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ABSTRACT
We leverage Büchi games for the runtime enforcement of regular
properties with uncontrollable events. Runtime enforcement con-
sists in modifying the execution of a running system to have it
satisfy a given regular property, modelled by an automaton. We
revisit runtime enforcement with uncontrollable events and propose
a framework where we model the runtime enforcement problem as a
Büchi game and synthesise sound, compliant, and optimal enforce-
ment mechanisms as strategies. We present algorithms and a tool
implementing enforcement mechanisms. We reduce the complexity
of the computations performed by enforcement mechanisms at run-
time by pre-computing the decisions of enforcement mechanisms
ahead of time.
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1 INTRODUCTION
Runtime Verification (RV) consists in checking if the execution of
a running system satisfies some given specification. Unlike static
verification, RV studies a real execution of a system, possibly af-
ter deployment. This paper deals with runtime enforcement, an
extension of runtime verification where executions are corrected
when they violate the property [1, 10, 11, 15]; see [7] for a tuto-
rial on runtime enforcement. The considered properties are regular
properties, that are represented by deterministic and complete au-
tomata. All such properties are monitorable since they are defined
with a semantics over finite words [8]. An enforcement mechanism
modifies an execution: it takes an execution as input and outputs a
possibly-different execution. Enforcement mechanisms may operate
online, meaning that they modify the executions of a system while
it is running, or offline, by reading a log of system events. While
working online, enforcement mechanisms can add a time overhead
due to their need to compute a correct output. We distinguish two
categories of events: controllable events that can be modified by an
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enforcement mechanism, and uncontrollable events that can only be
observed by the enforcement mechanism. Enforcement mechanisms
should be sound and compliant, meaning that the output should sat-
isfy the specification when it is possible, and that the output should
be as close to the input as possible, respectively. The general scheme
is given in Fig. 1.

Motivations. In this paper, we improve the modelling of the en-
forcement mechanisms proposed in [13, 14], as well as the compu-
tation of their output. Such mechanisms should impact the system
as little as possible, thus reducing the time spent by enforcement
mechanisms to compute their behaviour allows us to use them in a
more realistic way. For example, in interactive systems, where the
system interacts with a human user, if an event takes too long to
be output, the user may think that the system failed. It could also
be useful for embedded systems, where computing power may be
reduced. Computing the behaviour of the enforcement mechanism
ahead of the execution and storing it ensures that the computation
does not depend on the size of the automaton, thus allowing the
time spent on online computations by enforcement mechanisms to
be reduced and more predictable. Indeed, not exploring the whole
execution tree for all possible outputs at runtime, as a naive approach
would do, allows us to have computation times that vary less (with a
naive approach, the computation time can become very important
with an increasing number of stored controllable events).

Challenges. Storing the behaviour of enforcement mechanisms
to improve their online computation time induces some changes
compared to previous work (as [13, 14]). The main difficulty resides
in the fact that the number of states of the enforcement mechanism
is infinite. Indeed, the mechanism has the possibility to store con-
trollable events that it may choose to release or not. The number of
events that can be stored at the same time is not bounded, thus the
number of states of the enforcement mechanism is infinite. There-
fore, computing and storing its behaviour for all possible input traces
entails defining appropriate abstractions.

Contributions. A first approach of enforcement with uncontrol-
lable events has been presented in [14] providing sound and compli-
ant enforcement mechanisms. An optimal version of this approach
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Figure 1: Schematic description of an enforcement mechanism
E, modifying the execution σ of the system S to E (σ ), so that it
satisfies the property φ.
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may be found in [13]. In this paper, we propose to extend this
work by computing the behaviour of the enforcement mechanism
using Büchi games. Using Büchi games allows us to compute the
behaviour of the enforcement mechanism before the execution, thus
allowing to trade time complexity with space complexity. When
using an online enforcement mechanism (i.e. an enforcement mech-
anism on a running system), it allows us to produce the output
faster in the worst case than in [14] and [13] where the behaviour
of the enforcement mechanism was computed every time an event
was received. Leveraging games, when an event is received, the
enforcement mechanism only follows a path in a graph, and the
destination vertex is sufficient to indicate if a stored event should
be output or not. Moreover, the generated graph can be visualised
to understand the behaviour of the enforcement mechanism, and it
also shows clearly when an enforcement mechanism can effectively
ensure soundness. We redefine soundness, compliance and optimal-
ity using a set-theoretic view of the system, thus providing a global
vision of the system based on inputs and outputs at any instant. We
give the algorithms (and their complexity analysis) implementing
the behaviour of enforcement mechanisms. We finally present a tool
implementing the proposed approach.

2 PRELIMINARIES AND NOTATION
General notions. An alphabet is a finite set of symbols. A word

over an alphabet Σ is a sequence over Σ. The set of finite words over
Σ is denoted Σ∗. The length of a finite word w is noted |w |, and the
empty word is noted ϵ . Σ+ stands for Σ∗ \ {ϵ }. A language over Σ
is any subset L ⊆ Σ∗. The concatenation of two words w and w ′ is
noted w .w ′ (or ww ′ when clear from the context). A word w ′ is a
prefix of a wordw , notedw ′ 4 w , if there exists a wordw ′′ such that
w = w ′.w ′′. Word w ′′ is called the residual of w after reading the
prefix w ′, noted w ′′ = w ′−1.w . Note that w ′.w ′′ = w ′.w ′−1.w = w .
These definitions are extended to languages in the natural way. A
language L ⊆ Σ∗ is extension-closed if for any words w ∈ L and
w ′ ∈ Σ∗, w .w ′ ∈ L. Given a word w and an integer i such that
1 ≤ i ≤ |w |, we note w (i ) the i-th element of w . Given a tuple
e = (e1, e2, . . . , en ) of size n, for an integer i such that 1 ≤ i ≤ n, we
note Πi the projection on the i-th coordinate, i.e. Πi (e ) = ei . The
tuple (e1, e2, . . . , en ) is sometimes noted 〈e1, e2, . . . , en〉 in order to
help reading. It can be used, for example, if a tuple contains a tuple.
Given a word w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction of w to
Σ′, noted w |Σ′ , as the word w ′ ∈ Σ′∗ whose letters are the letters
of w belonging to Σ′ in the same order. Formally, ϵ |Σ′ = ϵ and
∀σ ∈ Σ∗,∀a ∈ Σ, (w .a) |Σ′ = w |Σ′ .a if a ∈ Σ′, and (w .a) |Σ′ = w |Σ′
otherwise. We also note =Σ′ the equality of the restrictions of two
words to Σ′: for σ and σ ′ in Σ∗, σ =Σ′ σ

′ if σ |Σ′ = σ ′|Σ′ . We define
in the same way 4Σ′ : σ 4Σ′ σ

′ if σ |Σ′ 4 σ ′
|Σ′

.

Automata. An automaton is a tuple 〈Q,q0, Σ,−→, F 〉, where Q is
the set of states, q0 ∈ Q is the initial state, Σ is the alphabet, −→
⊆ Q × Σ × Q is the transition relation and F ⊆ Q is the set of
accepting states. Whenever there exists (q,a,q′) ∈ −→, we note
it q

a
−→ q′. Relation −→ is extended to its reflexive and transitive

closure in the usual way. Moreover, for any q ∈ Q , q
ϵ
−→ q always

holds. An automaton A = 〈Q,q0, Σ,−→, F 〉 is deterministic if ∀q ∈
Q,∀a ∈ Σ, (q

a
−→ q′ ∧ q

a
−→ q′′) =⇒ q′ = q′′. A is complete if

∀q ∈ Q,∀a ∈ Σ,∃q′ ∈ Q,q
a
−→ q′. A word w is accepted by A if

there exists q ∈ F such that q0
w
−−→ q. The language (i.e. set of all

words) accepted by A is noted L (A). A property is a language
over an alphabet Σ. A regular property is a language accepted
by an automaton. In the sequel, we assume that a property φ is
represented by a deterministic and complete automaton Aφ . Given
a complete and deterministic automaton A = 〈Q,q0, Σ,−→, F 〉 and
a word σ ∈ Σ∗, for q ∈ Q , we note q a�er σ the only state such
that q

σ
−→ (q a�er σ ). The completeness of A ensures that q a�er σ

exists, and its determinism ensures that it is unique. We also note
Reach(σ ) = q0 a�er σ . We extend these definitions to languages: if
L is a language, q a�erL =

⋃
σ ∈L q a�erσ and Reach(L) = q0 a�erL.

Graphs and Büchi games. A graph is a couple 〈V ,E〉 such that V
is a set of elements called vertices, E ⊆ V ×V is a relation defining
edges between the vertices. Given a graphG = 〈V ,E〉 and a partition
of V into two subsets V0 and V1, it is possible to play a two-player
game in the arena A = (V0,V1,E). A play over A is a path inG, i.e. a
sequence of vertices such that there exists an edge in G between any
two consecutive vertices in the sequence. A strategy for player P0 is
a mapping σ : V ∗V0 → V such that for all π ∈ V ∗, for all v0 ∈ V0,
(v0,σ (π .v0)) ∈ E, i.e. the strategy gives a vertex that can be reached
from v0. Note that V0 is thus the set of vertices from which P0
can play, whereas the other player, P1, plays from the vertices in
V1. Strategies for P1 are defined in a similar way, replacing V0 by
V1. A play π = v0,v1, . . . is consistent with the strategy σ if for
any vi ∈ V0, vi+1 = σ (v0 . v1 . · · · . vi ), meaning that the strategy
was followed for any vertex in V0. The goal of a game can be, for
example, to reach a state in a given subset of V (reachability game),
or to ensure that a given subset of V is visited an infinite number of
times (Büchi games). Thus, given a subset FG ⊆ V of vertices, the
Büchi game (A, FG ) for P0 consists in finding a winning strategy σ
such that all plays π over A consistent with σ visit an infinite number
of times the set FG (i.e. if π is consistent with σ , π ∈ (V ∗FG )

ω ).
It is known that it is possible to compute the set W0 of winning
vertices for P0 (i.e. the set of vertices from where there exists a
winning strategy for P0), and the associated winning strategy from
all these vertices. From all the other vertices (inV \W0), there exists
a winning strategy for P1, i.e. W1 = V \W0, thus P0 can not win the
game if P1 plays perfectly from one of these vertices.

3 ENFORCEMENT MONITORING OF
PROPERTIES USING BÜCHI GAMES

This paper revisits and extends the approach described in [14] by
writing the definitions in a set-theoretic view instead of a functional
way and proposing a new synthesis technique of Enforcement Mech-
anisms (EM) using Büchi games.

In this section, φ is a regular property defined by a complete
and deterministic automaton Aφ = 〈Q,q0, Σ,−→, F 〉. Recall that the
general scheme of an EM is given in Fig. 1, where S represents
the running system, σ its execution, E the enforcement mechanism,
φ the property to enforce, and E (σ ) the output of the enforcement
mechanism, which should satisfy φ.
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Figure 2: Property φex modelling writes on a shared storage
device

We consider uncontrollable events1 in the set Σu ⊆ Σ. These
events cannot be modified by an EM, so they must be output by
the EM whenever they are received. Let us note Σc = Σ \ Σu the
set of controllable events, which can be modified by the EM. An
EM can decide to buffer them to delay their emission, but it cannot
suppress them (nevertheless, it can delay them endlessly, keeping
their order unchanged).2 Thus, an EM may interleave controllable
and uncontrollable events.

3.1 Enforcement Functions and their
Requirements

We consider an alphabet of actions Σ. We consider functions as sets:
a function from a set A to a set B is a set f ⊆ A × B such that for
any element a in A, there is a unique b in B such that (a,b) ∈ f . We
note F (A,B) the set of all functions from A to B. An enforcement
function is a description of the input/output behaviour of an EM. It
is a function from Σ∗ to Σ∗, increasing on Σ∗ (with respect to 4):

Definition 3.1 (Enforcement function). A function f ∈ F (Σ∗, Σ∗)
is an enforcement function if ∀i1 ∈ Σ∗,∀i2 ∈ Σ∗, (i1 4 i2 ∧ (i1,o1) ∈
f ∧ (i2,o2) ∈ f ) =⇒ o1 4 o2. We note Fenf the set of all
enforcement functions.

An enforcement function is a function that modifies an execution,
and that cannot remove events it has already output.

In the sequel, we define the requirements on an EM and express
them on enforcement functions. As stated previously, the usual
purpose of an EM is to ensure that the executions of a running
system satisfy a property, thus its enforcement function has to be
sound, meaning that its output always satisfies the property:

Definition 3.2 (Soundness). An enforcement function E ∈ Fenf
is sound with respect to φ in an extension-closed set S ⊆ Σ∗ if
∀i ∈ S, (i,o) ∈ f =⇒ o |= φ. We note Fsnd (S ) the set of all
enforcement functions that are sound in S .

The reception of uncontrollable events could lead to the property
not being satisfied by the output of the enforcement mechanism.
Moreover, some uncontrollable sequences could lead to a state of

1This notion of uncontrollable event should not be confused with the notion of uncon-
trollable transition used in some game theory (e.g. [4])
2This choice appeared to us as the most realistic one. Extending the notions presented
in this section in order to handle enforcement mechanisms with suppression is rather
simple.

the property that would be a non-accepting sink state. Thus, the
enforcement mechanism would not be able to make the property
satisfied. Consequently, in Definition 3.2, soundness is not defined
for all words in Σ∗, but in a subset S , since the property could not be
enforceable from the initial state. In practice, S needs to be extension-
closed to ensure that once the enforcement mechanism becomes
sound, its output will always satisfy the property afterwards.

The usual notion of transparency in enforcement monitoring
(cf. [11, 15]) states that the output of an enforcement function is
the longest prefix of the input satisfying the property, implying
that correct executions are left unchanged. However, because of
uncontrollable events, events may be released in a different order
from the one they are received. Therefore, transparency can not be
ensured, and we define the weaker notion of compliance.

Definition 3.3 (Compliance). E ∈ Fenf is compliant with respect
to Σu and Σc, noted compliant(E, Σu, Σc), if ∀i ∈ Σ∗, (i,o) ∈ E =⇒
(o 4Σc i∧o =Σu i∧∀u ∈ Σu, ((i .u,o

′) ∈ E =⇒ o.u 4 o′)). We note
Fcpl (Σu, Σc) the set of all enforcement functions that are compliant
with respect to Σu and Σc.

Intuitively, compliance states that the EM does not change the
order of the controllable events and emits uncontrollable events
simultaneously with their reception, possibly followed by stored
controllable events. When clear from the context, the partition is not
mentioned: E is said to be compliant, we note it compliant(E), and
the set of all compliant functions is then denoted Fcpl .

We say that a property φ is enforceable whenever there exists a
compliant function that is sound with respect to φ.

In addition, an enforcement mechanism should be optimal in the
sense that its output sequences should be maximal while preserving
soundness and compliance. We define the optimality of sound and
compliant enforcement functions as follows:

Definition 3.4 (Optimality). An enforcement function E ∈ Fsnd (S )∩
Fcpl (Σu, Σc) is optimal in S if:

∀E ′ ∈ Fsnd (S ) ∩ Fcpl (Σu, Σc),∀i ∈ S,∀a ∈ Σ,
((i,o) ∈ E ∩ E ′ ∧ (i .a,o′) ∈ E ∧ (i .a,p′) ∈ E ′) =⇒ p′ 4 o′.

Intuitively, optimality states that outputting a longer word than
an optimal enforcement function breaks soundness or compliance.
Since it is not always possible to satisfy the property from the begin-
ning, this condition is restrained to an extension-closed subset of Σ∗,
as in the definition of soundness (see Definition 3.2).

Example 3.5. We consider a simple shared storage device. Af-
ter Authentication, a user can write a value only if the storage is
unlocked. (Un)locking the device is decided by another entity, mean-
ing that it is not controllable by the user. Property φex (see Fig. 2)
formalises the above requirement. φex is not enforceable if the uncon-
trollable alphabet is {LockOn,LockOff,Auth} 3 since reading
the word LockOn from q0 leads to q3, which is not an accepting
state. However, the existence of such a word does not prevent φex
from being enforced for some other input words. If word Auth is
read, then state q1 is reached, and from this state, it is possible to
enforce φex by emitting Write only when in state q1.

3Uncontrollable events are emphasised in italics.
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3.2 Synthesising Enforcement Functions
Example 3.5 shows that some input words cannot be corrected by
the EM because of uncontrollable events. Nevertheless, since the
received events may lead to a state from which it is possible to ensure
that φ will be satisfied (meaning that for any events received as input,
the enforcement mechanism can output a sequence that satisfies φ),
it is then possible to define a subset of Σ∗ in which an enforcement
function is sound.

A compliant enforcement mechanism may store the received
controllable events to emit them after having received another event,
possibly uncontrollable. To ensure soundness, the enforcement
mechanism must know if it is possible to emit some of its stored
controllable events in order to reach an accepting state, from which
it will be able to reach an accepting state even if some uncontrollable
events are received later on. Thus, it should compute the set of words
it can emit to reach such an accepting state. This set will be called G,
and to define it, we solve a Büchi game over a graph representing the
possible actions of an enforcement monitor. Solving a Büchi game
over a graph with a set of goal nodes (referred to as Büchi nodes)
consists in finding the nodes of the graph from where it is possible
to reach a Büchi node infinitely often, no matter what the opponent’s
strategy is. Note that a winning node of a Büchi game is also a
winning node for the reachability game on the same graph, with the
set of Büchi nodes used as the set of goal nodes, since the Büchi
criterion requires that a node is reachable infinitely often (thus, in
particular, once). Besides, Büchi games are more permissive than
safety games, where one wants to remain in the given set of goal
nodes. Since the definition of soundness requires that the output of
the enforcement mechanism always eventually satisfies the property,
the natural choice of game is a Büchi game. Solving a Büchi game
is made by computing a set of nodes of the graph from which there
exists a winning strategy. Then, from any of these winning nodes,
the player can always come back to a Büchi state, whatever the
strategy of the adversary is. Here, we construct a graph such that
the enforcement mechanism is a player, and we compute its winning
nodes, with the Büchi nodes representing a valid execution. The
vertices of the graph are composed of a state in Q and the stored
controllable events of the enforcement mechanism. There exists
two of each of these vertices, one that belongs to player P0 and
one that belongs to player P1. Player P0 represents the enforcement
mechanism, and P1 the environment.

Definition 3.6 (Game graph). The game graph G is defined as
G = 〈V ,E〉, where

• V = Q × Σ∗c × {0, 1},
• E1 = {(〈q,w, 0〉, 〈q,w, 1〉) ∈ V ×V },
• E2 = {(〈q, c .w, 0〉, 〈q a�er c,w, 0〉) ∈ V ×V | c ∈ Σc},
• E3 = {(〈q,w, 1〉, 〈q a�er u,w, 0〉) ∈ V ×V | u ∈ Σu},
• E4 = {(〈q,w, 1〉, 〈q,w .c, 0〉) ∈ V ×V | c ∈ Σc},
• E5 = {(〈q,w, 1〉, 〈q,w, 0〉) ∈ V ×V },
• E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

A vertex 〈q,w, l〉 ∈ V represents the state of the enforcement
mechanism: q ∈ Q is the state of Aφ that has been reached so far
by the output of the enforcement mechanism, w ∈ Σ∗c is the stored
controllable events of the enforcement mechanism, and l ∈ {0, 1}
indicates that the vertex belongs to the player Pl . In the definition
of E, each set of edges represents an action of the enforcement

mechanism or the environment. The enforcement mechanism can
only take two decisions: doing nothing, i.e. letting the environment
play (set E1), or emitting the first stored controllable event (set E2),
in which case it continues to play (since the destinations of the edges
in E2 belong to P0). The sets E3 and E4 represent the reception of
an uncontrollable and a controllable event, respectively. Receiving
an event lets the enforcement mechanism (P0) play. Since games
are infinite, and we only consider finite executions, the environment
can also decide to let the enforcement mechanism play without any
new event (set E5). This allows us to consider finite executions that
produce an infinite path in the game by looping on an edge in E1 and
then one in E5.

Unfortunately, this graph has an infinite number of vertices, it
is thus impossible to compute a winning strategy in a Büchi game
played over this graph. To overcome this, the graph is reduced to
a graph with a finite number of vertices. To do this, first note that
the number of vertices is infinite because the set Σ∗c is not bounded.
Thus, Σ∗c must be abstracted to a finite set. Since the goal is to reach
a state in F , the stored controllable events are used to reach some
states in Q . Since Q is finite, having more controllable events than
|Q | means that (following the Pumping lemma) there is a loop, i.e.
some state in Q is reached twice when emitting all the controllable
events. Thus, the enforcement mechanism can emit all the events
until it reaches this state for the second time, and then its decision
will only depend on the remaining controllable events. Thus, the
number of controllable events can be reduced to at most |Q |. More
precisely, we can reduce Σ∗c to the set of words that allow to reach
a new state (i.e. a state that is not reached by one of its prefixes)
from at least one state in Q . Let us call this set Σnc , and define it as
follows:

Σnc = {w ∈ Σ
∗
c | ∃q ∈ Q,∃c ∈ Σc,∀w

′ 4 w,q a�erw .c , q a�erw ′}

As explained previously, since Q is finite, Σnc is finite as well.
Now, let us redefine G to an abstraction of the game graph:

Definition 3.7 (Abstracted game graph). G = 〈V ′,E ′〉, where
V ′ = Q × Σnc × {0, 1}, and E ′ is the same set as E, but considering
vertices in V ′ instead of V .

G then has a finite number of vertices. Let us now consider
W0 ⊆ V the set of vertices that are winning for P0 in the Büchi game
over G, with the set of Büchi (accepting) vertices being F×Σnc ×{0, 1}.

Example 3.8. The graph in Fig. 3 is computed from property φex,
with Write abbreviated w in the second member of the nodes. The
Büchi nodes are double circled, and the winning nodes for player 0
(i.e. nodes inW0) are in blue and rounded rectangles (in our example,
all the Büchi nodes are winning). Each edge has a different colour
and a different head depending on the set it belongs to. Blue edges
(empty triangular head) belong to E1, green edges (filled triangular
head) belong to E2, orange edges (empty diamond head) belong to
E4, and red edges (filled diamond head) belong to E3 ∪ E5. Each
edge is represented only once, even if there are multiple edges in the
set (for example, because multiple uncontrollable events lead to the
same state from one state). The squared vertex is the initial vertex,
and “−” stands for “ϵ” (empty buffer).

Since the initial vertex is black (not rounded), this means that it
is impossible to ensure that the property will be satisfied from the
beginning. The only way to reach a winning state is to follow a red
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Figure 3: Graph of the game associated to φex

edge from a vertex in {q0} × {ϵ,w,w.w} × {1}, that corresponds to
receiving the uncontrollable event Auth (since it leads to a state in
{q2} × {ϵ,w,w.w} × {0}). Then, Write events can only be emitted
when in state q1. This behaviour is the one expected, since in φex,
the only way to reach a state in F from q0 is to follow a path labelled
by Auth, reaching q1. Then, from q1, it is possible to emit Write
events, and if some uncontrollable events are received that lead to

q2, a LockOff event must occur to get back to q1 and be able to
emit another Write event.

Now, we can use W0 to define G, the set of words that can be
emitted from a state q ∈ Q by an enforcement mechanism with a
buffer σ ∈ Σ∗c .

Definition 3.9 (G). For a state q ∈ Q and a word of controllable
events σ ∈ Σ∗c , we define the set G(q,σ ) as follows:

G(q,σ ) = {w ∈ Σ∗c | w 4 σ ∧ q a�erw ∈ F∧
〈q a�erw,max4 ({w ′ 4 w−1.σ | w ′ ∈ Σnc }), 1〉 ∈W0}.

Intuitively, G is the set of words that can be output by a compliant
enforcement mechanism to ensure soundness.

Now, we use G to define the functional behaviour of the enforce-
ment mechanism.

Definition 3.10 (Functions storeφ , Eφ ). 4 Function storeφ ∈
Σ∗ × (Σ∗ × Σ∗c ) is defined by induction on its first member as follows:

• (ϵ, 〈ϵ, ϵ〉) ∈ storeφ ;
• for σ ∈ Σ∗ and a ∈ Σ, let (σ , 〈σs ,σc 〉) ∈ storeφ , then:{

(σ .a, 〈σs .a.σ
′
s ,σ
′
c 〉) ∈ storeφ if a ∈ Σu

(σ .a, 〈σs .σ
′′
s ,σ

′′
c 〉) ∈ storeφ if a ∈ Σc

, where:

κφ (q,w ) = max4 (G(q,w )∪{ϵ }), for q ∈ Q andw ∈ Σ∗c ,
σ ′s = κφ (Reach(σs .a),σc ),
σ ′′s = κφ (Reach(σs ),σc .a),

σ ′c = σ
′
s
−1.σc ,

σ ′′c = σ
′′
s
−1.(σc .a).

The enforcement function Eφ ∈ Fenf is defined as:

Eφ = {(σ ,σ ′) | ∃w ∈ Σ∗c, (σ , 〈σ
′,w〉) ∈ storeφ }.

σ E

σc

σs

Figure 4: Enforcement function

Figure 4 gives a scheme of the behaviour of the enforcement
function. Intuitively, σs is the word that can be released as out-
put, whereas σc is the buffer containing the events that are already
read/received, but cannot be released as output yet because they lead
to an unsafe state from which it would be possible to violate the
property reading only uncontrollable events (i.e. they lead to a vertex
in W1 = V \W0). Upon receiving a new event a, the enforcement
mechanism distinguishes two cases:

• If a belongs to Σu, then it is output, as required by com-
pliance. Then, the longest prefix of σc that satisfies φ and
leads to a vertex inW0 is also output.

• If a is in Σc , then it is added to σc , and the longest prefix of
this new buffer that satisfies φ and leads to a vertex inW0
is emitted, if it exists.

In both cases, κφ is used to compute the longest word that can be
output, that is the longest word in G for the state reached so far
with the current buffer of the enforcement mechanism, or ϵ if this
set is empty. The parameters of κφ are those which are passed to

4Eφ and storeφ depend on Σu and Σc, but we did not write it in order to lighten the
notations.
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G, they correspond to the state reached so far by the output of the
enforcement mechanism, and its current buffer, respectively.

Some properties are not enforceable (see Example 3.5), but re-
ceiving some events may lead to a state from which it is possible
to enforce. Therefore, it is possible to define a set of words, called
Pre(φ), such that Eφ is sound in Pre(φ), as stated in Proposition 3.14:

Definition 3.11 (Pre). The set of input words Pre(φ) ⊆ Σ∗ is
defined as follows:

Pre(φ) = {σ ∈ Σ∗ | G(Reach(σ |Σu ),σ |Σc ) , ∅}.Σ
∗
c

Intuitively, Pre(φ) is the set of words in which Eφ is sound. This
set is extension-closed, as required by Definition 3.2. In Eφ , using
W0 ensures that once the set G is not empty, it will never be after-
wards, no matter what events are received. Thus, Pre(φ) is the set
of input words such that the output of Eφ belongs to G. Since Eφ
outputs only uncontrollable events until G becomes non-empty, the
definition of Pre(φ) considers that the state reached is the one that
is reached by emitting only the uncontrollable events of σ , and the
corresponding buffer would then be the controllable events of σ .

Example 3.12. Considering the property φex as shown in Fig. 2,
with the uncontrollable alphabet Σu = {Auth,LockOff,LockOn},
Pre(φex) = Write∗.Auth.Σ∗. Indeed, from the initial state q0,
if an uncontrollable event, say LockOff, is received, then q3 is
reached, which is a non-accepting sink state, and thus any vertex
in {q3} × Σnc × {0, 1} will not be in W0. In order to reach a vertex
inW0 (i.e. a vertex in {q1,q2} × Σnc × {0, 1}), it is necessary to read
Auth. Once Auth is read, q1 is reached, and from there, all un-
controllable events lead to either q1 or q2. The same holds true
from q2. Thus, it is possible to stay in the accepting states q1 and
q2, by delaying Write events when in q2 until a LockOff event
is received. Consequently, {q1,q2} × Σnc × {0, 1} ⊆ W0, and thus
Pre(φex) = Write∗.Auth.Σ∗, since Write events can be buffered
while in state q0 until event Auth is received, leading to a vertex in
{q1} × (Write∗ ∩ Σnc ) × {0, 1} ⊆W0.

Considering the property φex defined in Fig. 2, we illustrate in
Table 1 the enforcement function by showing the evolution of σs
and σc with input σ = Auth . LockOn . Write . LockOff.

Table 1: Evolution of (σ , 〈σs ,σc 〉) ∈ storeφex

σ σs σc
ϵ ϵ ϵ
Auth Auth ϵ
Auth.LockOn Auth.LockOn ϵ
Auth.LockOn.Write Auth.LockOn Write
Auth.LockOn.Write.LockOff Auth.LockOn.LockOff .Write ϵ

Eφ (as per Definition 3.10) is an enforcement function that is
sound with respect to φ in Pre(φ), compliant with respect to Σu and
Σc, and optimal in Pre(φ).

PROPOSITION 3.13. Eφ is an enforcement function as per Defi-
nition 3.1.

Sketch of proof. We have to show that for all σ and σ ′ in Σ∗,
(σ ,σo ) ∈ Eφ ∧(σ .σ ′,σ ′o ) ∈ Eφ =⇒ σo 4 σ ′o . Following the
definition of storeφ , this holds provided that σ ′ ∈ Σ (i.e. σ ′ is a
word of size 1). Since 4 is an order, it follows that the proposition
holds for all σ ′ ∈ Σ′.

q0 q1 q2

u

c

u

c

u, c

Figure 5: Property that can be enforced by blocking all control-
lable events c, thus outputting only the uncontrollable ones u.

PROPOSITION 3.14. Eφ is sound with respect to φ in Pre(φ), as
per Definition 3.2.

Sketch of proof. We have to show that if σ ∈ Pre(φ), then (σ ,σo ) ∈
Eφ =⇒ σo |= φ. The proof is made by induction on σ . In the
induction step, considering a ∈ Σ, we distinguish three cases:

(1) σ .a < Pre(φ). Then the proposition holds.
(2) σ .a ∈ Pre(φ), but σ < Pre(φ). Then the input reaches

Pre(φ), and since it is extension-closed, all extensions of σ
also are in Pre(φ), and we prove that the proposition holds
considering the definition of Pre(φ).

(3) σ ∈ Pre(φ) (and thus, σ .a ∈ Pre(φ) since it is extension-
closed). Then, we prove that the proposition holds, based
on the definition of storeφ , and more precisely on the defi-
nition of G, that usesW0 to ensure that there always exists
a compliant output that satisfies φ.

PROPOSITION 3.15. Eφ is compliant, as per Definition 3.3.

Sketch of proof. The proof is made by induction on the input
σ ∈ Σ∗. Considering σ ∈ Σ∗ and a ∈ Σ, the proof is straightforward
by considering the different values of (σ .a,σo ) ∈ storeφ , (σ .a) |Σu ,
and (σ .a) |Σc , when a ∈ Σc and a ∈ Σu.

REMARK 1. Notice that for some properties, an enforcement
function that would block all controllable events may still be sound
and compliant. Consider for instance the property represented in
Fig. 5, where c is a controllable event, and u an uncontrollable event.
Then, outputting only the eventu and buffering all the c events allows
us to stay in state q0, which is sound since {q0} × (c∗∩Σnc )× {0, 1} ⊆
W0. This means that an enforcement mechanism that blocks all
controllable events would be sound and compliant. Nevertheless,
if c .c is received, it can be output to reach state q2, which is also
accepting and {q2} × Σnc × {0, 1} ⊆W0. Then it is possible to release
more events. Therefore, an enforcement mechanism that would
output two c events when they are received would be “better” than
the first one blocking all of them, in the sense that its output would
be longer (and thus closer to the input).

For any given input σ ∈ Pre(φ), Eφ (σ ) is the longest possible
word that ensures soundness and compliance, i.e. controllable events
are blocked only when necessary. Thus, Eφ is also optimal in Pre(φ):

PROPOSITION 3.16. Eφ is optimal in Pre(φ), as per Defini-
tion 3.4.

Sketch of proof. The proof is made by induction on the input
σ ∈ Σ∗. Once σ ∈ Pre(φ), we know that (σ ,σo ) ∈ Eφ =⇒ σo |= φ
since Eφ is sound in Pre(φ). Eφ is optimal because, in storeφ , κφ
provides the longest possible word. If a longer word were output,
then either the output would not satisfy φ, or it would lead to a vertex
that is not inW0, meaning that there would exist an uncontrollable
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word leading to a non-accepting state and to a vertex that would
not be in W0. Then, the enforcement mechanism would have to
output some controllable events from the buffer to reach an accepting
state, but since the vertex is not in W0, there would exist again an
uncontrollable word leading to a non-accepting state and a vertex
not in W0. By iterating, the buffer would become ϵ whereas the
output of the enforcement mechanism would be leading to a non-
accepting state. Therefore, outputting a longer word would mean
that the function is not sound. This means that Eφ is optimal in
Pre(φ), since it outputs the longest word that allows us to be both
sound and compliant.

3.3 Enforcement Monitors
Enforcement monitors are operational descriptions of enforcement
mechanisms. We give a representation of an enforcement mech-
anism for a property φ as an input/output transition system. The
input/output behaviour of the enforcement monitor is the same as
the one of the enforcement function Eφ defined in Section 3.2. En-
forcement monitors are purposed to ease the implementation of
enforcement mechanisms, since they give an operational representa-
tion of the enforcement mechanism.

Definition 3.17 (Enforcement monitor). An enforcement monitor
E for φ is a transition system 〈CE , cE0 , Γ

E , ↪→E〉 such that:

• CE = Q × Σ∗ is the set of configurations.
• cE0 = 〈q0, ϵ〉 is the initial configuration.
• ΓE = Σ∗ × {dump(.), pass-uncont(.), store-cont(.)} × Σ∗ is the

alphabet, where the first, second, and third members are an input
sequence, an enforcement operation, and an output sequence,
respectively.

• ↪→E ⊆ CE × ΓE × CE is the transition relation, defined as the
smallest relation obtained by applying the following rules in order
(where w/ ./ /w ′ stands for (w, ./,w ′) ∈ ΓE ):

– Dump: 〈q,a.σc 〉 ↪
ϵ/ dump(a)/a
−−−−−−−−−−−−→E 〈q

′,σc 〉, if a ∈ Σc,
G(q,a.σc ) , ∅ and G(q,a.σc ) , {ϵ }, with q′ = q a�er a,

– Pass-uncont: 〈q,σc 〉 ↪
a/ pass-uncont(a)/a
−−−−−−−−−−−−−−−−−→E 〈q

′,σc 〉, with
a ∈ Σu and q′ = q a�er a,

– Store-cont: 〈q,σc 〉 ↪
a/ store-cont(a)/ϵ
−−−−−−−−−−−−−−−→E 〈q,σc .a〉, with a ∈

Σc.

In E, a configuration c = 〈q,σ 〉 represents the current state of
the enforcement mechanism. The state q is the one reached so far
in Aφ with the output of the monitor. The word of controllable
events σ represents the buffer of the monitor, i.e. the controllable
events of the input that it has not output yet. Rule dump outputs
the first event of the buffer if it can ensure soundness afterwards
(i.e. if there is a non-empty word in G, that must begin with this
event). Rule pass-uncont releases an uncontrollable event as soon
as it is received. Rule store-cont simply adds a controllable event at
the end of the buffer. Compared to Section 3.2, the second member
of the configuration represents buffer σc in the definition of storeφ ,
whereas σs is here represented by state q which is the first member
of the configuration, such that q = Reach(σs ).

PROPOSITION 3.18. The output of the enforcement monitor E
for input σ is Eφ (σ ).

In Proposition 3.18, the output of the enforcement monitor is
the concatenation of all the outputs of the word labelling the path
followed when reading σ .

Sketch of proof. The proof is made by induction on the input
σ ∈ Σ∗. We just consider the rules that can be applied when receiving
a new event. If the event is controllable, then rule store-cont() can
be applied, possibly followed by rule dump() applied once or more
times. If the event is uncontrollable, then rule pass-uncont() can
be applied, again possibly followed by rule dump() applied once or
more times. Since rule dump() applies only when there is a non-
empty word in G, then this word must begin with the first event of
the buffer, and the rule dump() can be applied again if there was a
word in G of size at least 2, meaning that there is another non-empty
word in the new set G... Thus, the output of all the applications of the
rule dump() corresponds to the computation of κφ in the definition
of storeφ , and consequently the outputs of E and Eφ are the same.

4 Algorithms and Implementation
We describe some of the algorithms that allow us to use a game graph
(as per Definition 3.6) to define an enforcement mechanism, and
discuss their time complexity. We suppose that the set of winning
nodes of the graph is known, as there exist well-known algorithms
to compute it (see for example [5]).

4.1 Algorithms
Algorithm 1 computes the set Σnc (see Section 3.2), the set of words
that allow to reach a state that is unreachable with all its prefixes from
at least one state. Algorithm 1 uses a recursive function described in
Algorithm 2. The algorithm builds the words incrementally, adding
each possible event to a word in the set, until adding an event does
not allow to reach a new state from any state. We make use of arrays
of one and two dimensions. Function arrayInit(m,n) returns an
array ofm rows and n columns, when n is not specified, it returns a
1-dimensional array of sizem. The returned array is filled with 0.

input :An automaton A = 〈Q = {qi | i ∈ [1;n]}, q0, Σ = Σu ∪ Σc, δ, F 〉
output :The set Σnc as defined in Section 3.2

1 reachable← arrayInit(n, n);
2 lasts← arrayInit(n);
3 Σnc ← {ϵ };
4 for i ← 1 to n do
5 reachable[i, i ]← 1;
6 lasts[i ]← qi ;
7 end
8 foreach c ∈ Σc do
9 Σnc ← Σnc ∪ computeΣ

n
c Rec(A, c , reachable, lasts);

10 end

Algorithm 1: Algorithm for computing Σnc

Algorithm 1 first initialises Σnc to {ϵ }. Then, the two arrays
reachable and lasts are initialised accordingly, i.e.
reachable is filled with 0, with 1 on the diagonal, and lasts[i]
is qi . Words are then added to Σnc by calling the recursive function
computeΣnc Rec described in Algorithm 2. The array reachable
is an array of size n × n, where n = |Q |, such that reachable[i, j]
is equal to 1 if there is a prefix w ′ of w such that qi a�erw ′ = qj ,
and 0 otherwise. The array lasts is an array of size n, such that
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input :An automaton A = 〈Q = {qi | i ∈ [1;n]}, q0, Σ = Σu ∪ Σc, δ, F 〉,
reachable, lasts as defined in Algorithm 1, w ∈ Σ∗c

output :The set of all the extensions of w that belong to Σnc
1 Function computeΣnc Rec (A, w, reachable, lasts):
2 Σnc ← ∅;
3 foreach c ∈ Σc do
4 reachableAfter← reachable;
5 for i ← 1 to n do
6 let j ∈ [1;n] be such that lasts[i ] a�er c = qj ;
7 reachableAfter[i ,j ]← 1;
8 lastsAfter[i ]← qj ;
9 end

10 if reachableAfter , reachable then
11 Σnc ← Σnc ∪{w}∪

computeΣnc Rec(A, w . c, reachableAfter, lastsAfter);
12 end
13 end
14 return Σnc ;
15 end

Algorithm 2: Function computeΣnc Rec

for all i ∈ [1;n], lasts[i] = qi a�er w. The function considers
recursively all the extensions of w, and add them to Σnc until the
array reachable stabilises, and then returns the computed Σnc .

The worst-case complexity of Algorithm 1 in terms of assign-
ments is at most 2n + |Σc |n

2−n , where n = |Q |.
The following algorithms define the primitives of an enforcement

mechanism. A state of the enforcement mechanism is represented
by a tuple in V ×V × Σ∗c × Σ∗ × Σ∗, where V is the set of nodes of
the graph G defined in Definition 3.7. The first node is the node
reached by the output of the enforcement mechanism (real node).
The second node is the strategy node, i.e. the first winning node
that can be reached by outputting the first events of the buffer, or
the node reached by outputting all the buffer if such a node does not
exists. The third member is the buffer composed of the controllable
events that have not been output yet. The fourth member is the input,
and the fifth is the output.

The first function is enforcerInit (not provided here, due to
the lack of space), that returns the initial state of the enforcer, i.e.
(〈q0, ϵ〉, 〈q0, ϵ〉, ϵ, ϵ, ϵ ).

input :A state (〈qr , br , 0〉, 〈qs , bs , 0〉, b, i, o) of the enforcer, an event e ∈ Σ
output :The state of the enforcer after having received e

1 Function enforcerEventReceived ((〈qr , br , 0〉, 〈qs , bs , 0〉, b, i, o), e):
2 if e ∈ Σc then
3 if br . e ∈ Σnc then
4 r← 〈qr , br . e, 0〉;
5 else
6 r← 〈qr , br , 0〉;
7 end
8 w← min4 ( {w ′ 4 bs | w ′−1 . (bs . e) ∈ Σnc });
9 s← 〈qs a�er w, w−1 . (bs . e), 0〉;

10 return (r, s, b . e, i . e, o);
11 else /* e ∈ Σu */
12 r← 〈qr a�er e, br , 0〉;
13 w← min4 ( {w ′ 4 b | 〈qr a�er e a�erw ′, max4 ( {w ′′ 4

w ′−1 . b | w ′′ ∈ Σnc }), 0〉 ∈W0 } ∪ {b});
14 s← 〈qr a�er e a�er w, max4 ( {w ′ 4 w−1 . b | w ′ ∈ Σnc }), 0〉;
15 return (r, s, b, i . e, o . e);
16 end
17 end

Function enforcerEventReceived(state, event)

Function enforcerEventReceived computes the next state
of the enforcer after the reception of an event. If the event is con-
trollable, then only the strategy node is updated; if the event is
uncontrollable, then it is immediately emitted and the real node is
changed accordingly, then the strategy node is computed from this
new node. The time complexity of this function is linear in the size
of the buffer.

input :A state (r, s, b, i, o) of the enforcer
output :EMIT if it is possible to emit some controllable events, DONTEMIT

otherwise
1 Function enforcerGetStrat ((r, s, b, i, o)):
2 if r , s and s ∈W0 then
3 strat← EMIT;
4 else
5 strat← DONTEMIT;
6 end
7 return strat;
8 end

Function enforcerGetStrat(state)

input :A state (〈qr , br , 0〉, 〈qs , bs , 0〉, e . b, i, o) of the enforcer, where
e ∈ Σc and b ∈ Σ∗c

output :The state of the enforcer after having emitted the first controllable event
of its buffer

1 Function enforcerEmit ((〈qr , br , 0〉, 〈qs , bs , 0〉, e . b, i, o)):
2 s← 〈qs , bs , 0〉;
3 r← 〈qr a�er e, b, 0〉;
4 w← min4 ( {w ′ 4 b | 〈qr a�er e a�erw ′, max4 ( {w ′′ 4 w ′−1 . b |

w ′′ ∈ Σnc }), 0〉 ∈W0 } ∪ {b});
5 s← 〈qr a�er e a�er w, max4 ( {w ′ 4 w−1 . b | w ′ ∈ Σnc }), 0〉;
6 return (r, s, b, i, o . e)
7 end

Function enforcerEmit(state)

Function enforcerGetStrat returns the strategy to follow.
If the strategy node is ahead of the real node, and it is a winning node,
then the strategy is to emit the first event of the buffer. Otherwise, the
strategy is not to emit. This function has a constant time complexity.

Function enforcerEmit emits the first event of the buffer. The
real node is updated accordingly, and the strategy node is unchanged
except if the real node caught up with it (i.e. they are equal), in which
case the strategy node is updated accordingly. The time complexity
of this function is linear in the size of the buffer.

input :A property φ , described by an automaton A, the game graph G
associated to φ , the input sequence of events, through the function
read ()

output :The output of the enforcer mechanism

1 EM← enforcerInit¡A, G¿;
2 while The input sequence has not been read entirely do
3 e← read();
4 EM← enforcerEventReceived(EM, e);
5 while enforcerGetStrat(EM) = EMIT do
6 EM← enforcerEmit(EM);
7 end
8 end

Algorithm 3: Main algorithm to enforce a property

Algorithm 3 describes the main algorithm that uses all these
functions to actually enforce a property. It needs one more func-
tion: read() which returns the next input event. The algorithm
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first creates an enforcement monitor for the given property with
enforcerInit, then all the events from the input are read with
function read, and fed to the enforcer with function
enforcerEventReceived. Then, the enforcer emits a max-
imal number of events from its buffer with enforcerEmit, i.e.
until enforcerGetStrat indicates that is should not emit. Note
that emitting events is done by adding the events to the output of the
enforcer. The time complexity of this algorithm between two calls
to read is linear in the size of the buffer, and thus does not depend
on the size of the automaton.

4.2 Implementation
We implemented the algorithms in the C programming language.
Our tool takes as input a file describing an automaton, and reads
the events from its standard input. It outputs information on the
evolution of the state of the enforcement mechanism as well as a
summary of the execution when it has ended on its standard output.
This approach allows us to adapt easily the tool in order to use it
with off-the-shelf applications. The tool first creates the game graph
from the automaton, then solves the Büchi game on it. Then, the
enforcement mechanism is initialised, and then used to compute
the controllable events that can be emitted. When the end of the
input is reached, the tool displays first the input of the enforcement
mechanism, then its output and the remaining events of its buffer at
the end of the the execution. Lastly, it displays a verdict indicating
whether the execution ended in an accepting state of the automaton.

Performance Analysis. We provide some execution times of our
tool, running on the example given in the paper (φex). We evaluated it
on 20 randomly selected inputs of 20 events each. Table 2 shows the
inputs and the corresponding mean times taken by the enforcement
mechanism to compute its output after each event. The times are
given in nanoseconds. The means have been computed over 100
iterations. The inputs are abbreviated: w stands for Write, f for
LockOff, n for LockOn, and a for Auth. The results have been
obtained using a computer running Ubuntu 16.04 with a 3.40 GHz
Intel Core i7 CPU with 16 GB RAM. In Table 2, all the values
have the same order of magnitude, showing that the execution time
depends little on the input sequence. Thus, the execution time of our
enforcement mechanism is quite stable, which makes it reliable.

5 RELATED WORK AND DISCUSSION
Runtime enforcement was pioneered by the work of Schneider with
security automata [15], a runtime mechanism for enforcing safety
properties. In [15], monitors are able to stop the execution of the
system once a deviation of the property has been detected. Later,
Ligatti et al. proposed edit-automata [11], a more powerful model
of enforcement monitors able to insert and suppress events from the
execution, thus permitting to enforce non-safety properties. Later,
Falcone et al. proposed more general models where the monitors can
be synthesised from regular properties [10]. Another recent approach
by Dolzehnko et al. [6] introduces Mandatory Result Automata
(MRAs). MRAs extend edit-automata by refining the input-output
relationship of an enforcement mechanism and thus allowing a more
precise description of the enforcement abilities of an enforcement
mechanism in concrete application scenarios. All these approaches
do not consider uncontrollable events.

Basin et al. [2] introduced uncontrollable events for security au-
tomata [15]. The approach in [2] allows to enforce safety properties
where some of the events in the specification are uncontrollable.
More recently, they proposed a more general approach [1] related
to enforcement of security policies with controllable and uncontrol-
lable events. They presented several complexity results and how to
synthesise enforcement mechanisms, but they did not provide a tool
implementation.

To our knowledge, two runtime enforcement methods using
games have been proposed. In [3], Bloem et al. focus on enforce-
ment of safety properties for reactive hardware systems, i.e. systems
with boolean signals as inputs and outputs. They propose a method
based on a 2-players safety games in order to synthesise a variant
of an enforcement monitor called a safety shield and present a tool
implementing this approach. This shield ensures correctness (i.e.
soundness), and minimum interference according to a notion of dis-
tance permitting to measure the deviation between the output and
the input of the shield. More recently, Wu et al. propose in [16]
to improve the algorithm of [3] in the way that it takes the best re-
covery strategy among all possible ones, permitting to minimise the
deviation, especially in case of burst errors. These two approaches
are limited to safety properties and do not support uncontrollable
events.

6 CONCLUSION AND FUTURE WORK
This paper revisits the work done in [13, 14] and introduces another
way to compute the behaviour of the defined enforcement mecha-
nisms in case of uncontrollable events using a Büchi game. Thus,
we define enforcement monitors at two levels of abstraction, one is
functional and the second operational. As in [13, 14], we consider
that some events are uncontrollable, meaning that they are only ob-
servable by the enforcement monitor, that must output them when
they are received. We introduce a different way to compute the be-
haviour of the enforcement mechanism using a Büchi game, that is
equivalent to the behaviour of the enforcement mechanism described
in [13, 14]. Given a property, we build a graph over which we solve
a Büchi game representing the behaviour of the enforcement mech-
anism. Even though this graph should have an infinite number of
vertices, it is possible to reduce it to a finite number, which allows
us to store it. The behaviour of the enforcement mechanism only
depends on the “current” vertex in the graph. When receiving an
event, the enforcement mechanism only updates the current vertex
by following some path in the graph, instead of computing again
the set of winning configurations. This reduces the time spent in
computing the behaviour of the enforcement mechanism, which is
one of the main inconveniences when using enforcement mecha-
nisms on running systems. Computing and storing the graph allows
us to compute offline the behaviour of the enforcement mechanism,
providing better performance at runtime.

We also provide a new way to describe soundness, compliance
and optimality with a global view of the system based on inputs and
outputs, and we present an implementation showing the effectiveness
of the approach.

As a future work, we intend to investigate the runtime enforce-
ment of timed properties [12] using timed games. We consider using
the method introduced in this paper to enforce timed properties, as
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Table 2: Table of the mean execution times of our tool for different inputs

Input Times
f n a w w w a a a w a w a w f n w w n n 724 515 355 275 318 287 677 471 321 253 592 233 453 230 500 437 231 241 555 607
f f n n w f a w n w f a f f n n a w n f 707 534 364 423 251 345 435 222 314 285 794 389 337 320 328 321 319 244 453 969
n n w n f n a n n n a w w f a a n w n f 726 507 257 470 336 282 424 278 268 428 305 218 290 617 372 312 316 241 436 495
a a f a a a w n f f w n f w f a a a n a 700 498 394 414 281 320 545 292 320 427 322 288 279 282 273 275 274 301 383 314
n w f a n f n w a f n a a a w f a a w w 728 307 505 460 310 294 412 216 299 317 425 285 277 276 279 610 368 310 238 379
a w f w a w a w a a w w f a a n n w n a 689 617 464 459 318 432 364 287 307 426 285 276 317 274 267 293 287 217 437 318
n w a a n a n f n f f n w w f n a n w f 692 304 472 452 313 275 417 308 277 442 300 281 216 293 610 370 317 312 243 562
a a f f w a a a n a a n a a n w f w a n 677 502 392 429 468 346 354 273 314 413 271 278 264 263 278 221 450 324 377 318
w a n n a f n n w f f a a f w w f w f n 74 1309 432 421 293 444 353 272 222 621 288 274 275 275 326 289 272 309 380 315
n w f w a f n w n w n w f w n a a a f a 710 302 492 221 452 317 351 347 591 256 586 226 453 224 453 428 402 396 458 516
a w a w n a f a n n w w f w w f n n w n 680 620 405 461 344 342 405 281 316 432 223 254 571 300 283 303 283 383 286 365
w n f w w a n w n w n n f f f f w w n f 77 1010 501 246 426 629 454 336 420 240 617 414 401 386 380 379 230 244 531 663
a a n a n n f f n a a f w n a a w f f n 690 506 379 513 326 333 388 293 306 421 292 284 470 287 280 278 224 474 394 320
f a f w a a a w a n n n f a a a a f n n 735 503 374 363 422 283 405 221 288 323 428 282 285 279 276 272 268 291 315 379
n n n w w w w w f w n f w n w n w n f f 712 503 335 283 314 286 262 329 788 255 668 459 230 478 228 492 229 515 565 635
a a a a w w f f a f f f w w n f n f n a 679 512 345 409 483 369 430 315 309 434 294 279 295 287 290 287 287 311 387 320
n f w n f n a a n w a n w n w w f a w w 711 529 258 478 330 290 422 278 280 217 462 278 276 599 254 240 501 420 232 368
f f n a w w a f w f a a n a a n w w n f 704 519 352 418 240 230 365 394 278 630 513 325 328 305 297 318 237 236 497 528
w a n a w w w w n a w n f f f w f n n w 106 1320 447 438 226 247 324 352 714 458 388 475 1077 312 282 346 374 432 324 204
a n n f f f n n f w a f w w f n f n n n 678 527 342 439 299 331 359 276 306 598 348 278 355 283 283 282 272 306 380 308

done in [9] without uncontrollable events and with suppression; and
in [13] with uncontrollable events and without suppression. The
graph would be bigger due to the presence of clocks in the automa-
ton, but performance should be improved. The gain in computation
would be higher, and this would even be more interesting in this set-
ting since it might allow timed properties to be enforced on devices
with little computational power.
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[12] Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.:
Runtime enforcement of timed properties revisited. Formal Methods in System
Design 45(3), 381–422 (2014)

[13] Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal Enforcement
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