an accept
state. There are two other state modifiers: skip indicates that
missing transitions are self-looping; next indicates that miss-
ing transitions implicitly go to the failure state. The failure
state is an implicit non-accept state with no outgoing transi-
tions; once the failure state has been reached success (for this
binding) is not possible.

The MARQ tool implements an incremental monitoring
algorithm for QEAs. A structural specialisation module at-
tempts to specialize the algorithm based on structural proper-
ties of the specification. Singly-quantified specifications are
directly indexed, otherwise a general symbol-based indexing
approach is used.

For monitoring Java programs, MARQ is designed to be
used with AspectJ. It also implements mechanisms for deal-
ing with garbage collection and can either use reference or
semantic identity for monitored objects.

3.3 Offline Track

Table 3 summarizes the tools teams and participating in the
track of offline monitoring. The tools are described in the rest
of this subsection.

3.3.1 RITHM-2

RITHM [71], as previously described, is a tool for runtime
verification. In addition to online monitoring of C programs, it
can process execution traces for performing offline verification.
Further, RITHM was extended to process execution traces
in XML and CSV formats as per the schemas described in
Section 2.1. RITHM is designed for monitoring specifications
described using LTL or a first order fragment of LTL [68].

3.3.2 MONPOLY

MONPOLY [10] is a monitoring tool for checking compliance
of IT systems with respect to policies specifying normal or
compulsory system behavior. The tool has been developed as
part of several research projects on runtime monitoring and
enforcement in the Information Security group at ETH Zurich.
MONPOLY is open source, written in OCaml.

Policies are given as formulas of an expressive safety frag-
ment of metric first-order temporal logic (MFOTL), including
dedicated operators for expressing aggregations on data items.
The first-order fragment is well suited for formalizing relations
between data items, while the temporal operators are used to
express quantitative temporal constraints on the occurrence
or non-occurrence of events at different time points. An event
streams can be input through a log file or a UNIX pipeline,
which MONPOLY processes iteratively, either offline or on-
line. The stream can be seen as a sequence of timestamped
databases, each of them consisting of the events that have
occurred in the system execution at a point in time. Each tuple
in one of the databases’ relations represents a system action
together with the involved data. For a given event stream and
a formula, MONPOLY outputs all the policy violations.

https://www.runtimeverification.com
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Further details on MFOTL and the tool’s underlying moni-
toring algorithm are given in [12,15,13]. MONPOLY has been
used in real-world case studies, in collaboration with Nokia
Research Lausanne [11] and with Google Zurich [14]. Fur-
ther performance evaluation and comparison with alternative
approaches can be found in [12] and [15].

3.3.3 STEPR

STEPR is a prototype log file analysis tool developed at the
Institute for Software Engineering and Programming Lan-
guages, University of Lübeck, Germany.4 It is loosely based
on the Lola stream processing verification language proposed
by d’Angelo et al. [36]. The log file is considered as an input
stream of data and the user can use stream operations to de-
fine new streams and combine them in an algebraic fashion.
Assertions can be specified on such streams that, once vio-
lated, make the program report an error. Streams can further
be declared as output streams that are written to report files in
various formats and verbosity. They provide additional infor-
mation on the exact position of the violation and error counts
allowing for convenient analysis of the occurred deviations.
STEPR is written in the Scala programming language 5 and
provides a Scala-internal domain-specific language for speci-
fications. The full power of Scala can be used for specifying
further stream operation if needed.

3.3.4 Monitoring at Runtime with QEA (MARQ)

MARQ was previously described in Section 3.2.4 as a tool for
monitoring Java programs. Here we give details of how it can
be used for offline monitoring.

MARQ can parse trace files in either CSV or XML formats
(JSON traces are not supported). The CSV parser has been
hand-written to optimise the translation of events into the in-
ternal representation. The XML parser makes use of standard
Java library features. As a consequence, the XML parser is
relatively inefficient compared to the CSV parser. Therefore,
we prefer the CSV format and would normally first translate
traces into this format.

One can use different events in the specification and the
trace when monitoring with MARQ. For example, an abstract
event in the specification can have a different name, arity, and
parameter order as the corresponding event in the trace. Fur-
thermore, multiple events in the trace can be mapped to an
abstract event, and vice-versa. To handle this, MARQ requires
the use of so-called translators that can translate event names
as well as permuting or dropping event parameters. Addition-
ally, translators can be used to interpret values i.e., to parse
strings into integer objects. Translators are required when a
parameter value should be treated as its interpreted value, as
is the case with a counter.

3.4 Summary

Table 5 summarizes some of the features of the tools presented
in this section. A checkmark sign (X) indicates a supported
feature. Four categories of features are presented.

Input requirement specification. The first category concerns
the specification of the input requirement that a tool can mon-
itor. The entry user-enabled in Table 5 is ticked when the
corresponding tool allows the user to specify the requirement.
In this case the tool supports one or more specification lan-
guages that allow the user to write flexible requirements to be
monitored. The entry built-in is ticked when the corresponding
tool has a number of built-in specifications that can be checked
at runtime without any specification effort by the user. Table 5
list next some of the following common specification lan-
guage features: automata-based, regular-expressions-based,
and logic-based, supporting logical-time where only the rel-
ative ordering of events is important or real-time where the
event occurrence times are also relevant. The language can
support propositional events and/or parametric events, depend-
ing on whether runtime events cannot carry or, respectively,
can carry data values. Generally, more expressive specification
languages require more complex monitoring algorithms. The
monitoring code can be generated from a high-level specifi-
cation language or directly implemented in a programming
language.

Instrumentation. The entry own instrumentation indicates
that the tool implements its own instrumentation phase of
the RV process. The entry relies on AspectJ indicates that
the tool uses AspectJ for instrumentation purposes. The en-
try relies on another technique indicates that the tool uses a
third-party technique and/or tool different from AspectJ for
instrumentation purposes.

Monitored systems. The entries in this category have their
expected meaning and indicate the kind of systems that the
tool can monitor (C programs, Java programs, or traces).

Monitoring mode. The entry time triggered indicates that the
stream of observations from the system is obtained through
sampling. The entry event triggered indicates that the steam
of observations is obtained following the execution of events
in the system.

4 Benchmarks for the Monitoring Competition

In this section, we provide a description of the benchmarks
provided by participants.

The benchmarks can be dowloaded by cloning the reposi-
tory and following the instructions available at:

https://gitlab.inria.fr/crv14/benchmarks.

4 www.isp.uni-luebeck.de
5 www.scala-lang.org

https://gitlab.inria.fr/crv14/benchmarks
www.isp.uni-luebeck.de
www.scala-lang.org
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Tool Ref. Contact person Affiliation
RITHM [71] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
E-ACSL [41] J. Signoles CEA LIST, France
RTC [70] R. Milewicz University of Alabama at Birmingham, USA

Table 1. Tools participating in online monitoring of C programs track.

Tool Ref. Contact person Affiliation
LARVA [34] C. Colombo University of Malta, Malta
JUNITRV [38,39] D. Thoma ISP, University of Lübeck, Germany
JAVAMOP [60] G. Roşu U. of Illinois at Urbana Champaign, USA
QEA,MARQ [3] G. Reger University of Manchester, UK

Table 2. Tools participating in online monitoring of Java programs track.

Tool Ref. Contact person Affiliation
RITHM2 [71] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
MONPOLY [10] E. Zălinescu ETH Zurich, Switzerland
STEPR N. Decker ISP, University of Lübeck, Germany
QEA, MARQ [3] G. Reger University of Manchester, UK

Table 3. Tools participating in the offline monitoring track.

In the following, for each benchmark, we describe the
related program and property.

4.1 C Track

4.1.1 Maximum Chunk Size in Dropbox Connections

This benchmark is provided by RiTHM team.

Description of the monitored program. The program sim-
ulates Dropbox connections. The program uses the dataset
described in [43] to run the simulation.

Description of the property. The property states that for all
connections, it is always the case that chunk size (used to
split files) is less than or equal to 999 999. The property is
formalized using a fragment of first-order LTL [68] as follows:

∀connection : G (chunksize (connection) ≤ 999 999) .

4.1.2 Changes in the Chunk Size of Dropbox Connections

This benchmark is provided by RiTHM team.

Description of the monitored program. The benchmark uses
the same program as the one in the benchmark described
in Section 4.1.1.

Description of the property. The property states that for all
connections, it is always the case that when the chunk size
becomes strictly larger than 10 000, its value eventually be-
comes less than or equal to 10 000. The property is formalized

using a fragment of first-order LTL [68] as follows:

∀connection : G(chunksize (connection) > 10 000
=⇒ F chunksize(connection) ≤ 10 000).

4.1.3 Maximum Bandwidth of Youtube Connections

Description of the monitored program. The program sim-
ulates Youtube connections. The program uses the dataset
described in [85] to run the simulation.

Description of the property. The property states that for all
connections, it is always the case that the bandwidth is less
than or equal to 100 000. The property is formalized using a
fragment of first-order LTL [68] as follows:

∀connection : G (bandwidth(connection) ≤ 100 000) .

4.1.4 Changes in the Bandwidth of Youtube Connections

Description of the monitored program. This benchmark uses
the same program as the one in Section 4.1.3

Description of the property. The property states that, for all
connections, it is always the case that when the bandwidth is
strictly larger than 10 000, it eventually becomes less than or
equal to 10 000 The bandwidth is a parameter of the execution
trace. It is calculated by using size in bytes attribute which
provides the number of bytes transferred, and duration which
provides the time in seconds for the transfer. The property is
formalized using a fragment of first-order LTL [68] as follows:

∀connection : G
(
bandwidth(connection) > 10 000

=⇒ F bandwidth(connection) ≤ 10 000
)
.
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Tool Available at (URL)
E-ACSL (ver. 0.4.1) http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz
JAVAMOP (VER. 4.2) http://fsl.cs.illinois.edu/index.php/JavaMOP4
JUNITRV https://www.isp.uni-luebeck.de/junitrv
LARVA http://www.cs.um.edu.mt/svrg/Tools/LARVA/
MONPOLY http://sourceforge.net/projects/monpoly
QEA(MARQ) https://github.com/selig/qea
RITHM/RITHM2 https://uwaterloo.ca/embedded-software-group/projects/rithm
RTC https://github.com/rose-compiler/rose/tree/master/projects/RTC
STEPR http://www.isp.uni-luebeck.de/stepr

Table 4. URLs where it is possible to download the tools participating to the competition.
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Participating Tool Input Requirement
Instrumentation

Monitored Monitoring
Specification Systems Mode

RITHM X X X X X X X X X X X
E-ACSL X X X X X X X X

RTC X X X X
LARVA X X X X X X X

JUNITRV X X X X X X X X X
JAVAMOP X X X X X X X X X X

MONPOLY X X X X X X X X
STEPR X X X X X
MARQ X X X X X X X X X

Table 5. Summary of features of the tools.

4.1.5 Allowed Operations on Files and Sockets

Description of the monitored program. The program simu-
lates I/O operations by multiple processes on files and sockets.
The output of this program is similar to that of running the
strace utility in Linux to produce a system call trace for a
set of processes.

Description of the property. The property states that for all
the processes and all the files, it is always the case that if a
file (resp. a socket) is opened then it is eventually closed by
the process. The property is formalized using a fragment of
first-order LTL [68] as the conjunction of the two following
formulae:

∀process,∀file :
G (open (process,file) =⇒ F close (process,file))

∀process,∀socket :
G (accept (process, socket) =⇒ F close (process, socket))

4.1.6 Binary Search

This benchmark is provided by the E-ACSL team.

Description of the monitored program. This benchmark con-
sists in monitoring the standard binary search function defined
below. It searches some key in a sorted array a of a given
length.

int binary_search
(int* a, int length, int key)

{
int low = 0, high = length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (a[mid] == key) return mid;
if (a[mid] < key) low = mid + 1;
else high = mid - 1;

}

 http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz
http://fsl.cs.illinois.edu/index.php/JavaMOP4
https://www.isp.uni-luebeck.de/junitrv
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
http://sourceforge.net/projects/monpoly
https://github.com/ selig/qea
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://github.com/rose-compiler/rose/tree/master/projects/RTC
http://www.isp.uni-luebeck.de/stepr
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return -1;
}
The main function of the program calls this function 3 times
on an array of 2 000 000 elements in order to:

– search an existing key and check that the return index is
correct;

– search an unknown key and check that the function re-
turns -1;

– search an existing well-chosen key in a wrongly sorted
array (1 element is misplaced) and check that the function
incorrectly returns -1.

Description of the property. The monitored program must
verify the following function contract of binary search:

– it takes as input a positive length and a fully-allocated
sorted array of at least length elements;

– it returns either an index idx such that a[idx] ==
key; or -1 if there is no such index.

In the formal specification language E-ACSL [41] based on
behavioral first-order logic, this specification may be described
by the following function contract:

/*@ requires \valid(a+(0..length-1));
requires \forall integer i;

0 <= i < length-1 ==> a[i] <= a[i+1];
requires length >=0;

behavior exists:
assumes \exists integer i;

0 <= i < length && a[i] == key;
ensures 0 <= \result < length
ensures a[\result] == key;

behavior not_exists:
assumes \forall integer i;
0 <= i < length ==> a[i] != key;

ensures \result == -1;

*/
int binary_search

(int* a, int length, int key);

The first requires clause states that each cell of the array
must be correctly allocated, the second one states that the array
must be sorted and the third one indicates that the length must
be positive. Then, the first behavior says that if the searched
key exists in the array, the result of the function must be
an array index corresponding to this key, while the second
behavior says that the function returns -1 if there is no such
index.

E-ACSL reports that the second requirement is violated
when calling this function on the wrongly sorted array. Here
is the result of the execution:

Precondition failed at line 18 in
function binary_search.
The failing predicate is:
\forall integer i;
0 <= i < length-1 ==> *(a+i) <= *(a+(i+1)).

4.1.7 Merging Arrays

This benchmark is provided by the E-ACSL team.

Description of the monitored program. This benchmark pro-
vides two different implementations of a merging algorithm
which merges two sorted arrays into a third one in a way that
the resulting array is also sorted. The first implementation is
assumed to be correct and is provided below, while the second
one introduces an error by removing the marked instruction.

void merge
(int *t1,int *t2,int *t3,int l1,int l2)

{
int i = 0, j = 0, k = 0 ;
while (i < l1 && j < l2) {
if (t1[i] < t2[j]) {

t3[k] = t1[i];
i++;

} else {
t3[k] = t2[j];
j++;

}
k++;

}
while (i < l1) {
t3[k] = t1[i];
i++;
k++; // removed instruction

}
while (j < l2) {
t3[k] = t2[j];
j++;
k++;

}
}

The main function of the program calls both functions with
one array of 6000 elements and another one of 4000 elements.

Description of the properties. The monitored program must
check that each call to both functions:

– takes as input two positive lengths l1 and l2 and two
sorted arrays t1 and t2 of length l1 and l2 respectively;

– modifies t3 such that it is a sorted array of length l1+l2
where each element belongs to either t1 or t2. Recipro-
cally, each element of t1 and t2 must belong to t3.

In the formal specification language E-ACSL [41] based on
behavioral first-order logic, this specification may be described
by the following function contract:

/*@ requires l1 >= 0;
requires l2 >= 0;
requires \forall integer i; 0<=i<l1-1

==> t1[i] <= t1[i+1];
requires \forall integer i; 0<=i<l2-1

==> t2[i] <= t2[i+1];
ensures \forall integer i; 0<=i<l1+l2-1
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==> t3[i] <= t3[i+1];
ensures \forall integer i; 0<=i<l1

==> \exists integer j; 0<=j<l1+l2
&& t1[i] == t3[j];

ensures \forall integer i; 0<=i<l2
==> \exists integer j; 0<=j<l1+l2

&& t2[i] == t3[j];
ensures \forall integer i; 0<=i<l1+l2

==> ((\exists integer j; 0<=j<l1
&& t3[i] == t1[j])

|| \exists integer j; 0<=j<l2
&& t3[i] == t2[j]);

*/
void merge

(int *t1,int *t2,int *t3,int l1,int l2);

The two first requirements indicate that the lengths l1 and
l2 of the input arrays t1 and t2 must be positive, while the
two other requirements say that these arrays must be sorted. If
the requirements of the function are satisfied, it must ensure 4
postcondition provided by the ensures clause. The first one
indicates that the output array t3 must be sorted. The second
(resp. third) postconditions indicates that each element of t1
(resp. t2) must also belong to t2 while the last postcondition
states the reverse condition which is that each element of t3
belongs to either t1 or t2.

E-ACSL reports that the first postcondition is violated
when calling the incorrect implementation. It states that the
output array is sorted. Indeed, because of the missing instruc-
tion, the end of the output array contains (unsorted) garbage.
Here is the result of the execution.

Postcondition failed at line 59 in
function wrong_merge.
The failing predicate is:
\forall integer i;
0 <= i < (\old(l1)+\old(l2))-1
==> *(\old(t3)+i) <= *(\old(t3)+(i+1)).

4.1.8 Quicksort

This benchmark is provided by the E-ACSL team.

Description of the monitored program This benchmark pro-
vides an implementation of the standard quicksort algorithm,
which sorts a given array between two indexes left and
right:

void quicksort
(int *array, int left, int right)
{
if(left < right) {

int idx = (left+right)/2;
int new_idx =

partition(array, left, right, idx);
quicksort(array, left, new_idx-1);
quicksort(array, new_idx+1, right);

}
}

This implementation uses two helper functions partition
and swap. Only the first one is given below. The second one
which swaps the contents of two array cells is straightforward.

int partition
(int *array,int left,int right,int idx)

{
int val = array[idx], store = left, i;
swap(array, idx, right);
for(i = left; i < right; i++) {
if(array[i] <= val) {

swap(array, i, store);
store++;

}
}
swap(array, store, right);
return store;

}
The main function of the program contains 2 calls to the
quicksort function on an unsorted array of 10 000 ele-
ments. The first call is a correct one, but the second call gives
10 001 as the right bound instead of 10 000 (at most).

Description of the properties The only property that must be
checked by this benchmark is that quicksort is called on a
fully-allocated array up to the given length.

In the formal specification language E-ACSL [41] based
on behavioral first order logic, this specification may be de-
scribed by the following function contract which formally ex-
presses, that each cell of the array between left and right
must be valid (non-null and points to a memory location that
the program is allowed to write).

/*@ requires \forall integer j;
left <= j <= right
==> \valid(array+j); */

void quicksort
(int* array, int left, int right);

E-ACSL reports that this property is violated on the sec-
ond function call since the function tries to access to the invalid
index 10 001 of the array. Here is the result of the execution.

Precondition failed at line 35 in
function quicksort.
The failing predicate is:
\forall integer j;
left <= j <= right ==> \valid(array+j).

4.1.9 Accesses to Arrays without Off-by-one nor
Out-of-bounds

This benchmark is provided by the RTC team.

Description of the monitored program. The program is a test
case from the Juliet test suite [23], a collection of test cases
in the C/C++ language produced by the NIST. This program
is a minimal example of a violation of the property described
below. It does an array access from a statically allocated array
of size 1024 at index 1024.
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Description of the property. The property states that there
should not be off-by-one errors (see item 193 in the Common
Weakness Enumeration6 list) nor out-of-bounds read (see item
125 in the Common Weakness Enumeration7 list) on a global
array.

4.1.10 Absence of Buffer Overflow in a Palindrome
Generator

This benchmark is provided by the RTC team.

Description of the monitored program. The program finds
the next highest number that is a palindrome after a number
provided as input. The program has been modified by adding
a heap-based buffer overflow when reading the input number.
The number is written with an unbounded string copy to the
heap allocated buffer ’k’ of size MAX LEN (300). The pro-
gram contains a call to strcpy() that copies a single character
from the input string to the buffer, and this line is reached
multiple times as the program scans over the input string. The
program is a test case of the STONESOUP test suite [17], a
collection of test cases in the C and Java languages produced
by the NIST.

Description of the property. The property states the absence
of buffer overflow. The vulnerability could allow an attacker
to execute code by writing past the buffer and overwriting
function pointers that exist in memory (see item 122 in the
Common Weakness Enumeration8 list).

4.1.11 Absence of Negative Pointers in Function Calls

This benchmark is provided by the RTC team.

Description of the monitored program. The program attempts
to call a standard library function, strcat(), with a negative
pointer index. The program is a test case from the Juliet test
suite [23], a collection of test cases in the C/C++ language
produced by the NIST. The program contains an array access
with a negative pointer index in the arguments to strcat().

Description of the property. The property states that there
should not be pointers referring to negative values passed as
arguments to function.

4.2 Java Track

4.2.1 Gold Users of the Financial Transaction System

The benchmark is provided by the LARVA team. The LARVA
team provided five benchmarks (described also in Sections 4.2.2,
4.2.3, 4.2.4, and 4.2.5). Common to all the benchmarks is that
the considered properties concern a financial transaction sys-
tem described in the following.

6 https://cwe.mitre.org/data/definitions/193.html
7 https://cwe.mitre.org/data/definitions/125.html
8 https://cwe.mitre.org/data/definitions/122.html

Description of the monitored program. FiTS (Financial Trans-
action System) is a cut-down version of a financial transaction
system aimed at providing basic functionality to ensure that
the focus is on the verification techniques and not on under-
standing the underlying system. Based on FiTS, a number of
properties inspired from real-life case studies are specified.
FiTS is a barebone system mocking the behaviour of a finan-
cial transaction system. It emulates a virtual banking system in
which users may open accounts from which they may perform
money transfers. The system has two types of users: adminis-
trators and clients. The former have more rights than normal
clients enabling them to perform certain actions such as ap-
proving the opening of an account, enabling a new user and
registering new users. A client can invoke a number of actions
to access their (money) accounts which they have registered
on FiTS — actions which they may invoke through an online
interface. Information about each registered client is stored in
a database, including information such as the client’s name
and country of origin, and client classification information.

Under FiTS, each client may be associated with a number
of money accounts belonging to him. Clients may request the
creation of a new account or close down one of their accounts
at any point in time. To access accounts, an existing client may
open a login session on FiTS to make transfers or manage
their money accounts. A user may have multiple sessions open
at the same time.

The following properties are specified in a guarded-command
language (GCL) as a series of Java-based rules of the form
event | condition→ action.

Description of the property. The property states that only
users based in Argentina can be Gold users. The property can
be expressed as follows:

*.makeGoldUser(..) target (UserInfo u)
| !(u.getCountry().equals(“Argentina”))
→ Verification.fail(“P1 violated”);

Informally, upon giving the status of Gold user to a client,
it must be ensured that he or she is from Argentina. Thus,
any trace containing a call to makeGoldUser on a user whose
country is not Argentina violates the property and vice-versa.

4.2.2 Initialization in the Financial Transaction System

The benchmark is provided by the LARVA team.

Description of the monitored program. The program of this
benchmark is described in Section 4.2.1.

Description of the property. The property states that the trans-
action system must be initialized before any user logs in. The
property can be expressed as follows:

*.initialise(..) | → Verification.initialized=true;
UserInfo.openSession(..) | !Verification.initialized

→ Verification.fail(“P2 violated”);

https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/122.html
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Informally, set a initialized flag to true when the system is
initialized and check this flag upon the start of any user session.
Hence a trace containing a call to openSession before initialize
violates the property while any other trace satisfies it.

4.2.3 Negative Balance in the Financial Transaction System

The benchmark is provided by the LARVA team.

Description of the monitored program. The program of this
benchmark is described in Section 4.2.1.

Description of the property. The property states that no ac-
count may end up with a negative balance after being accessed.
The property can be expressed as follows:

*.withdraw(..) target (UserAccount a) | a.getBalance() < 0→
Verification.fail(“P3 violated”);

*.deposit(..) target (UserAccount a) | a.getBalance() < 0→
Verification.fail(“P3 violated”);

Informally, the rules check the balance of the account after a
withdraw or deposit actions to ensure that it is always positive.
A trace containing a withdraw or deposit on an account with
subsequent negative balance violates the property. Otherwise,
the trace satisfies the property.

4.2.4 Unique Account in the Financial Transaction System

The benchmark is provided by the LARVA team.

Description of the monitored program. The program of this
benchmark is described in Section 4.2.1.

Description of the property. The property states that an ac-
count approved by the administrator may not have the same
account number as any other already existing account in the
system. The property can be expressed as follows:

*.approveOpenAccount(Integer uid, String acc number) | →
Verification.approvedAccounts.add(acc number);

*.approveOpenAccount(Integer uid, String acc number)
| Verification.approvedAccounts.contains(acc number)

→ Verification.fail(“P4 violated”);

Informally, a hashmap is kept for all account numbers and each
number assigned to a new account is check for membership in
this hashmap. A trace containing two calls to approveOpenAc-
count with the same account number violates the property.

4.2.5 Reactivation in the Financial Transaction System

The benchmark is provided by the LARVA team.

Description of the monitored program. The program of this
benchmark is described in Section 4.2.1.

Description of the property. The property states that once a
user is disabled, he or she may not withdraw from an account
until activated again. The property can be specified as follows:

UserInfo.makeDisabled(..) target (UserInfo u)
| → Verification.disabledUsers.add(u);

UserInfo.makeActive(..) target (UserInfo u)
| → Verification.disabledUsers.remove(u);

UserInfo.withdrawFrom(..) target (UserInfo u)
| (Verification.disabledUsers.contains(u))
→ Verification.fail(“P5 violated”);

Informally, the rules keeps track of disabled users by adding
the user to a list upon being disabled and removing the user
upon activating. Subsequently, upon a withdraw the third rule
ensure that the user is not in the list. Thus, a trace containing
a call to makeDisabled followed by a withdraw on the same
user, violates the property. On the contrary, a user performing
a withdraw after being disabled but later activated, satisfies
the property.

4.2.6 Incrementing a Counter

This benchmark is provided by the JUNITRV team.
The JUNITRV team provided five benchmarks (described

also in Sections 4.2.7, 4.2.8, 4.2.9, and 4.2.10). Common
to all the benchmarks is that the considered programs are
simple Java programs that generate random method calls that
in turn generate events for the property of the benchmark.
Moreover, the properties are given in linear temporal logic
over first-order formulae as defined in [40]. Free variables are
assumed to be universally quantified at the outermost position.
First-order symbols either refer to some fixed theory or to
the current system observation (called observation symbols).
The benchmark properties only use the theories of IDs, linear
equations over integers and linear equations over reals.

In this benchmark, the property holds on the program.

Description of the monitored program. The aim of this bench-
mark is to test the ability to monitor properties involving
counting. The program simply calls a method step(int counter)
repeatedly. With each call the value for counter increases by
one.

Description of the property. The required property is that the
parameter counter of method step has to increase by one with
each call. Formally:

∀x G(counter = x =⇒ X(counter = x+ 1))

Here, x is a globally quantified variable and counter is an
integer-valued observation symbol. The observed event is the
call to method step and the observation symbol counter is a
constant referring to the current value of the corresponding
parameter of step.

Example traces. A positive example would be the sequence
{counter 7→ 1}, {counter 7→ 2}, {counter 7→ 3}, a neg-
ative example the sequence {counter 7→ 1}, {counter 7→
2}, {counter 7→ 1}.
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4.2.7 Request and Response

This benchmark is provided by the JUNITRV team. This bench-
mark uses the common setting where certain service are re-
quested and providers have to respond to such requests. In this
benchmark, the property holds on the program.

Description of the monitored program. The program calls
a method request (int service) indicating a service with the
given id was requested and respond(int service, int provider) to
indicate, that a provider responded to a request for the given
service.

Description of the property. The required property is that
whenever a service is requested, eventually there is a response
for that request from some provider. Formally:

∀s∀p G((request ∧ service = s)

=⇒ XF∃p (respond ∧ service = s ∧ provider = p))

The observed events are the calls to methods request and
respond. The observation symbol service refers to the service
id of the current event. The observation symbol provider refers
to the provider id of the current event.

Example traces. A positive example would be the sequence

{request, service 7→ 1, provider 7→ 2},
{request, service 7→ 3, provider 7→ 4},
{respond, service 7→ 1, provider 7→ 2},
{respond, service 7→ 3, provider 7→ 4},

a negative example the sequence

{request, service 7→ 1, provider 7→ 2},
{request, service 7→ 3, provider 7→ 4},
{respond, service 7→ 3, provider 7→ 4}.

4.2.8 Locking Critical Resources

This benchmark is provided by the JUNITRV team. For this
benchmark the setting of a critical action requiring locking
is considered. In this benchmark, the property holds on the
program.

Description of the monitored program. The program runs
multiple threads in parallel performing some critical action.
The critical action must only be performed by one thread at a
time. Thus, the threads have to call the method boolean lock()
and obtain the return value true before calling action(). The
lock is released by calling unlock().

Description of the property. The property consists of two
parts: A thread has to call lock (returning true) to acquire the
lock before it may call aaction and a call to lock only returns
true, if no thread is currently holding the lock. Formally:

∀i G(((run ∨ unlock) ∧ id = i)

⇒ ¬(action ∧ id = i)U(lockTrue ∧ id = i))

∧G((lock ∧ id = i⇒ X(¬lockTrueU unlock ∧ id = i)))

The observed events are the calls to method run() (the main
method of a thread), unlock and action and the return of unlock.
The symbol lockTrue not only indicates that lock returned, but
also that the return value was true. The observation symbol id
refers to the the id of the thread performing the current event.

Example traces. A positive example would be the sequence
{lock, id 7→ 1}, {action, id 7→ 1}, {unlock, id 7→ 1}, a neg-
ative example the sequence {lock, id 7→ 1}, {action, id 7→
2}, {unlock, id 7→ 1}.

4.2.9 Velocity of an Object

This benchmark is provided by the JUNITRV team. This bench-
mark pertains the ability to express constraints over real num-
bers. In this benchmark, the property holds on the program.

Description of the monitored program. The program simu-
lates an object moving with changing velocity. The object’s
position is observed in discrete steps. A call to the method
step(double pos, double time) indicates such an observation.

Description of the property. The required property is that the
average speed between two observations (i.e., calls to step)
must never exceed the maximal velocity 10:

∀s∀t G((time = t ∧ pos = s)

⇒ X(pos− s < 10 · time− t)))

The observed event is the call to method step. The observation
symbol time refers to the time parameter of method step. The
observation symbol pos refers to the time parameter of method
step.

Example traces. A positive example would be the sequence

{time 7→ 0.0, pos 7→ 0.0},
{time 7→ 1.0, pos 7→ 5.0},
{time 7→ 2.0, pos 7→ 10.0},

a negative example the sequence

{time 7→ 0.0, pos 7→ 0.0},
{time 7→ 1.0, pos 7→ 50.0},
{time 7→ 2.0, pos 7→ 100.0}.

4.2.10 Non-crossing Routes

This benchmark is provided by the JUNITRV team. The aim of
this benchmark is to demonstrate the expressiveness of linear
temporal logic combined with first-order constraints. It there-
fore requires a property for which it would be rather difficult
to implement a monitor manually. The setting is inspired by
the idea of agents in a multi agent system. The agents request
a route from one point to another. Blocked routes must not
cross.
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Description of the monitored program. The program simu-
lates such a scenario by repeatedly blocking and freeing routes.
Blocking a route is indicated by a call to block(Route route).
Freeing a route is indicated by a call to free(Route route). A
route is a simple line segment described by a starting and end
point. The mentioned property can be formulated as: If a point
p belongs to a route that is being blocked, no other route that
contains p can be blocked as long as p has not been freed
again. (The point p is freed by freeing a route that contains p.)
Formally:

∀p G((block ∧ onRoute(p)

⇒ X(¬(block ∧ onRoute(p))

U(free ∧ onRoute(p))))

The observed events are the calls to methods block and free.
Let q and r be the start and end points, respectively, given as
arguments to the called method. The only observation symbol
is onRoute(p) which indicates whether a point p is on the
route between q and r. This predicate can be expressed as an
equation onRoute(p) := ∃c(p = q+ c · (r− q)∧ 0 ≤ c ≤ 1).

Example traces. A positive example would be the sequence

{block, onRoute 7→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (2, 2)}},
{free, onRoute 7→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (1, 1)}},

a negative example the sequence

{block, onRoute 7→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (2, 2)}},
{block, onRoute 7→ {p | ∃c|0≤c≤1(p = (2, 2) + c · (−1, 1)}}.

4.2.11 HasNext on DaCapo Avrora

This benchmark is provided by the JAVA-MOP team. The
benchmark considers the (classical) HasNext property on one
of the so-called DaCapo [22] benchmark. In this benchmark,
the property does not hold on the program.

Description of the monitored program. The considered pro-
gram is the DaCapo Avrora benchmark, which simulates a
number of programs running on a grid of AVR microcon-
trollers. The program is slightly modified to violate the Has-
Next property intentionally.

Description of the Property. This property requires that the
hasNext() method is called and returns true before calling
next() method for each Iterator object i. It may raise a false
positive because one may safely call method next() multiple
times after retrieving the actual number of elements. The
following LTL describes the HasNext property.

∀iG(next(i) =⇒ Y hasnext true(i))

In the formula, X−1 means previous. Event next(i) corre-
sponds to a call to the method next() on iterator i and event
hasnext true(i) corresponds to a call to the hasnext() method
on the same iterator that returns true.

4.2.12 Safe Usage of Locks

This benchmark is provided by the JAVA-MOP team. In this
benchmark, the property does not hold on the program.

Description of the monitored program. One considers a sim-
ple program with 6 threads. Give of the threads release the
same number of times as they acquire a lock. However, one
thread releases one time less than it acquires. Consequently,
the program does not terminate.

Description of the property. The property requires a thread
to release as many times as it acquires a lock. Otherwise, it
may cause deadlock and the program may not terminate. The
following CFG formalises the property.

S −> S b e g i n ( t ) S end ( t )
| S a c q u i r e ( t , l ) S r e l e a s e ( t , l )
| e p s i l o n

Events begin(t) and end(t) map to the start and the end of
the execution of a thread t, respectively. Events acquire(t , l)
and release(t,l) map respectively to a call to methods
lock() and unlock() on lock l in a thread t.

4.2.13 Calling Methods the Same Number of Times

This benchmark is provided by the JAVA-MOP team. In this
benchmark, the property does not hold on the program.

Description of the monitored program. One considers a sim-
ple program which calls some dummy methods A(), B(), and
C() a certain number of times. These methods are not called
the same number of times.

Description of the property. The property states that methods
A(), B(), and C() should be called equal times. The following
SRS (String Rewriting System) formalizes the property.

b a −> a b .
c a −> a c .
c b −> b c .
a b −> E .
E b −> b E .
E a −> a E .
E c −> e p s i l o n .
c E −> e p s i l o n .
ˆ done −> # s u c c e e d .
a done −> # f a i l .
b done −> # f a i l .
c done −> # f a i l .

Events a, b and c map to the calls to the methods A(), B(), and
C(), respectively. The event done corresponds to the end of a
program.

4.2.14 Safe Usage of Maps with Iterators

This benchmark is provided by the JAVA-MOP team. In this
benchmark, the property does not hold on the program.
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Description of the monitored program. The program has 3
iterators for 2 collections which are created from 2 different
maps. The usage of one iterator in this program creates an
unsafe map iterator.

Description of the property. This property matches the case
where a collection created from a map is modified while it is
iterated. The following extended regular expression describes
the property.

createColl.update*.createIter
.useIter*.update+.useIter

The events map to the following pointcuts in a program:

event createColl after(Map map)
returning(Collection c) :
(call(* Map.values())
|| call(* Map.keySet()))
&& target(map) {}

event createIter after(Collection c)
returning(Iterator i) :
call(* Collection.iterator())
&& target(c) {}

event useIter before(Iterator i) :
call(* Iterator.next())
&& target(i) {}

event update after(Map map) :
(call(* Map.put*(..))
|| call(* Map.putAll*(..))
|| call(* Map.clear())
|| call(* Map.remove*(..)))
&& target(map) {}

4.2.15 HasNext on Full DaCapo

This benchmark is provided by the PRM4J team.

Description of the monitored program. This benchmark con-
siders the full DaCapo [22] benchmark suite for evaluation.
This consists of X programs of varying size and complexity.

Description of the property. The property being monitored
is the same as that described in Sections 4.2.11 and 4.2.20
i.e. a property about the safe usage of next() on Java Iterators.
In PRM4J this property can be specified using the following
Java code:

public class FSM_HasNext {

public final Alphabet alphabet = new Alphabet();
public final Parameter<Iterator> i =

alphabet.createParameter("i", Iterator.class);

public final Symbol1<Iterator> hasNext =
alphabet.createSymbol1("hasNext", i);

public final Symbol1<Iterator> next =
alphabet.createSymbol1("next", i);

public final FSM fsm = new FSM(alphabet);

public final MatchHandler matchHandler =
MatchHandler.NO_OP;

public final FSMState initial =
fsm.createInitialState();

public final FSMState safe =
fsm.createState();

public final FSMState error =
fsm.createAcceptingState(matchHandler);

public FSM_HasNext() {
initial.addTransition(hasNext, safe);
initial.addTransition(next, error);
safe.addTransition(hasNext, safe);
safe.addTransition(next, initial);
error.addTransition(next, error);
error.addTransition(hasNext, safe);

}
}

4.2.16 SafeSyncCollection on Full DaCapo

This benchmark is provided by the PRM4J team.

Description of the monitored program. This benchmark con-
siders the same programs as that in Section 4.2.15.

Description of the property. The property being monitored
relates to the safe usage of collections created using the Col-
lections.synchronized() method. The property is that if a syn-
chronized collection is created in this way then there are two
invalid actions that should be detected. Firstly, an iterator
should not be created for the collection by a thread not hold-
ing the collection’s lock. Secondly, if an iterator is created
correctly (i.e. whilst holding the lock) then it should not be
used incorrectly (i.e. without the lock).

In PRM4J this property can be specified using the follow-
ing finite state machine. The preceding definitions have been
omitted for conciseness.

public FSM_SafeSyncCollection() {
initial.addTransition(sync, s1);
initial.addTransition(asyncCreateIter, initial);
initial.addTransition(syncCreateIter, initial);
initial.addTransition(accessIter, initial);
s1.addTransition(asyncCreateIter, error);
s1.addTransition(syncCreateIter, s2);
s2.addTransition(accessIter, error);

}

The sync event relates to create a synchronized collection, the
asyncCreateIter and syncCreateIter events relate
to creating iterators with and without the collection’s lock
respectively and the accessIter event is the ‘bad’ access
without holding the lock.

4.2.17 UnsafeIterator on Full DaCapo

This benchmark is provided by the PRM4J team.

Description of the monitored program. This benchmark con-
siders the same programs as that in Section 4.2.15.

Description of the property. The property being monitored is
a common property relating Java Iterators and the collections
they are create from. It states that an Iterator i created from a
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Collection c is invalid and should be be used after c has been
updated. In PRM4J this property can be specified using the
following finite state machine. The preceding definitions have
been omitted for conciseness.

public FSM_UnsafeIterator() {
initial.addTransition(updateColl, initial);
initial.addTransition(useIter, initial);
initial.addTransition(createIter, s1);
s1.addTransition(useIter, s1);
s1.addTransition(updateColl, s2);
s2.addTransition(updateColl, s2);
s2.addTransition(useIter, error);

}

The state machine describes the path to an error state i.e.
creating an iterator, updating the collection and then using the
iterator.

4.2.18 UnsafeMapIterator on Full DaCapo

This benchmark is provided by the PRM4J team.

Description of the monitored program. This benchmark con-
siders the same programs as that in Section 4.2.15.

Description of the property. The property being monitored is
the same as that described in Section 4.2.14. In PRM4J this
property can be specified using the following state machine.
The preceding definitions have been omitted for conciseness.

public FSM_UnsafeMapIterator() {
initial.addTransition(createColl, s1);
initial.addTransition(updateMap, initial);
initial.addTransition(useIter, initial);
initial.addTransition(createIter, initial);
s1.addTransition(updateMap, s1);
s1.addTransition(createIter, s2);
s2.addTransition(useIter, s2);
s2.addTransition(updateMap, s3);
s3.addTransition(updateMap, s3);
s3.addTransition(useIter, error);

}

4.2.19 Combination of Properties on DaCapo Suite

This benchmark is provided by the PRM4J team. The bench-
mark checks the combination of the properties described in
Sections 4.2.15, 4.2.17 and 4.2.18 on the full DaCapo bench-
mark suite.

4.2.20 HasNext on DaCapo Batik

This benchmark is provided by the QEA team.

Description of the monitored program. The considered pro-
gram is the DaCapo [22] Batik benchmark, which is a single-
threaded benchmark that produces a number of Scalable Vec-
tor Graphics (SVG) images based on the unit tests in Apache
Batik.

Description of the property. This is the standard iterator based
property used frequently as an example for runtime verifi-
cation of Java properties. Informally, the Java API requires
that for each Iterator object the hasNext() method be called
and return true before the next() method is called. The fol-
lowing QEA captures the HasNext property. There are two
states which capture the status of unsafe and safe itera-
tion respectively i.e., when it is valid to call next() (mapped to
donext to distinguish it from the state modifier). A hasnext
event with a true result fires a transition from the unsafe
to safe state. A donext event in the unsafe state leads to
failure.

qea {
Forall(i)
accept skip(unsafe){
hasnext(i,r) if [ r = true ] -> safe
donext(i) -> failure

}
accept skip(safe){
donext(i) -> unsafe

}
}

The hasnext and donext events relate to the correspond-
ing events in java.util.Iterator. For example, the
following traces satisfy the property

τ1 = hasnext(A, true).donext(A).hasnext(A, true).
donext(A).hasnext(A, false)

τ2 = hasnext(A, true).hasnext(B, true).donext(B).
hasnext(B, false).donext(A).hasnext(A, false)

and the following traces violate the property

τ3 = hasnext(A, true).donext(A).donext(A)
τ4 = hasnext(A, false).donext(A)

4.2.21 Safe Iterators on DaCapo Batik

This benchmark is provided by the QEA team.

Description of the monitored program. The program is the the
same program as the one of the benchmark in Section 4.2.20.

Description of the property. The HasNext property often
leads to false positives when a collection’s size is used to
iterate over its contents, as is the case in the following code
snippet.

int size = collection.size();
Iterator<Object> iter = collection.iterator();
for(int i=0;i<size;i++){

doStuff(iter.next());
}

A more lenient property is to restrict the number of iterations
to the size of the underlying collection. The property can
be captured by a QEA with two states. The iterate state
is entered when the iterator is created and a donext event
can occur as long as the number of previous donext events
is no more than csize. As iterate is a next state, if
the transition cannot be taken due to the guard csize > 0
failing then there is a transition to the failure state.
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qea{
Forall(i)
accept skip(start){

iterator(i,csize) -> iterate
}
accept next(iterate) {

donext(i) if [ csize > 0 ]
do [ csize-- ] -> iterate

}
}

Note that to record the iterator event on a call to
java.util.Collection.iterator, a call to size() is required to extract
csize. For example, the following traces satisfy the property

τ1 = iterator(A, 2).donext(A).donext(A)
τ2 = iterator(A, 8).donext(A).donext(A)

and the following trace violates the property

τ3 = iterator(A, 1).donext(A).donext(A)

4.2.22 Persistent Hashcodes on DaCapo Batik

This benchmark is provided by the QEA team.

Description of the monitored program. The program is the the
same program as the one of the benchmark in Section 4.2.20.

Description of the property. Hashing structures such as HashMap
and HashSet rely on the property that the hashCode of an
object remaining the same whilst the object is inside the col-
lection. The property can be captured by the following QEA.
The states in and out indicate whether the quantified object
o is in a hashing structure. The counter count is used to
count the number of occurrences. Note that this relies on the
fact that these structures are set-like and o cannot belong to a
collection more than once. Without this restriction the QEA
would need to also have a quantification over collections. The
hashCode on insertion is recorded in h and checked later;
note the use of a next state to ensure that only valid transitions
are taken in the out state.
qea{
Forall(o)
accept skip(out){

add(c,o,h) do [ count:=1; ] -> in
}
accept next(in){

add(c,o,h2) if [ h=h2 ]
do [ count++ ] -> in

observe(c,o,h2) if [ h=h2 ] -> in
remove(c,o,h2) if [ count>1 and h=h2 ]

do [ count-- ] -> in
remove(c,o,h2) if [ count=1 and h=h2 ] -> out

}
}

The add, remove, and observe events relate to the suc-
cessful corresponding (add, put, remove, get, contains, con-
tainsKey) methods in java.util.HashSet or
java.util.HashMap.

For example, the following traces satisfy the property

τ1 = add(A,O, 5).add(B,O, 5).remove(B,O, 5)
τ2 = add(A,M, 5).add(A,N, 6).observe(A,M, 5)
τ3 = add(A,O, 5).remove(A,O, 5).add(B,O, 8)

and the following trace violates the property

τ4 = add(A,O, 5).add(B,O, 6).remove(B,O, 7)
τ5 = add(A,O, 5).add(C,O, 5).remove(A,O, 5).

add(B,O, 6).observe(B,O, 6).remove(B,O, 6)

The final trace (τ5) violates the property as object O is still in
the collection C when it added toB with a different hash code.
The explanation for other traces should be straightforward.

4.2.23 Lock Ordering on DaCapo Avrora

This benchmark is provided by the QEA team.

Description of the monitored program. The considered pro-
gram is the DaCapo [22] Avrora benchmark, which is a multi-
threaded benchmark that uses the available threads to simulate
a number of programs run on a grid of AVR microcontrollers.

Description of the property. A common deadlock avoidance
strategy is to order locks to ensure that no cycles can exist
between pairs of locks. Note there exists a more general ver-
sion of this property considering cycles of any length. For the
competition, this property was specified using a QEA as fol-
lows. Two (non-equal) locks were quantified over and the state
machine captures a ‘path to failure’ i.e., the steps required to
violate the property.

qea{
Forall(l1,l2)
Where(l1 != l2)

accept skip(start){ lock(l1) -> lock1 }
accept skip(lock1){
unlock(l1) -> start
lock(l2) -> lock12

}
accept skip(lock12){ lock(l2) -> lock122 }
accept skip(lock122){
unlock(l2) -> lock12
lock(l1) -> failure

}
}

However, after the competition it was pointed out by Klaus
Havelund that this formulation is overly restrictive as it does
not constrain which threads are taking the locks. A corrected
formulation of the property (along with specifications of this
property and others from the competition in QEA and LOG-
FIRE) can be found in [52].

For example, the following trace satisfies the property

τ1 = lock(A).unlock(A).lock(B).unlock(B)

and the following trace violates the property

τ2 = lock(A).lock(B).unlock(B).unlock(A)
lock(B).lock(A).unlock(A).unlock(B)

note that τ2 would not violate the the corrected version of the
property in [52] if the locks were taken by the same thread.
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4.3 Offline Track

4.3.1 Maximum Chunksize of Dropbox Connections

This benchmark is provided by the RITHM team.

Description of the traces. The traces of this benchmark are
extracted from a real-world dataset [43]. The dataset contains
various attributes of Dropbox connections. The dataset is pre-
processed, and the details of chunksize used for file-transfer
are extracted from the connections.

Description of the property. This property expresses the re-
quirement that for all connections, it is always the case that
chunksize is lesser than or equal to 999 999. The property is
formalized using a fragment of first order LTL [68] as follows:

∀connection : G (chunksize (connection) ≤ 999 999)

4.3.2 Evolution of the Chunksize of Dropbox Connections

This benchmark is provided by the RITHM team.

Description of the traces. This benchmark uses the same
dataset of Dropbox traces as the benchmark in Section 4.3.1.
This property expresses the requirement that for all connec-
tions, it is always the case that when chunksize becomes
strictly greater than 10 000 , its value eventually becomes
lesser than or equal to 10 000 .

Description of the property. The property is formalized using
a fragment of first-order LTL [68] as follows:

∀connection : G
(
chunksize (connection) > 10 000
=⇒ F chunksize (connection) ≤ 10 000

)
.

4.3.3 Maximum Bandwidth for Youtube Connections

This benchmark is provided by the RITHM team.

Description of the traces. For this benchmark, RiTHM pro-
cesses a real-world dataset [85], which contains logs for Youtube
connections on a campus network. The dataset is preprocessed,
and the value of bandwidth is calculated for each Youtube con-
nection using various parameters in the original data.

Description of the property. This property expresses the idea
that for all connections, it is always the case that the bandwidth
lesser than or equal to 100 000 . The property is formalized
using a fragment of first-order LTL [68] as follows:

∀connection : G (bandwidth (connection) ≤ 100 000)

4.3.4 Changes in the Bandwidth of Youtube Connections

This benchmark is provided by the RITHM team.

Description of the traces. This benchmark uses the same
dataset of Youtube traces as the benchmark in Section 4.3.3.

Description of the property. The property expresses the re-
quirement that, for all connections, it is always the case that
when the bandwidth is strictly greater than 10 000, it eventu-
ally becomes lesser than or equal to 10 000. The property is
formalized using a fragment of first-order LTL [68] as follows:

∀connection :
G
(
bandwidth (connection) > 10 000
=⇒ F bandwidth (connection) ≤ 10 000

)
4.3.5 Closing Opened Files by Processes

This benchmark is provided by the RITHM team.

Description of the traces. The log file is obtained by trac-
ing various system calls made by a set of processes, using
strace utility in Linux. The log file of strace is prepro-
cessed to produce an XML file in the format described in Sec-
tion 2.1. The entries of the log files contain the process IDs,
file descriptors, and the details of the operations performed on
the files.

Description of the property. The property expresses require-
ment that for all processes and for all files, it is always the
case that if a file is opened, then it is eventually closed by
the process. A similar condition is expressed for sockets. The
property is formalized using a fragment of first-order LTL
fragment [68] as follows:

∀process,∀file :
G
(
open (process,file) =⇒ F close (process,file)

)
∧
∀process,∀socket :

G (accept(process, socket)
=⇒ F close (process, socket))

4.3.6 Reporting Financial Transactions of a Banking System

This benchmark is provided by the MONPOLY team. The
MONPOLY team provided five benchmarks from different ar-
eas (described also in Sections 4.3.7, 4.3.8, 4.3.9, and 4.3.10).
Common to all the benchmarks is that the considered proper-
ties are policies in IT systems.

In the following, we describe the log format and the prop-
erty of each benchmark. The provided MFOTL formalizations
are close to MONPOLY’s input format. In particular, we use
a textual representation of the Boolean connectives and the
metric temporal operators. MFOTL’s semantics follows the
standard semantics of first-order logic and the real-time logic
MTL. See [12], for details on MONPOLY’s specification lan-
guage.

Description of the log. The log file is syntactically generated
and is provided in CSV format. To represent a sequence of
timestamped databases in this format, we have used the con-
ventions explained next, illustrated by the following example.

trans,tp=10,ts=32,c=Alice,t=132,a=2035
trans,tp=10,ts=32,c=Bob,t=135,a=2100
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trans,tp=11,ts=32,c=Charlie,t=137,a=60
report,tp=12,ts=38,t=132

Each line corresponds to one tuple in one of the timestamped
databases. The name of the relation to which the tuple belongs
to is given by the first, unnamed field. The next two fields
are: 1) the index of the database in the sequence, called time
point, and 2) the timestamp of the database. The other fields
provide the tuple’s value on each attribute of the corresponding
relation. For instance, the first line in the previous log excerpt
corresponds to a transaction event of the customer c = Alice
with the transaction number t = 132 and the amount a =
2035. The event was carried out at time 32 and is at the tenth
position of the event stream.

This representation of the MFOTL’s semantic models fits
reasonably well with the competition’s trace format. That is,
the first field represents the event’s name, and all other fields
are the event’s parameters. However, events with the same
value of the tp parameter are unordered from the MFOTL
semantics’ perspective.

The size of the log is 13MB. The following property is
violated on the log file.

Description of the property. This property formalizes a com-
pliance policy for a banking system that processes customer
transactions. It stipulated that executed transactions t of any
customer c must be reported within at most five days if the
transferred amount a exceeds $2000. The property’s formal-
ization in MFOTL is:

ALWAYS FORALL c, t, a.
trans(c, t, a) AND 2000 < a IMPLIES
EVENTUALLY[0, 5] report(t) .

The event trans(c, t, a) denotes that the client c performs the
transaction t, transferring the amount a. The event report(t)
denotes that the transaction t is reported. The temporal op-
erator ALWAYS requires that the policy is satisfied at every
time point. The interval attached to the temporal operator
EVENTUALLY specifies that transactions must be reported within
zero to five days.

Assuming that the previous log excerpt represents the com-
plete event stream, we observe that there are two violations.
First, the event trans(Alice, 132, 2035) that occurred on day
32 is reported too late, namely, on day 38. Second, the event
trans(Bob, 135, 2100) is not reported at all.

4.3.7 Authorizing Financial Transactions in a Banking
System

This benchmark is provided by the MONPOLY team.

Description of the log. The description of the log format is
presented in Section 4.3.6. The size of the log is 13MB. The
following property is violated on the log file.

Description of the property. This property also formalizes a
compliance policy for a banking system that processes cus-
tomer transactions. It stipulates that executed transactions t

of any customer c must be authorized by some employee e
before they are executed if the transferred amount a exceeds $
2000. The property’s formalization in MFOTL is:

ALWAYS FORALL c, t, a.
trans(c, t, a) AND 2000 < a IMPLIES
ONCE[2, 20] EXISTS e. auth(e, t) .

The event trans(c, t, a) is as in Property 1. The event auth(e, t)
denotes the authorization of the transaction t by the employee e.
Similar to Property 1, the interval [2, 20] attached to the tempo-
ral past-time operator ONCE specifies the time period in which
transactions must be authorized.

4.3.8 Approval Policy of Business Reports within a
Company

This benchmark is provided by the MONPOLY team.

Description of the log. The description of the log format is
presented in Section 4.3.6. The size of the log is 2MB. The
following property is violated on the log file.aa

Description of the property. This property formalizes an ap-
proval policy for publishing business reports within a company.
It stipulates that any report must be approved prior to its publi-
cation. Furthermore, the person who publishes the report must
be an accountant and the person who approves the publication
must be the accountant’s manager. Finally, the approval must
happen within at most ten days before the publication. The
property’s formalization in MFOTL is:

ALWAYS FORALL a, f.
publish(a, f) IMPLIES(
NOT accF (a) SINCE accS(a)

)
AND

ONCE[0, 10] EXISTSm. approve(m, f) AND(
NOT mgrF (m, a) SINCE mgrS(m, a)

)
.

The event publish(a, f) denotes the publication of the report f
by a. The event approve(m, f) denotes that m approves to
publish the report f . The event accS(a) marks the time when
a starts being an accountant and the event accF (a) marks the
corresponding finishing time. The subformula NOT accF (a)
SINCE accS(a) thus specifies when a is an accountant. Anal-
ogously, the events mgrS(m, a) and mgrF (m, a) mark the
starting and finishing times of m being a’s manager.

4.3.9 Withdrawals of Users over Time

This benchmark is provided by the MONPOLY team.

Description of the log. The description of the log format is
presented in Section 4.3.6. The size of the log is 10MB. The
following property is violated on the log file.
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Description of the property. This property is rooted in the
domain of fraud detection. It stipulates that the sum of with-
drawals of each user in the last 28 days does not exceed the
limit of $ 10 000. The property’s formalization is:

ALWAYS FORALL s, u.(
s← SUM a;u. ONCE[0, 28] withdraw(u, a) AND tp(i)

)
IMPLIES

s ≤ 10000 .

The event withdraw(u, a) denotes the withdrawal by the user u
of the amount a. The event tp(i) denotes that the current time
point is i. This event is used in the formalization to distinguish
different events withdraw(u, a) with the same values for u
and a in the relevant time window. Each user’s withdrawals
are accumulated into s by the aggregation operation SUM [15]
over the specified time period.

4.3.10 Data Usage in Nokia’s Lausanne Data-Collection
Campaign

This benchmark is provided by the MONPOLY team.

Description of the log. The description of the log format is
presented in Section 4.3.6. The log file in this benchmark is
taken from a real-world case study [65] and is publicly avail-
able on the MONPOLY’s web page in an anynomized form.
The log is 14GB large. The following property is violated on
the log file.

Description of the property. This property is taken from the
case study [65]. Several policies stipulate restrictions on the
usage of data in Nokia’s Lausanne Data Collection Cam-
paign [65] in which sensitive data is uploaded by smartphones
into the database db1 and propagated to the databases db2
and db3, where it is eventually stored anonymized. The prop-
erty used for the competition stipulates that data may be in-
serted into db3 only if it was inserted into db2 within the last
minute. The property’s formalization in MFOTL is:

ALWAYS FORALL u, p, d.
insert(u,db3, p, d) AND d 6= unknown IMPLIES

ONCE[0, 60) EXISTS u′, q. insert(u′,db2, q, d) .

The event insert(u, db, p, d) corresponds to a logged SQL
insert operation performed on the database db by the database
user u, involving the campaign participant p and the data d.

4.3.11 Early Alarm of Machine Operations

This benchmark is provided by the STEPR team.

Description of the log. The log file for this benchmark is an
artificially created data set representing the typical shape of
event logs produced during machine operations, e.g., during
development, testing or productive use. It is inspired by indus-
trial case studies and projects carried out in the safety critical
domain. The XML file represents a sequence of events that
carry different attributes such as, for example, alarm, start2

and time as well as corresponding data values, e.g., true, false
and 201302, respectively. It includes a number of traces that
are separated by events with name log. That is, between
consecutive traces there is an entry such as the following.

<event>
<name>log</name>
<field>
<name>id</name>
<value>1</value>

</field>
</event>

Single positions within a trace are represented by events with
name step such as, for example,

<event>
<name>step</name>
<field>
<name>alarm</name>
<value>true</value>

</field>
<field>
<name>init</name>
<value>0</value>

</field>
<field>
<name>time</name>
<value>770576</value>

</field>
</event>

The property is to be evaluated separately on the traces repre-
sented in the log file.

Description of the property. The property expresses that alarm
events occurring within a time frame of 60 s after a start2 event
constitute an error. That is, the difference of the values of the
attribute time between any two start2/alarm events is supposed
to be at least 60 000ms.

Formally, considering the log file as a linearly ordered
structure (T,<) of events e ∈ T the task is to compute a
predicate F ⊆ T comprising those positions that exhibit a
failure. We define the predicate by

F (e) :⇔


field(e,alarm) = true ∧
t(e,time) = x⇒ ∃e′ < e :

t(e′,start2) = true ∧
x− t(e′,time) < 60 000


for all events e ∈ T and all time stamps x where we assume
T to give rise to mapping t : T ×A→ V that maps lines and
attribute names A to values V .

As an example, consider the sequence:

start2 stop alarm
200 000 230 000 240 000

where the first line indicates the Boolean attributes that hold
and the second line indicates the corresponding values of the
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attribute time. The last position in the sequence is violating the
property because of the early alarm. However, the sequence

start1 alarm start2 stop alarm
100 000 110 000 200 000 230 000 260 000

satisfies the property, i.e., it has no position exhibiting a failure.

4.3.12 Duration of Machine Operations

Description of the log. This benchmark is based on the same
log file as the one described in Section 4.3.11.

Description of the property. The benchmark considers pro-
cesses that are started upon start1 events. A stop event stops
all these running processes. Failures are stop events that oc-
cur more than 30 s after the most recent start1 event and if
since then no stop event has occurred. That is, the difference
of the values of the attribute time between two consecutive
start1/stop events is supposed to be at most 30 000ms.

As is the case with the benchmark in Section 4.3.11, the
failure predicate F is such that for all e ∈ T , F (e) holds if
and only if for all time stamps x ∈ V , the following formula
holds:

t(e,stop) = true ∧ t(e,time) = x ⇒ ∃e′ < e :

t(e′,start1) = true ∧
x− t(e′,time) > 30 000 ∧
(∀e′ < e′′ < e :t(e′′,start1) 6= true ∧

t(e′′,stop) 6= true)

for all events e ∈ T . As an example, consider the sequence

start1 start2 stop alarm
100 000 200 000 230 000 240 000

where at the third position the property is violated because of
the late stop event. However, the sequence

start1 stop start2 stop alarm
100 000 110 000 200 000 230 000 260 000

does not violate the property.

4.3.13 Maximal Error Rates of Machines Operations

Description of the log. This benchmark is based on the same
log file as the one described in Section 4.3.11.

Description of the property. This quantitative property speci-
fies that the number of errors is at most a fraction 2 ·10−5 (i.e.,
0.002%) of the number of performed operation cycles. The
log file provides information about the number of registered
errors and the number of performed cycles at every position.

An event e ∈ T constitutes a failure if and only if

t(e,error count) > 0 ∧ t(e,cycle count) > 0 ∧
t(e,error count) > 0.00002 · t(e,cycle count).

4.3.14 Ordering of Machine Operations

Description of the log. This benchmark is based on the same
log file as the one described in Section 4.3.11.

Description of the property. The trace is divided into groups,
phases and runs, the latter are parameterised by (process)
IDs. All processes x have to proceed the three steps init, run
and finish in that order. Then, they may restart and proceed
again. They must always finish. While actions of an individual
process must be correctly ordered, they can be interleaved
with the actions from other processes. For example, valid
interleavings are

init run init finish run finish
1 1 2 1 2 2

and

init init run init run run finish finish finish
1 2 1 3 3 2 2 3 1

.

A phase is such an interleaved sequence preceded by an event
phaseStart. Whenever a phase starts, all running processes
started before must have finished. Phases belong to a group.
The beginning of a group of phases is indicated by an event
groupStart and the end of a group is indicated by an event
groupEnd. Groups cannot interleave and any process event
(init, run, finish) and phase start event must happen within a
group, i.e., between two consecutive groupStart/groupEnd
events. The running time of a group must be smaller than 480
seconds, i.e. the difference of the corresponding time stamps
must respect that constraint.

To formalise these requirements we split it up into individ-
ual constraints:

– P1: Groups do not overlap
– P2: Ending groups must have started
– P3: Phases are included in groups
– P4: All processes must have finished before the next phase
– P5: Init before run
– P6: Run before finish
– P7: Init after finish
– P8: Init, run, finish not outside group
– P9: Group duration is less than 480 s

We formulate these properties in a combination of Linear-
time Temporal Logic (LTL) and First-order Logic (FO) as
described in [39]. To this end, the log file is interpreted as
sequence of FO structures modelling events and attached data.
Every event e provides an interpretation for the unary pred-
icate symbols init, run, finish, the Boolean propositions
groupStart, groupEnd, phaseStart and the constant time
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by

init(x) := 0 < x = t(e,init)

run(x) := 0 < x = t(e,run)

finish(x) := 0 < x = t(e,finish)

groupStart := t(e,group start) = true

groupEnd := t(e,group end) = true

phaseStart := t(e,phase start) = true

time := t(e,time)

As above, we assume that the function t maps attributes
and event representations in the log file to the correspond-
ing values. Whenever a field group start, group end
or phase start is not explicitly specified in the log, the
respective value is assumed to be false. We now express the
constraints above by the formulae

P1 = groupStart ⇒ Y(¬groupStartWS groupEnd)

P2 = groupEnd ⇒ Y(¬groupEndSgroupStart)
P3 = phaseStart ⇒ ¬groupEnd S groupStart)
P4 = ∀x phaseStart ⇒ ¬(init(x) ∨ run(x))WS finish(x)

P5 = ∀x run(x) =⇒ Y(¬run(x) S init(x))
P6 = ∀x finish(x) =⇒ Y(¬finish(x) S run(x))
P7 = ∀x init(x) =⇒ Y(¬(init(x) ∨ run(x))WS finish(x))

P8 = ∀x (¬groupStartWS groupEnd)

=⇒ ¬finish(x) ∧ ¬init(x) ∧ ¬run(x)
P9 = ∀x groupEnd∧

(¬groupStart S(groupStart ∧ time = x))

=⇒ time− x < 480 000)

with the past-time temporal operators Y (yesterday), Y (weak
yesterday), S (since) and WS (weak since).

The task is to compute all positions in the log file where
any of these properties is violated.

4.3.15 Existence of a Leader Rover

This benchmark is provided by the QEA team.

Description of the log. The supplied trace file contains 9756
events in CSV format and satisfies the property.

Description of the property. This property relates to the self-
organisation of communicating rovers and captures the situa-
tion where (at least) one rover is able to communicate with all
other (known) rovers.

The property states that there exists a leader (rover) who
has pinged every other (known) rover and received an ac-
knowledgement. The leader does not need to ping itself and
communication is bidirectional i.e. any rover can ping any
other rover. For example the following trace satisfies the prop-
erty as B pings A and C and receives an acknowledgement.

ping(B,A).ping(B,C).ack(C,B).ack(A,B)

The following trace is not correct as B does not ping D.

ping(B,A).ping(B,C).ack(C,B).ack(A,B).ping(D,B)

The property can be captured by the following QEA. The
syntax of QEA was previously described in Section 4.2.20.

The automaton structure of this QEA is simple; it detects
the language ping followed by ack. The quantifications are
non-trivial. As expected there is an existential quantification
followed by a universal quantification and the constraint that
r1 and r2 are not equal. The Join statement captures the
fact that the domains of quantification for r1 and r2 should
be equal. This is important as domains of quantification are
extracted from the trace using the alphabet of the automaton
and without this declaration the domains may not be equal.

qea{
Exists(r1) Forall(r2) Where(r1!=r2) Join(r1,r2)
skip(start) { ping(r1,r2) -> pinged }
skip(pinged){ ack(r2,r1) -> success }

}

4.3.16 Granting Resources to Tasks

This benchmark is provided by the QEA team.

Description of the log. The supplied trace file contains 1000002
events in CSV format and violates the property. There are two
errors: 1) a resource is cancelled by a task not holding it; and
2) a resource is granted to multiple tasks.

Description of the property. This benchmark is related to
resource management in a context where resources can be
granted to tasks. The property here is that every resource
should only be held by at most one task at any one time. If a
resource is granted to a task it should be cancelled before being
granted to another task. This is therefore a mutual exclusion
property.

The property can be captured by the following QEA. This
quantifies over resources r and uses two free variables t1 and
t2 to check mutual exclusion of the task holding the resource.
Note that in the granted state any grant event leads to
failure and a cancel event with a different task will lead to
failure as this is a next state.

qea{
Forall(r)
accept next(free){ grant(t1,r) -> granted }
accept next(granted){
grant(t2,r) -> failure
cancel(t2,r) if [ t1 = t2 ] -> free

}
}

4.3.17 Nested Command Messages

This benchmark is provided by the QEA team.

Description of the log. The supplied trace file contains 1200
events in CSV format and violates the property.
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Description of the property. This benchmark relates to a com-
munication consisting of command and success messages.
The property states that if command with identifier B starts
after command with identifier A has started, then command B
must succeed before command A succeeds. It can be assumed
that every command is started and succeeds exactly once i.e.
this is a property that has been checked separately.

The QEA defining this property is described as follows.
Two commands c1 and c2 are quantified over and the states
none, startedOne and startedTwo indicate whether
command 1 or 2 has started respectively. Note that the prop-
erty is symmetric so there are two instances for each pair of
commands reflecting the two orderings of commands.
qea{
Forall(c1,c2)
accept next(none){

com(c2) -> none; suc(c2) -> none
com(c1) -> startedOne

}
accept next(startedOne){

com(c2) -> startedTwo
suc(c2) -> none

}
accept next(startedTwo){

suc(c2) -> startedOne
}

}

It was noted by Klaus Havelund that this QEA could be rewrit-
ten to more accurately reflect the assumption about commands
starting and succeeding exactly once. As for the benchmark
described in Section 4.2.23, a modified version of the property
can be found in [52].

4.3.18 Resource Lifecycle

This benchmark is provided by the QEA team.
As the benchmark in Section 4.3.16, this benchmark is

related to resource management.

Description of the log. The supplied trace file contains 1
million events in CSV format and violates the property. The
violation occurs due to a resource not being cancelled when
the trace finishes.

Description of the property. In this case the property concerns
the lifecycle of a resource. Implicitly this is with respect to a
single task i.e., we assume the trace only contains events from
a single tasks interaction. A variant of this property appears
in [52] where the task is also quantified.

The steps of the lifecycle are as follows:

– A resource may be requested
– A requested resource may be denied or granted
– A granted resource may be rescinded or cancelled
– A resource may only be requested when not currently

requested or granted
– A granted resource must eventually be cancelled

This is captured by the following QEA which quantifies over
the resource r and captures the lifecycle in the automaton
structure.

qea{
Forall(r)
accept next(free){
request(r) -> requested

}
accept next(requested){
deny(r) -> free
grant(r) -> granted

}
accept next(granted){
cancel(r) -> free
rescind(r) -> granted

}
}

4.3.19 Respecting Conflicts of Resources

This benchmark is provided by the QEA team.
As the benchmark in Section 4.3.16, this benchmark is

related to resource management.

Description of the log. The supplied trace file contains 1 002 954
events in CSV format and satisfies the property.

Description of the property. This benchmark focuses on con-
flicts between resources. It is assumed that conflicts between
resources are declared at the beginning of operation and that
after this point resources that are in conflict with each other
cannot be granted at the same time. It is assumed a resource
cannot be put in conflict with itself.

A QEA for this property is given as follows. It quantifies
over two resources r1 and r2 and detects a conflict declara-
tion between these two resources. After this point there is a
mutual exclusion between the two resources.

qea{
Forall(r1,r2)
accept skip(start){
conflict(r1,r2) -> free
conflict(r2,r1) -> free

}
accept skip(free){
grant(r1) -> granted1
grant(r2) -> granted2

}
accept next(granted1){
cancel(r1) -> free

}
accept next(granted2){
cancel(r2) -> free

}
}

5 Evaluation - Calculating Scores

In this section, we present in detail the algorithm to calculate
the final score for each tool. Consider one of the three com-
petition tracks (C, Java, and Offline). Let N be the number
of teams/tools participating in the considered track and L be
the total number of benchmarks provided by all teams. The
maximal number of experiments for the track is N × L. That
is, each team has the possibility to compete on a benchmark.
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Then, for each tool Ti (1 ≤ i ≤ N ) w.r.t. each benchmark Bj

(1 ≤ j ≤ L), we assign three different scores:

– the correctness score Ci,j ,
– the overhead score Oi,j , and
– the memory utilization score Mi,j .

In case of online monitoring (Java and C tracks), let Ej be
the execution time of benchmark Bj (without monitor). Note,
in the following, to simplicity notation, we assume that all
participants of a track want to compete on benchmark Bj . Par-
ticipants can of course decide not to qualify on a benchmark
of their track. In this case, the following score definitions can
be adapted easily.

Several considerations influenced the scoring principles:

– Since several benchmarks are provided in each track, we
wanted to provide participants with the possibility to com-
pete on a benchmark or not. We allocated a maximum
number of points that could be gained on a benchmark.
In our opinion, it limited the influence of the failure or
success on a benchmark and rewarded the overall behavior
of tools on the benchmarks in a track.

– We gave an important emphasis on the correctness of
monitoring verdicts. As such, the scoring mechanism gives
more priority to correctness of verdicts in that performance
is evaluated on a benchmark only when a tool provides
the correct verdict and negative points are assigned on a
benchmark when a tool produces a false verdict or crashes.

– Within a benchmark, scores are assigned to participants/-
tools based on how better they perform compared to each
other. Moreover, the proportion of points in benchmark
assigned to a tool depends on a performance ratio compar-
ing to the average performance of other tools. The average
performance of other tools is computed with the geometric
mean (because we dealt with normalised numbers [49]).

5.1 Correctness Score

The correctness score Ci,j for a tool Ti running a benchmark
Bj is (an integer) calculated as follows:

– Ci,j = 0, if the property associated with benchmark Bj

cannot be expressed in the specification language of Ti.
– Ci,j = −10, if in case of online monitoring, the property

can be expressed, but the monitored program crashes.
– Ci,j = −5, if, in case of online monitoring, the property

can be expressed and no verdict is reported after 10× Ej .
– Ci,j = −5, if, in case of offline monitoring, the property

can be expressed, but the monitor crashes.
– Ci,j = −5, if the property can be expressed, the tool does

not crash, and the verification verdict is incorrect.
– Ci,j = 10, if the tool does not crash, it allows to express

the property of interest, and it provides the correct verifi-
cation verdict.

Note that, in case of a negative correctness score, there is no
evaluation w.r.t. the overhead and memory-utilization scores
for the pair (Ti, Bj).

5.2 Overhead Score

The overhead score Oi,j , for a tool Ti running benchmark Bj ,
is related to the timing performance of the tool for detecting
the (unique) verdict. For all benchmarks, a fixed total num-
ber of points O is allocated when evaluating the tools on a
benchmark. Thus, the scoring method for overhead ensures
that

N∑
i=1

L∑
j=1

Oi,j = O.

The overhead score is calculated as follows. First, we compute
the overhead index oi,j , for tool Ti running a benchmark Bj ,
where the larger the overhead index is, the better.

– In the case of offline monitoring, for the overhead, we
consider the elapsed time till the property under scrutiny
is either found to be satisfied or violated. If monitoring
(with tool Ti) of the trace of benchmark Bj executes in
time Vi, then we define the overhead as

oi,j =


1
Vi

if Ci,j > 0,

0 otherwise.

– In the case of online monitoring (C or Java), the overhead
associated with monitoring is a measure of how much
longer a program takes to execute due to runtime monitor-
ing. If the monitored program (with monitor from tool Ti)
executes in Vi,j time units, we define the overhead index
as

oi,j =


N
√∏N

l=1 Vl,j

Vi,j
if Ci,j > 0,

0 otherwise.

In other words, the overhead index for tool Ti evaluated
on benchmark Bj is the geometric mean of the overheads
of the monitored programs with all tools over the overhead
of the monitored program with tool Ti.

Then, the overhead scoreOi,j for a tool Ti w.r.t. benchmarkBj

is defined as follows:

Oi,j = O × oi,j∑N
l=1 ol,j

.

For each tool, the overhead score is a harmonization of the
overhead index so that the sum of overhead scores is equal
to O.

5.3 Memory-Utilization Score

The memory-utilization score Mi,j is calculated similarly to
the overhead score. For all benchmarks, a fixed total number
of points O is allocated when evaluating the tools on a bench-
mark. Thus the scoring method for memory utilization ensures
that:

N∑
i=1

L∑
j=1

Mi,j =M.
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First, we measure the memory utilization index mi,j for tool
Ti running a benchmark Bj , where the larger memory utiliza-
tion index, the better.

– In the case of offline monitoring, we consider the maxi-
mum memory allocated during the tool execution. If mon-
itoring (with tool Ti) of the trace of benchmark Bj uses a
quantity of memory Di, then we define the overhead as:

mi,j =


1
Di

if Ci,j > 0,

0 otherwise,

That is, the memory utilization index for tool Ti evaluated
on benchmark Bj is the geometric mean of the memory
utilizations of the monitored programs with all tools over
the memory utilization of the monitored program with
tool Ti.

– In the case of online monitoring (C or Java tracks), mem-
ory utilization associated with monitoring is a measure of
the extra memory the monitored program needs (due to
runtime monitoring). If the monitored program uses Di,
we define the memory utilization as

mi,j =


N
√∏N

l=1Dl,j

Di,j
if Ci,j > 0,

0 otherwise.

Then, the memory utilization score Mi,j for a tool Ti w.r.t. a
benchmark Bj is defined as follows:

Mi,j =M × mi,j∑N
l=1ml,j

.

5.4 Final Score

The final score Fi for tool Ti is then computed as follows:

Fi =

L∑
j=1

Si,j

where:

Si,j =

{
Ci,j if Ci,j ≤ 0,
Ci,j +Oi,j +Mi,j otherwise.

For the results reported in the next section, we set O = C =
M = 10, giving the same weight to the correctness, overhead,
and memory-utilization scores.

6 Results

In this section, we report on the results of the participants. The
raw experimental data and the scripts submitted by participants
can be obtained by cloning the repository available at:

https://gitlab.inria.fr/crv14/evaluation.

Team 1: RITHM-1 110,00 78,19 73,72 261,92
Team 2: E-ACSL 100,00 50,19 68,97 219,16

Team 4: RTC 70,00 20,70 17,31 100,01

Team Total scoreCorrectness
score

Overhead
score

Memory
score

0	

50	

100	

150	

200	

250	

300	

Team	1:	RITHM-1	 Team	2:	E-ACSL	 Team	4:	RTC	

Correctness	score	

Overhead	score	

Memory	score	

TOTAL	score	

Fig. 5. Graphical representation of the scores for the C track.

For each track, we present the scores obtained in each cat-
egory and the final scores achieved by each team, as defined in
Section 5. In the following tables, teams are ranked according
to their total scores.

Let us recall that the experiments were conducted on
DataMill [73]. The selected machine was queen, which has
an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (x86 64
architecture with 8 cores), 7.72GB of DDR3, and is running
on a Gentoo Linux distribution. We have considered the Wall-
clock time for our measures. Using DataMill guarantees that
each tool had the same execution environment and it was the
only running software during each experiment. Tools were
allowed to leverage the eight available cores.

6.1 Scores for the C Track

The detailed scores for the C track are presented in Table 6.
The final scores of the C track are reported in Table 7 and can
be visualized in Fig. 5. The final ranking of the teams is: first
is RITHM, second is E-ACSL, third is RTC.

As one can observe in Table 7, RITHM made the differ-
ence over E-ACSL on the overhead score; whereas RITHM
and E-ACSL have approximately the same correctness and
memory-utilization scores. Moreover, there is an important
gap between the two first tools in this track (RITHM and E-
ACSL) and RTC. Possible explanations for this discrepancy
are discussed in Section 7.

6.2 Scores for the Java Track

The detailed scores for the Java track are presented in Table 8.
The final scores of the Java track are reported in Table 9 and
can be visualized in Fig. 6.

As one can observe in Table 9, the scores between the two
first highest scores are really close, we call it a draw between
QEA and JAVA-MOP. Thus, the final ranking of the teams is:
firsts are QEA and JAVA-MOP, second is JUNITRV, third is
LARVA. While there is a draw between QEA and JAVA-MOP,
one can notice that QEA did slightly better on the memory-
utilization score while JAVA-MOP did slightly better on the

https://gitlab.inria.fr/crv14/evaluation
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RITHM E-ACSL RTC
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd
Benchmark (MB) (s) (MB) (s) (MB) (s)
Description v score m score o score v score m score o score v score m score o score

Section 4.1.1 F 1 012 756 0.68 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section 4.1.2 F 1 012 756 0.68 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section 4.1.3 F 614 168 0.42 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section 4.1.4 F 614 168 0.42 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section 4.1.5 F 647 696 0.69 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section 4.1.6 F 11 916 0.01 F 12 980 0.30 F 37 040 0.19

10 4.46 9.59 10 4.10 0.16 10 1.44 0.14

Section 4.1.7 F 5388 0.001 F 4320 4.87 F 5984 0.01

10 3.18 9.09 10 3.96 0 10 2.86 0.29

Section 4.1.8 F 4236 0.01 F 4628 2.66 F 5856 0.19

10 3.79 9.52 10 3.47 0.03 10 2.74 0.27

Section 4.1.9 F 4212 N/A F 4312 N/A F 5792 0.01

10 3.70 0 10 3.61 0 10 2.69 10

Section 4.1.10 F 4212 N/A N/A N/A N/A F 1344 N/A
10 2.42 0 0 0 0 10 7.58 0

Section 4.1.11 F 4216 N/A F 6804 N/A F N/A 0.23

10 6.17 0 10 3.83 0 10 0 10

Table 6. Detailed scores for the C track.

Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 RITHM-1 110 78.19 73.72 261.92
2 E-ACSL 100 50.19 68.97 219.16
3 RTC 70 20.70 17.31 108.01

Table 7. Scores for the C track.

overhead score. While the scores of the tools do not differ
much in terms of correctness, the rankings are due to first the
overhead score and then the memory score.

6.3 Scores for the Offline Track

The detailed scores for the Offline track are presented in Ta-
ble 10. The final scores of the offline track are reported in
Table 11 and can be visualized in Fig. 7. The final ranking
of the teams is: first is QEA, second is MONPOLY, third is
RITHM, fourth is STEPR.

As one can observe in Table 11, there is not much differ-
ence in terms of correctness score between the three first tools.
There is however a noticeable difference between each of the

three first tools in terms of global score. One can also notice
that the difference between QEA and MONPOLY was made
on the overhead score.

7 Lessons Learned and Discussion

Comparison with other competitions. Over the past fifteen
years, the arise of several software tool competitions [84,2,
54,59,55,21] has deeply contributed to advance the state-of-
the-art in the computer-aided verification technology. The
international SAT solver competition [59] is a pioneer example
with a long track record of editions starting from 2002. The
aim of this competition is to determine as quickly as possible
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LARVA JUNITRV JAVA-MOP QEA
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd verdict mem ovhd
Benchmark (MB) (s) (MB) (s) (MB) (s) (MB) (s)
Description v m o v m o v m o v m o

score score score score score score score score score score score score

Section 4.2.1 F 0.55 1.54 F 1.92 6.08 F 1.94 0.17 F 2.65 0.20

10 1.95 2.66 10 2.70 0.14 10 2.68 4.96 10 1.96 4.35

Section 4.2.2 F 0.58 1.56 F 7.75 6.86 F 2.59 0.21 F 2.70 0.18

10 2.60 3.03 10 1.02 0.13 10 3.04 4.33 10 2.92 4.96

Section 4.2.3 F 0.66 1.56 F 1.92 3.74 F 9.03 0.22 F 5.24 0.24

10 4.54 2.11 10 4.99 0.28 10 1.06 4.66 10 1.83 4.40

Section 4.2.4 F 0.69 1.56 F 1.92 8.63 F 9.04 0.32 F 2.00 0.18

10 9.05 0.89 10 4.20 0.12 10 0.89 3.35 10 4.02 5.84

Section 4.2.5 F 0.95 1.57 F 1.92 8.57 F 9.69 0.73 F 2.64 0.22

10 10.97 0.83 10 4.76 0.17 10 0.94 2.05 10 3.46 6.83

Section 4.2.6 T 0.59 1.57 T 27.94 1.56 T 1.94 0.20 T 3.30 0.23

10 5.16 1.85 10 0.34 0.59 10 4.92 4.70 10 2.89 4.11

Section 4.2.7 T 0.65 1.58 T 308.67 22.93 T 1.94 0.20 T 2.65 0.25

10 7.10 1.36 10 0.03 0.04 10 4.97 5.19 10 3.64 4.12

Section 4.2.8 T 0.05 2173.26 T 244.27 49.94 T 32.24 26.27 T 5.85 25.99

10 162.39 0.29 10 0.19 2.06 10 1.46 3.92 10 8.06 3.97

Section 4.2.9 T 0.64 1.55 T 291.57 24.79 T 1.94 0.20 T 4.59 0.23

10 5.16 2.08 10 0.04 0.04 10 5.55 4.98 10 2.34 4.34

Section 4.2.10 T 1.13 1.56 T 680.19 100.57 T 2.58 0.24 T 110.33 1.26

10 7.76 2.45 10 0.03 0.02 10 7.35 7.45 10 0.17 1.40

Section 4.2.11 F 0.10 48.06 F N/A 2.98 F 5.17 0.79 F 4.53 2.04

10 40.93 0.56 10 0 1.59 10 4.41 5.99 10 5.04 2.32

Section 4.2.12 N/A N/A N/A F N/A 0.51 F 5.81 2.23 F 8.41 3.24

0 0 0 10 0 7.21 10 5.91 1.65 10 4.09 1.14

Section 4.2.13 F 0.10 35.78 F N/A 0.36 F 7.10 25.22 F 5.20 25.33

10 3.87 4.37 10 0 9.63 10 2.38 0.14 10 3.25 0.14

Section 4.2.14 F 0.56 1.57 F N/A 1.61 F 2.58 0.18 F 3.23 0.22

10 2.58 3.57 10 0 0.55 10 3.57 4.94 10 2.86 3.95

Section 4.2.15 F 0.03 2606.58 F N/A 7.58 F 647.19 87.00 F 837.29 190.89

10 841.28 3.03 10 0 8.85 10 3.93 0.77 10 3.04 0.35

Section 4.2.16 F 0.06 15 393.22 T N/A N/A F 1001.69 164.00 F 829.59 217.27

10 721.39 3.86 -5 0 0 10 2.78 5.66 10 3.36 4.28

Section 4.2.17 T/O 0 N/A T 717.92 88.35 T 801.15 242.00 T 844.54 288.08

-5 N/A 0 10 3.64 5.98 10 3.26 2.18 10 3.10 1.83

Section 4.2.18 T/O 0 N/A T 697.42 113.63 T 795.49 237.00 T 819.92 889.63

-5 N/A 0 10 3.67 6.22 10 3.21 2.98 10 3.12 0.79

Section 4.2.19 T/O 0 N/A T N/A N/A F 649.83 94.00 F 820.52 170.31

-5 N/A 0 -5 0 0 10 5.58 6.44 10 4.42 3.56

Section 4.2.20 F 0.16 27.22 F N/A 3.68 F 58.27 3.16 F 23.07 0.62

10 135.98 1.08 10 0 1.22 10 2.53 1.42 10 6.39 7.20

Section 4.2.21 T 0.29 70.12 T 86.04 8.8 T 267.45 5.64 T 142.74 5.29

10 160.62 2.18 10 4.06 2.30 10 1.31 3.59 10 2.45 3.82

Section 4.2.22 T 0 6882.58 T 300.2 49.9 T 309.00 6.08 T 156.66 5.59

10 267.43 2.24 10 2.00 0.55 10 1.94 4.53 10 3.82 4.92

Section 4.2.23 N/A N/A N/A F N/A 2.92 F 39.87 1.58 F 28.71 0.72

0 0 0 10 0 1.45 10 4.19 2.67 10 5.81 5.88

Table 8. Detailed scores for the Java track.
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Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 QEA 230 84.50 82.01 396.51
1 JAVAMOP 230 88.56 77.89 396.45
2 JUNITRV 200 49.15 31.67 280.82
3 LARVA 165 7.79 38.43 211.22

Table 9. Scores for the Java track.

RITHM MONPOLY STEPR QEA
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd verdict mem ovhd
benchmark (MB) (s) (MB) (s) (MB) (s) (MB) (s)
description v-score m-score o-score v-score m-score o-score v-score m-score o-score v-score m-score o-score

Section 4.3.1 F 993 0.60 F 13 0.13 F 29.53 0.90 F 4.535 0.24

10 0.03 1.12 10 2.31 5.32 10 1.02 0.75 10 6.64 2.81

Section 4.3.2 F 993 0.60 F 1228 8.40 F 645.17 8.87 F 33.30 3.58

10 0.30 7.67 10 0.24 0.55 10 0.46 0.52 10 8.99 1.28

Section 4.3.3 F 614 0.98 F 13 0.12 F 31.26 0.91 F 4.53 0.19

10 0.05 0.63 10 2.32 5.41 10 0.97 0.68 10 6.66 3.28

Section 4.3.4 F 614 0.98 F 1696 15.80 F 622.30 21.10 F 517.07 12.22

10 2.83 8.41 10 1.02 0.52 10 2.79 0.39 10 3.36 0.68

Section 4.3.5 F 628 0.99 F 544 5.09 F 274.29 7.77 F 32.94 3.71

10 0.43 6.29 10 0.49 1.24 10 0.97 0.80 10 8.11 1.68

Section 4.3.6 N/A N/A N/A F 36.00 5.95 F 645.43 41.73 F 5.19 0.26

0 0 0 10 1.25 0.41 10 0.07 0.06 10 8.68 9.53

Section 4.3.7 N/A N/A N/A F 20 1.33 F 255.48 96.00 F 4.53 0.25

0 0 0 10 1.82 1.56 10 0.14 0.02 10 8.04 8.42

Section 4.3.8 N/A N/A N/A F 370 33.51 F 706.26 21.41 F 7.75 0.29

0 0 0 10 0.20 0.08 10 0.11 0.13 10 9.69 9.79

Section 4.3.9 N/A N/A N/A F 73.00 1.53 F 457.34 3.67 F 552.08 2.58

0 0 0 10 7.74 4.98 10 1.24 2.07 10 1.02 2.95

Section 4.3.10 N/A N/A N/A F 16.00 330.80 F 721.22 947.00 F 5935.90 1537.30

0 0 0 10 9.76 6.39 10 0.22 2.23 10 0.03 1.38

Section 4.3.11 T 14.27 5.40 T 13.00 5.05 T 634.99 10.84 T 127.62 4.51

10 4.48 2.65 10 4.92 2.84 10 0.10 1.32 10 0.50 3.18

Section 4.3.12 F 14.27 0.90 F 13.00 0.80 F 333.01 2.93 F 30.33 0.80

10 3.83 2.80 10 4.20 3.17 10 0.16 0.86 10 1.80 3.17

Section 4.3.13 F 14.27 7.20 F 13.00 1.04 F 501.91 3.20 F 30.86 1.05

10 3.86 0.59 10 4.24 4.08 10 0.11 1.32 10 1.79 4.01

Section 4.3.14 F 14.28 2.39 F 13.00 2.0 F 173.37 2.91 F 30.33 0.63

10 3.77 1.46 10 4.14 1.75 10 0.31 1.20 10 1.78 5.59

Section 4.3.15 T 15 0.04 T 17.00 353.00 T 112.56 2.20 T 29.73 0.59

10 3.97 9.15 10 3.50 0 10 0.53 0.18 10 2.00 0.67

Section 4.3.16 F 75.00 40.93 F 13.00 432.00 F 631.58 8.46 F 250.30 2.03

10 1.39 0.38 10 8.03 0.036 10 0.17 1.85 10 0.42 7.73

Section 4.3.17 F 14.04 0.16 F 24.00 3.06 F 36.01 1.19 F 295.52 1.36

10 4.94 7.67 10 2.89 0.40 10 1.93 1.03 10 0.23 0.90

Section 4.3.18 F 39.79 5.18 F 2675.00 3405.00 F 622.66 9.96 F 234.78 2.04

10 8.01 2.47 10 0.12 0.375 10 0.51 1.28 10 1.36 6.25

Section 4.3.19 T 14.00 5.14 T 13.00 26.21 T 494.39 9.17 T 239.60 3.54

10 4.62 3.12 10 4.98 0.61 10 0.13 1.75 10 0.27 4.53

Table 10. Detailed scores for the Offline track.
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Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 QEA 190 77.79 71.36 339.15
2 MONPOLY 190 39.35 64.19 293.54
3 RITHM-2 140 54.40 42.52 236.91
4 STEPR 190 18.46 11.93 220.40

Table 11. Scores for the Offline track.
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Fig. 6. Graphical representation of the scores for the Java track.
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Fig. 7. Graphical representation of the scores for the Offline track.

whether a boolean formula expressed in conjunctive normal
form (CNF) is satisfiable or not. If the formula is satisfiable,
the tool should return also a correct assignment. If the returned
assignment is incorrect the tool is disqualified. The organisers
provide three different categories of benchmarks: industrial,
crafted and random benchmarks. The performance is evaluated
by measuring the CPU time necessary for each tool to return
an answer. In the recent editions, the organisers provide also a
wall clock time within which a tool can use all the available
resources (for example multiple cores) to provide the correct
answer. In SAT competition the jury is the responsible of
choosing the final benchmarks. This is different in CRV where
each team can provide up to five benchmarks to challenge the

other teams, highlighting the bottlenecks of the other teams’
tools. Furthermore, during the CRV training phase each team
has the possibility to improve the development of their tools
using new benchmarks that were not considered before.

The success of the SAT competitions has inspired other
initiatives such as the Satisfiability Modulo Theories Compe-
titions (SMT-COMP) [2] started in 2005. The challenge of
SMT-COMP is to efficiently check the satisfiability of first-
order formula modulo a background theory. In this case the
chosen theory strictly depends on the nature of the problem
to consider (i.e., arrays, bit-vectors, uninterpreted functions,
etc.). A major challenge for the SMT community has been to
devise a common input language for their tools that could ac-
commodate different theories and to express their syntax and
semantics. This goal was achieved in 2004 with the release
of SMT-LIB a standard input language that is now used as
common format for the selected benchmarks in SMT-COMP.

One important difference of CRV with SMT-COMP and
the SAT competition, is the lack of a common input language
for the participating tools. In CRV a benchmark unit includes
a program or a trace and a property to be monitored. Proper-
ties can be expressed using different formal specification lan-
guages more or less expressive and computationally complex
to be monitored. The interplay between the allowed expressive-
ness and the monitoring complexity plays an important role in
CRV competition. Some tools may result extremely efficient in
detecting simple temporal behaviours, but then they may lack
the necessary support to detect more complex properties and
vice versa. One of the open challenges for CRV remains the
possibility to have a common formal specification language
that is general enough to express all the other common formal
specification languages used in the RV community.

In the area of software verification, there are three re-
lated competitions that have been recently introduced: SV-
COMP [21], VerifyThis [55] and RERS Challenge [54]. SV-
COMP initiated in 2011 within TACAS [1] community with
the aim to compare tools for software model checking. Bench-
marks are provided as C programs, while the requirements to
check are provided in terms of linear temporal logic formulas.
SV-COMP targets tools for the exhaustive exploration of all
program behaviors. On the contrary, CRV is dedicated to moni-
toring tools analyzing only a single program’s execution using
runtime and offline verification techniques. In SV-COMP the
memory utilisation is not taken in consideration and the time
needed to verify a property does not affect the program execu-
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tion itself since the verification process is separated from the
program execution. The runtime verification tools competing
in CRV introduce instead an overhead for the monitored pro-
gram and they consume memory resources that could affect
the execution of the program itself. This is the reason why
CRV assigns a score to both the overhead and the memory
utilisation.

VerifyThis [55] is another series of competitions dedicated
to program verification and initiated in 2011. In VerifyThis the
organisers provide to the participants algorithms in a pseudo-
code with an informal specification written in natural language.
The challenge for each team is to formalise the requirements,
implement a prototype and verify whether the implementation
is correct w.r.t. the given requirements. The available time to
accomplish this goal is quite short ranging between 45 and 90
minutes. The format of VerifyThis competition differs with
CRV format because is problem-centred and focuses more
on the skills of the team in formalising and solving the prob-
lem rather than on the tool characteristics and performance.
For this reason, it is even possible for two different teams to
participate with the same tool to the competition.

The Rigorous Examination of Reactive Systems (RERS)
challenge [54] follows a similar problem-centred approach
of VerifyThis in contrast to a more tool-centred approach
followed in CRV. The goal of the RERS challenge is to eval-
uate the effectiveness of various verification and validation
approaches on reactive systems (RS), focusing on the analysis
of a particular class of RS called event-condition-action (ECA)
systems. These systems have transitions for input events that
are guarded by conditions, operates on the internal state and
produce outputs. The RERS challenge consists in verifying a
set of properties on ECA systems: properties can be reachabil-
ity properties or Linear Temporal Logic (LTL) properties. The
teams are free to choose the tool and the method they prefer
and they can also combine different tools in a toolchain in
order to solve the challenge. Another difference with CRV is
the selection of the benchmarks: in CRV the benchmarks are
provided by the participating teams while in RERS the bench-
marks are automatically generated with a procedure discussed
in [78].

Positive points. Several positive aspects are to be noted re-
garding the first edition of CRV competition.

– The competition featured 8 distinct teams participating
in the 3 tracks resulting in 11 participating teams in the
tracks.

– The organisers have designed a sensible evaluation method.
This method has been peer-reviewed and validated by the
participating teams before the beginning of the competi-
tion. The method has been built upon the research efforts
made in the runtime verification community when evaluat-
ing runtime verification prototypes.

– Choices needed to be made regarding the classification
criteria of tracks. Moreover, different tracks could have
been possible: domain of the monitored system, program-
ming language of the monitor, categories of specifications,
a track on elegance of the specification. The organisers

have arranged the tracks of the competition according to
the monitored system: either its programming language
in case of monitoring software or traces. This reflects the
fact inline monitoring has been so far the most popular RV
setting when monitoring software.

Negative points. Several negative aspects are to be noted
regarding the first edition of CRV competition.

– Significant delays were observed regarding benchmark
submission. These delays were due to the substantial ef-
forts required to convey the exact semantics of the specifi-
cations submitted. Indeed, as can be expected, some of the
specifications could be interpreted differently by different
participants. Moreover, as the participating teams mainly
provided specifications in the input language of their tools,
participants had also to formalize them in the specification
language of their own tool.

– Delays were also observed during the phases where the
organizers had to prepare the next phases. For instance,
after the benchmark submission phase, a sanity check
had to be performed regarding the submissions of some
participants. Several iterations were needed to unify the
submissions in spite of the provided provided, which was
consequently not constraining enough or ambiguous on
some aspects. We note that building on this observation,
the next edition of the competition learned from this and
for instance defined standard formats for traces [47].

Memory measurement in Java. It was not entirely clear how
to measure memory usage for the Java benchmarks. It was
decided that memory used by the JVM should be excluded and
the participants were asked to suggest methods for recording
memory usage. The first proposal was to use Java Manage-
ment eXtensions (JMX) to create a separate Java program that
attached to the running benchmark and queried its memory
usage. For completeness we include an example Java program
utilising this method:

public class JMXExample {

private static final String CONNECTOR_ADDRESS =
"com.sun.management.jmxremote."+
"localConnectorAddress";

public static void main(String[] args)
throws Exception {
// attach to target VM
VirtualMachineDescriptor vmd =

VirtualMachine.list().get(0);
VirtualMachine vm = VirtualMachine.attach(vmd);
JMXConnector jmxc = getLocalConnection(vm);
MBeanServerConnection mbsc =
jmxc.getMBeanServerConnection();

MemoryMXBean memory = ManagementFactory.
getPlatformMXBean(mbsc, MemoryMXBean.class);

List<MemoryPoolMXBean> pools = ManagementFactory.
getPlatformMXBeans(mbsc, MemoryPoolMXBean.class);

while (true) {
System.out.println("Used Heap: " +

(memory.getHeapMemoryUsage().getUsed() /
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1000000f) + "mb");
for (MemoryPoolMXBean pool : pools) {
System.out.println("Used " + pool.getName() +

": " + (pool.getPeakUsage().getUsed() /
1000000f) + "mb");

}
System.out.println();
Thread.sleep(100);

}
}

private static JMXConnector
getLocalConnection(VirtualMachine vm)
throws Exception

{
Properties props = vm.getAgentProperties();
String connectorAddress =
props.getProperty(CONNECTOR_ADDRESS);

if (connectorAddress == null) {
props = vm.getSystemProperties();
String home = props.getProperty("java.home");
String agent = home + File.separator + "lib" +

File.separator + "management-agent.jar";
vm.loadAgent(agent);
props = vm.getAgentProperties();
connectorAddress =

props.getProperty(CONNECTOR_ADDRESS);
}

JMXServiceURL url =
new JMXServiceURL(connectorAddress);

return JMXConnectorFactory.connect(url);
}

}

However, this approach required a separate JVM to be
started to run this program. As some benchmarks are very
short-lived this led to the benchmark program terminating
before this method could begin measuring memory utilisa-
tion. An alternative method using the jstat tool (standing
for Java Virtual Machine Statistics Monitoring Tool) was pro-
posed. This method sampled memory usage every 10ms and
dumped the output into a file, which was then parsed after the
benchmark had run to compute memory utilisation. The script
for running a program and recording its memory utilisation is
given below:
#!/bin/bash

java -cp "lib/*:bin" $1 &> out.log &
pid=$!
jstat -gc $pid 10ms >memory.log

echo "Peak memory was " >> out.log
tail -n +2 memory.log | while read line; do
count=0
sum=0.0
for entry in $line; do

if [[ count -eq 2 || count -eq 3 ||
count -eq 5 || count -eq 7 ]]; then

sum=$(bc -l <<< "$entry + $sum")
fi
count=$((count+1))

done
int_sum=$(echo $sum | awk ’{ print int($1) }’)
if [[ $int_sum -gt $max ]]; then

max="$int_sum"
echo "$max"

fi
echo $max

done | tail -1 >> out.log

The time taken to parse the memory.log file was non-
negligible. Therefore, it was necessary to perform separate
runs to measure time overhead and memory utilisation. Both
approaches make use of the same underlying technology so
should produce similar results. Ideally a single method would
have been used but both approaches were used by different
teams in the competition.

Monitoring hardware. In the last decade, the increasing com-
plexity of the circuit design has been making their verification
and validation more convenient to perform using hardware
emulation instead of the classical simulation, a task becoming
very time consuming and expensive for the industry [57,72].

Hardware emulation has opened new interesting chal-
lenges such as how to verify at runtime real-time temporal
properties specified in assertion languages and how to syn-
thesise resource efficient monitoring hardware checking these
properties. FoCs [35] developed by IBM and MBAC [25,26,
27] developed by Zilic and Boulé are important examples of
tools for generating synthesizable hardware monitors from
Property Specification Language (PSL). In [48], Finkbeiner
et al. present a technique to synthesise monitor circuits from
LTL formulas with bounded and unbounded future opera-
tors. More recently, Reinbacher et. al. introduce in [76,77]
synthesizable hardware monitors from different fragments of
Metric Temporal Logic (MTL) and Jaksic et al. in [57,58,72,
79] propose several practical techniques for generating Field-
Programmable Gate Array (FPGA) hardware monitors for
Signal Temporal Logic (STL), an extension of MTL handling
predicates over the real-values.

The first edition of the CRV competition was entirely ded-
icated to software runtime verification tools. We are currently
exploring the possibility to add a special track for hardware
monitoring tools. However, the problem of comparing per-
formances of hardware monitors opens new challenges. In
particular, all the aforementioned approaches use not only dif-
ferent specification languages for the property to monitor, but
also different hardware and dedicated third-party software for
the hardware synthesis, making extremely hard to assess the
real merit of the tools for the automatic monitors generation.

Towards a general specification language (for the competi-
tion).

– every tool is defined in its own logic that is mathematically
defined but have different semantics

– There is no unified specification that the organizers could
use to provide specifications

– Even if such a specification language existed some tools
would handle only a fragment of such logic, one would
have to provide specs in each fragment in such a way that
the competition is fair.

On the Challenges of Monitoring C Programs. In spite of
its maturity and robust industry support, the C programming
language remains a challenging frontier for runtime verifica-
tion practitioners. As a close-to-the-metal, performance-driven
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language, C offers flexible and fine-grained control over mem-
ory, and avoids the use of burdensome safety features; the
programmer is entrusted with the utmost power and respon-
sibility. As a consequence, however, there is little that can be
asserted about the behaviour of a C program other than that
which requires deep, potentially expensive analysis. However,
because the language has long since passed the threshold of
immortality, it is imperative that more scalable and sophisti-
cated tools and techniques be developed to meet the needs of
the C programming community. However, this requires that
several key challenges be properly addressed.

First, it is necessary to achieve good coverage of the lan-
guage’s features and constructs, and this can a very time-
consuming process. Even if one has a highly efficient analysis,
insufficient coverage can severely limit the effectiveness of a
tool at more than a few handful of 1000 lines of code in size.
On the one hand, given the maturity of the language, legacy
support becomes a concern. The libraries participating in a
mature C project may be staggered chronologically, and when
delving into the depths, it is not uncommon to encounter rarely
used built-in functions like setjmp, keyworded modifiers such
as register, and even the use of the goto statement. To its credit,
the C language strives to be parsimonious in its extensions, but
this also means that it is not uncommon to find highly tailored
and difficult to analyze features such as custom-defined mem-
ory allocators. Furthermore, many dialects of C, such as those
intended for use in embedded environments, often extend the
language with compiler-specific and/or platform-dependent
constructs. What is desired is a standard way of monitoring
C programs, but it is difficult to conceive of a comprehensive
solution. As such, tool developers with novel ideas must either
build their work on top of an existing analysis framework or
expend considerable time and energy accruing the necessary
technological capital. In short, bringing innovative analyses to
market can require significant investment.

Second, portability is becoming an increasingly important
issue. In years past, it was enough that a tool could function in
just two or three environments, but these days we are seeing
a proliferation of different kinds of computing environments,
including consumer electronics such as smartphones and so-
phisticated embedded environments such as control systems
for avionics and healthcare. In all of these environments, C is
either used directly or provides libraries for other languages
including Java, Perl, and Python. A common feature of these
new environments is a limited tolerance for runtime over-
head, which is challenging from a verification standpoint. One
possible way of reducing that overhead includes exposing
runtime monitoring code in a way that allows for compiler
optimizations, but because not all C compilers are available
in all environments, many cost-saving measures can actually
exacerbate the portability issue. Another way of controlling
the run-time overhead of monitoring C program is to utilize
various parallel algorithms on back-ends such as graphics pro-
cessing unit (GPU), field-programmable gate array (FPGA),
etc. A use of such back-ends requires profiling the monitors
for obtaining an optimal performance. Such profiling effort
can be prohibitive for scalable runtime verification because

runtime verification techniques are expected to automate mon-
itor generation, and a need of manual intervention during the
profiling effort goes against the principle of automation. De-
signing a monitoring framework that is portable, robust in its
safety guarantees, and minimally expensive remains an open
problem.

8 Conclusions

This paper presents the final results of the first international
competition on runtime verification. A preliminary presen-
tation of the results have been reported during the RV 2014
conference in Toronto, Canada. This paper provides a compre-
hensive overview of the teams and their tools, the submitted
programs, traces, and specifications, the method used to com-
pute the scores, and the final results for each of the tracks.

We expect this report to help the runtime verification com-
munity in several ways. First, this report shall assist the future
organizers of the competition to build on the efforts made to
organize CRV 2014. Second, the report can also be seen as
an entry point to several benchmarks containing non-trivial
programs and properties. This shall help developers of tools
to assess and experiment with their tools.
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11. David Basin, Matúš Harvan, Felix Klaedtke, and Eugen
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Felix Klaedtke, and Heiko Mantel. Scalable offline monitoring.
Formal Methods in System Design, 49(1-2):75–108, 2016.

15. David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen
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