
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Runtime Enforcement Monitors:
composition, synthesis, and enforcement abilities
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Abstract Runtime enforcement is a powerful technique to ensure that aprogram will re-
spect a given set of properties. We extend previous work on this topic in several directions.
Firstly, we propose a generic notion of enforcement monitors based on a memory device and
finite sets of control states and enforcement operations. Moreover, we specify their enforce-
ment abilities w.r.t. the general Safety-Progress classification of properties. Furthermore,
we propose asystematictechnique to produce a monitor from the automaton recognizing a
given safety, guarantee, obligation or response property.Finally, we show that this notion
of enforcement monitors is more amenable to implementationand encompasses previous
runtime enforcement mechanisms.

Keywords runtime enforcement· monitor · safety-progress classification· monitor
synthesis· composition

1 Introduction

The growing complexity of nowadays programs and systems induces a rise of needs in
validation. With the enhancement of engineering methods, software components tend to be
more and more reusable. When retrieving an external component, the question of how this
code meets a set of proper requirements arises. Using formalmethods appears as a solution
to provide techniques to regain the needed confidence. However, these techniques should
remain practical enough to be adopted by software engineers.

Runtime monitoring(see [1,2] for brief overviews) falls in this category. It consists in
supervising at runtime the execution of an underlying program against a set of expected
properties: using a dedicated monitor allows to detect occurrences of specific property vi-
olations. Such a detection might provide a sufficient assurance. However, for some kind of

Y. Falcone, L. Mounier, J-C. Fernandez
UJF-Grenoble 1, Grenoble INP, CNRS VERIMAG, Grenoble F-38041 France
J-L. Richier
UJF-Grenoble 1, Grenoble INP, CNRS LIG, Grenoble F-38041 France
Tel.: +33-456520354
Fax: +33-456520446
E-mail: Firstname.Lastname@imag.fr



2

systems a misbehavior might be not acceptable. To prevent this, a possible solution is to
enforcethe desired property: the monitor not only observes the current program execution,
but it also controls it in order to ensure that the expected property is fulfilled.

Runtime enforcement monitoringwas initiated by the work of Schneider [3] onsecurity
automata. In this work the monitors watch the current execution sequence and halt the un-
derlying program whenever it deviates from the desired property. Such security automata
are able to enforce the class of safety properties [4], stating thatnothing bad happens during
program execution. Later, Viswanathan [5] noticed that the class of enforceable properties
is impacted by the computational power of the enforcement monitor. As enforcement me-
chanisms can implement no more than computable functions, the enforceable properties are
included in the decidable ones. More recently, Ligatti et al. [6,7] showed that it is possible
to enforce at runtime more than safety properties. Using more powerful enforcement me-
chanisms callededit-automata, it is possible to enforce the larger class ofinfinite renewal
properties, able to express some kinds ofobligationsused in security policies. To better cope
with practical resource constraints, Fong [8] studied the effect of memory limitations on en-
forcement mechanisms (calledshallow-automata). The various mechanisms and operated
controls usually remaintransparent, meaning that they always output thelongest correct
prefix of the original execution sequences. Therefore the initialsequence is minimally al-
tered.

eventsevents Monitor

memory

σ |= Π? o |= Π

Enforcement

Π

In this paper, we introduce a generic formalism for
runtime enforcement under the transparency constraint.
The proposed mechanism is schematically represented,
in its most general form, by the figure on the left. This
representation encompasses several real software imple-
mentations that can be assimilated to enforcement moni-

tors,e.g., an access control mechanism where the input sequence is produced by a user and
the output sequence is sent to a secured server.

A runtime enforcement monitor is a decision procedure dedicated to a propertyΠ . It
reads a finite (and possibly infinite) sequence of eventsσ and produces in output a new
finite (and possibly infinite) sequenceo. The monitor is equipped with an internal memory
and a set of operations on the input events (possibly using the memory). Some constraints
(e.g., transparency) may exist betweenσ and o that influence the operations performed
by the monitor while readingσ . For instance, let us consider a transactional propertyΠ
to be enforced, stating that a given operation should be logged whenever it occurs. The
transparency constraint leads the monitor to store some events ofσ (and thus not producing
them in output) as long as the transaction is not properly completed (the operation occurred,
but it has not been logged yet). On the other hand, whenever the propertyΠ is satisfied, the
monitor simply dumps immediately each input event (together with the events previously
stored in its memory). In some particular cases, by examining Π , the monitor may also
determine that, at some point, whatever are the possible upcoming events, the input sequence
will never(resp. willalways) satisfy the property in the future. In such a situation thisinput
sequence can be definitely blocked (resp. the monitor can be switched off, since it is not
required anymore).

Our contributions. In this paper, we propose to extend previous work in runtime enforce-
ment monitoring in several directions. Firstly, we study the problem of enforcement rela-
tively to the so-calledSafety-Progresshierarchy of regular properties [9,10]. This classi-
fication differs from the more classical safety-liveness classification [11,12] by offering a
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rather clear characterization of a number of interesting kinds of properties (e.g., obligation,
accessibility, justice, etc.). Thus, it provides a finer-grain classification of enforceable pro-
perties. Moreover, in this Safety-Progress hierarchy, each class of regular property can be
characterized by a particular kind of finite-state automaton AΠ . Secondly, we introduce a
generic notion of enforcement monitor based on afinite set of control statesand anauxil-
iary memory. This general notion of enforcing monitor encompasses the previous notions of
security automata, edit-automata and “shallow history” automata. Thirdly, we show how to
generate an enforcement monitor forΠ in a systematic way, from a recognizing automaton
AΠ .

A preliminary version of this paper appeared in [13]. This paper brings the following ad-
ditional contributions. It first contains a more comprehensive theoretical basis as we revisit
and extend results about the Safety-Progress classification of properties. Moreover, this pa-
per introduces the notion ofe-properties which are more suitable to represent and delineate
the space of enforceable properties. We added more details in each section, and complete
proofs of all mentioned theorems. Furthermore, we present the notion of enforcement mo-
nitor composition. At last we supply a comparison with related work and explain in details
the advantages of the model of enforcement monitors proposed in this paper.

Paper organization.The remainder of this article is organized as follows. Section 2 intro-
duces some preliminary notations for our work. In Section 3 we recall briefly the necessary
elements from the Safety-Progress classification of properties. We also add additional re-
sults to this classification. Then, we present our notion of enforcement monitor and their
properties in Section 4. We address the problem of enforcement monitor composition in
Section 5. Section 6 first exposes enforcement monitor synthesis and the proof of its cor-
rectness, and then studies enforcement capability of monitors w.r.t. Safety-Progress classes.
Section 7 compares these results and the enforcement monitors with previous work. Finally,
Section 8 gives some concluding remarks and directions for future work.

2 Preliminaries and notations

This section introduces some preliminary notations about the notions ofprogram execution
sequencesandprogram properties.

2.1 Sequences, and execution sequences

Sequences.Considering a finite set of elementsE, we define notations about sequences of
elements belonging toE. A sequenceσ containing elements ofE is formally defined by a
total functionσ : I → E whereI is either the interval[0,n] for somen∈ N, or N itself (the
set of natural numbers). We denote byE∗ the set of finite sequences overE, by E+ the set
of non-empty finite sequences overE, and byEω the set of infinite sequences overE. The
setE∞ = E∗ ∪Eω is the set of all sequences (finite or not) overE. The empty sequence is
denotedε . The length (number of elements) of a finite sequenceσ is denoted|σ | and the
(i +1)-th element ofσ is denoted byσi . For two sequencesσ ∈ E∗,σ ′ ∈ E∞, we denote by
σ ·σ ′ the concatenation ofσ andσ ′. Whenσ ∈ E∗,σ ′ ∈ E∞ \ {ε}, we denote byσ ≺ σ ′

the fact thatσ is a strict prefix ofσ ′, that is,σ 6= ε ⇒ |σ |< |σ ′|∧∀i ∈ [0, |σ |−1],σi = σ ′
i .

When σ ′ ∈ E∗, we noteσ � σ ′ def
= σ ≺ σ ′ ∨σ = σ ′. For σ ∈ E∞ \ {ε}, we will need to

designate its sub-sequences. In particular, forn ∈ N, σ···n is the sub-sequence containing
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the n+ 1 first elements ofσ . Also, when|σ | > n, the sub-sequenceσn··· is the sequence
containing all elements ofσ but then first ones. Fori, j ∈ N with i ≤ j, we denote byσi··· j

the sub-sequence ofσ containing the(i +1)-th to the( j +1)-th (included) elements.

Execution sequences.A programP is considered as a generator of execution sequences.
We are interested in a restricted set of actions or events theprogram can perform. These ac-
tions influence the truth value of properties the program is supposed to fulfill. Such execution
sequences can be access events on a secure system to its resources, or kernel operations on
an operating system. In a software context, these events maybe abstractions of relevant in-
structions such as variable modifications or procedure calls. We abstract these operations by
a finite set ofevents/actions, namely an alphabetΣ . We denote byPΣ a program for which
the alphabet isΣ . The set of execution sequences ofPΣ is denotedExec(PΣ ) ⊆ Σ ∞. This
set isprefix-closed, that is∀σ ∈ Exec(PΣ ),∀σ ′ ∈ Σ ∗,σ ′ � σ ⇒ σ ′ ∈ Exec(PΣ ).

2.2 Properties

Properties as sets of execution sequences.In this paper we aim to enforce properties on
programs. A property is generally defined as a set of execution sequences. More specifically
a setφ ⊆ Σ ∗ of finite sequences of events (resp.ϕ ⊆ Σ ω of infinite sequences of events) is
called afinitary property(resp. aninfinitary property). We denote byφ (resp.ϕ) the negation
of φ (resp.ϕ), that is the complement ofφ (resp.ϕ) in Σ ∗ (resp.Σ ω ), formally defined
asΣ ∗ \ φ (resp.Σ ω \ ϕ). Considering a given finite (resp. infinite) execution sequenceσ
and a propertyφ (resp.ϕ), whenσ ∈ φ , denotedφ(σ ) (resp.σ ∈ ϕ , denotedϕ(σ )), we
say thatσ satisfiesφ (resp.ϕ). A consequence of this definition is that properties we will
consider are restricted tosingleexecution sequences1, excluding specific properties defined
on power-sets of execution sequences (like fairness, for instance). Moreover, for a finitary
propertyφ and an execution sequenceσ ∈ Σ ∞, we denote by Pref≺(φ ,σ ) the set of all
(strict) prefixes ofσ satisfyingφ , i.e., Pref≺(φ ,σ ) = {σ ′ ∈ φ | σ ′ ≺ σ}. This set is a chain
(i.e., a totally ordered set) regarding the order relation≺. The (unique) maximal element of
the set Pref≺(φ ,σ ), namely the longest prefix ofσ satisfyingφ (noted Max(Pref≺(φ ,σ )))
is the maximal element regarding≺ if Pref≺(φ ,σ ) 6= /0. Given a propertyφ ⊆ Σ ∗ and an
execution sequenceσ ∈ Σ ∗, a straightforward property of the setPref≺(φ ,σ ) is that∀a∈
Σ ,¬φ(σ )⇒ Max(Pref≺(φ ,σ ·a)) = Max(Pref≺(φ ,σ )).

Enforcement properties.In this paper we are interested in enforceable properties. As stated
in the introduction, enforcement monitors should output the longest “correct” prefix of an
execution sequence which does not satisfy the expected property. To do so, an enforcement
monitor decides property satisfaction using always a finiteobservation. Furthermore, as we
consider finite and infinite execution sequences (that a program may produce), enforceable
properties should characterize satisfaction for both kinds of sequences in a uniform way.
We advocate that the separation of finitary and the infinitaryparts of a property clarifies
the understanding of monitoring. An enforcement monitor (or a monitor) can be seen as a
decision procedure reading a finite prefix and examining the satisfaction of this prefix w.r.t.
a given correctness property.

1 This is the distinction, made by Schneider [3], between properties and (general) policies. The set of
properties (defined over single execution sequences) is a subset of the set of policies (defined over sets of
execution sequences).
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Therefore, we introducee-properties (enforcement properties) as follows. Ane-property
is defined2 as a pair(φ ,ϕ) ⊆ Σ ∗ ×Σ ω . Intuitively, the finitary propertyφ represents the
desirable property that finite execution sequences should fulfill, whereas the infinitary pro-
pertyϕ is the expected property for infinite execution sequences. The definition of negation
of an e-property follows from definition of negation for finitary and infinitary properties.
For ane-property (φ ,ϕ), we define(φ ,ϕ) as (φ ,ϕ). Boolean combinations ofe-proper-
ties are defined in a natural way. For∗ ∈ {∪,∩}, (φ1,ϕ1) ∗ (φ2,ϕ2) = (φ1 ∗ φ2,ϕ1 ∗ ϕ2).
Considering an execution sequenceσ ∈ Exec(PΣ ), we say thatσ satisfies(φ ,ϕ) when
σ ∈ Σ ∗ ∧ φ(σ )∨ σ ∈ Σ ω ∧ϕ(σ ). For ane-propertyΠ = (φ ,ϕ), we noteΠ (σ ) whenσ
satisfies(φ ,ϕ).

3 A Safety-Progress classification ofe-properties

This section recalls and extends some results about the Safety-Progress [9,10] classification
of properties. In the original papers this classification introduced a hierarchy betweenregu-
lar properties3 defined as sets ofinfinite execution sequences. We extend the classification
to deal with finite-length execution sequences. As so we revisit this classification for regular
e-properties.

3.1 Informal description

The Safety-Progress classification is made of four basic classes over execution sequences.
Informally, the classes were defined as follows:

– safetyproperties are the properties for which whenever a sequencesatisfies a property,
all its prefixessatisfy this property.

– guaranteeproperties are the properties for which whenever a sequencesatisfies a pro-
perty,there are some prefixes(at least one) satisfying this property.

– responseproperties are the properties for which whenever a sequencesatisfies a pro-
perty,an infinite number of its prefixessatisfy this property.

– persistenceproperties are the properties for which whenever a sequencesatisfies a pro-
perty,all but finitely manyof its prefixes satisfy this property.

Furthermore, two extra classes can be defined as (finite) Boolean combinations (union and
intersection) of basic classes.

– The obligation classcan be defined as the class obtained by Boolean combination of
safety and guarantee properties.

– The reactivity classcan be defined as the class obtained by Boolean combination of
response and persistence properties. This is the most general class containing all lin-
ear temporal properties [9]. In this paper, we will focus on sub-classes of reactivity to
characterize the set of enforceable properties.

The requirements provided in the following example introduces the aforementioned classes
of properties. In Example 2, we formalize those requirements ase-properties.

2 We advocate that a pair of sets makes the distinction betweenthe finitary and the infinitary part of the
property more explicit. Though other notations could be considered as well.

3 In the rest of the paper, the term property will stand for regular property.
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Example 1 (Informal requirements)Let us consider an operating system with a secured
operationops (needing an authentication) and an unsecured operationopu. The system is
endowed with three primitives related to authentication:r auth (requesting authentication)
emitted by users, andg auth(granting authentication),d auth(denying authentication) emit-
ted by an internal authentication mechanism. Then,

– the requirementΠ1 stating that “Ifops ever occurs, then it should be immediately pre-
ceded by a granted authenticationg auth.” can be formalized as asafety e-property;

– the requirementΠ2 stating that “Each work session of a user should contain a complete
authentication step terminated either by a grant (g auth) or a deny (d auth) operation. In
case of a successful authentication, the work session may contain secured and unsecured
operations. Otherwise, it should contain only unsecured operation and it should be termi-
nated by a user disconnection (disco).” can be formalized as aguarantee e-property;

– the requirementΠ3 stating that “The system should run forever; or, if ad auth is issued,
then the user should be disconnected and then the system should terminate (end).” can be
formalized as anobligation e-property;

– the requirementΠ4 stating that “each occurrence ofr authshould be first written in a log
file and then answered either with ag author ad authwithout any occurrence ofops or
r auth in the meantime” can be formalized as aresponse e-property;

– the propertyΠ5 stating that “after ad auth, a (forbidden) use of operationops should
imply that at some point any future call tor auth will always result in ad auth answer”
can be formalized as apersistence e-property.

The Safety-Progress classification is an alternative to theclassical Safety-Liveness [11,12]
dichotomy. Unlike this one, the Safety-Progress classification is a hierarchy and not a parti-
tion. It provides a finer-grain classification, and the properties of each class are characterized
according to fourviews[9]: a language-theoretic view, a topological view, a temporal logic
view, and an automata-based view. The language-theoretic view describes the hierarchy ac-
cording to the way each class can be constructed from sets of finite sequences. The topolog-
ical view characterizes the classes as sets with topological properties. The third view links
the classes to their expression in temporal logic. At last, the automata-view gives syntactic
characterization on the automata recognizing the properties of a given class. In this paper,
we consider only the automata view dedicated toe-properties.

3.2 The automata view ofe-properties

For the automata view of the Safety-Progress classification, we follow [9,14] and define
e-properties using Streett automata. For each class of the Safety-Progress classification it
is possible to syntactically characterize a recognizing finite-state automaton. We define4 a
variant of deterministic and complete Streett automata (introduced in [15] and used in [14])
for property recognition. These automata process events and decide properties of interest.
We add to original Streett automata a finite-sequence recognizing criterion in such a way
that these automata uniformly recognizee-properties.

Definition 1 (Streett automaton) A deterministic finite-state Streett automaton is a tuple
(Q,qinit,Σ ,−→,{(R1,P1), . . . ,(Rm,Pm)}) defined relatively to a set of eventsΣ . The setQ

4 There exist several equivalent definitions of Streett automata dedicated to infinite sequences recogni-
tion. We choose here to follow the definition used in [9] and also only consider finite-state automata in the
remainder.
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is the set of automaton states,qinit ∈ Q is the initial state. The function−→: Q×Σ → Q
is the (complete) transition function. In the following, for q,q′ ∈ Q,e∈ Σ we abbreviate
−→ (q,e) = q′ by q

e
−→ q′. The set{(R1,P1), . . . ,(Rm,Pm)} is the set of accepting pairs, for

all i ≤ n, Ri ⊆ Q are the sets of recurrent states, andPi ⊆ Q are the sets of persistent states.

We refer to an automaton withm accepting pairs as anm-automaton. Whenm= 1, a 1-
automaton is also called aplain-automaton, and we refer toR1 andP1 asRandP. In the fol-
lowing A =(QA ,qA

init ,Σ ,−→A ,{(R1,P1), . . . ,(Rm,Pm)}) designates a Streettm-automaton.
For σ ∈ Σ ∞, the run of σ on A is the sequence of states involved by the execution of

σ on A . It is formally defined asrun(σ ,A ) = q0 · q1 · · · where∀i,(qi ∈ QA ∧ qi
σi−→A

qi+1)∧ q0 = qA
init. The trace resulting in the execution ofσ on A is the unique sequence

(finite or not) of tuples(q0,σ0,q1) · (q1,σ1,q2) · · · whererun(σ ,A ) = q0 ·q1 · · · .
Also we consider the notion of infinite visitation of an execution sequenceσ ∈ Σ ω on a

Streett automatonA , denotedvinf(σ ,A ), as the set of states appearing infinitely often in

run(σ ,A ). It is formally defined as follows:vinf(σ ,A )
def
= {q∈ QA | ∀n∈ N,∃m∈N,m>

n∧q= qm with run(σ ,A ) = q0 ·q1 · · ·}.
For a Streett automaton, the notion of acceptance conditionis defined using the accep-

ting pairs.

Definition 2 (Acceptance condition (infinite sequences))For σ ∈ Σ ω , we say thatA ac-
ceptsσ if ∀i ∈ [1,m],vinf(σ ,A )∩Ri 6= /0∨vinf(σ ,A )⊆ Pi .

To deal withe-properties we need to define also an acceptance criterion for finitesequences.

Definition 3 (Acceptance condition (finite sequences))For a finite-length execution se-
quenceσ ∈ Σ ∗ such that|σ |= n, we say that them-automatonA acceptsσ if (∃q0, . . . ,qn ∈
QA , run(σ ,A ) = q0 · · ·qn∧q0 = qA

init and∀i ∈ [1,m],qn ∈ Pi ∪Ri).

The hierarchy of automata.The Safety-Progress hierarchy as defined in [14] can be seen in
the automata view by setting syntactic restrictions on a Streett automaton.

– A safety automatonis a plain automaton such thatR= /0 and there is no transition from
a stateq∈ P to a stateq′ ∈ P.

– A guarantee automatonis a plain automaton such thatP= /0 and there is no transition
from a stateq∈ R to a stateq′ ∈ R.

– An m-obligation automatonis anm-automaton such that for eachi in [1,m]:
– there is no transition fromq∈ Pi to q′ ∈ Pi ,
– there is no transition fromq∈ Ri to q′ ∈ Ri ,

– A response automatonis a plain automaton such thatP= /0,
– A persistence automatonis a plain automaton such thatR= /0,
– A reactivity automatonis any unrestricted automaton.

Figure 1 schematizes each basic class. The sets of persistent and recurrent states are repre-
sented by squares. Allowed transitions between the different kinds of states are represented
by arrows.

Automata and e-properties.We say that a Streett automatonAΠ definesan e-property
(φ ,ϕ) ∈ Σ ∗ ×Σ ω if the set of finite (resp. infinite) execution sequences accepted byAΠ
is equal toφ (resp.ϕ). Conversely, ane-property(φ ,ϕ) ∈ Σ ∗×Σ ω is said to bespecified
by an automatonAΠ if the set of finite (resp. infinite) execution sequences accepted by the
automatonAΠ is φ (resp.ϕ).
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Fig. 2: Streett Automata for thee-properties formalizing the requirements of Example 1

Example 2 (Specifying e-properties by Streett automata)The requirements introduced in
Example 1 can be formalized ase-properties specified by the Streett automata represented
in Fig. 2. The requirementRi is formalized by thee-propertyΠi specified by the automaton
AΠi , i ∈ {1,2,3,4,5}, with initial state 1.

– ForAΠ1 (Fig. 2a), the set of states is{1,2,3}, R= /0, andP= {1,2}.
– ForAΠ2 (Fig. 2b), the set of states is{1,2,3,4,5,6}, P= /0, andR= {2,5}.
– ForAΠ3 (Fig. 2c), the set of states is{1,2,3,4,5}, P= {1}, andR= {5}.
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Fig. 3: The Safety-Progress classification ofe-properties

– ForAΠ4 (Fig. 2d), the set of states is{1,2,3,4}, P= /0, andR= {1}.
– ForAΠ5 (Fig. 2e), the set of states is{1,2,3,4,5}, P= {3,4}, andR= /0.

It is possible to relate the syntactic characterization on the automata to the semantic charac-
terization of the properties they specify. This is stated bythe following definition (transposed
from the initial definition in [14]).

Definition 4 (e-properties classes)An e-property(φ ,ϕ) is a regularκ-e-property if it is
specifiable by a finite stateκ-automaton, whereκ ∈ {safety,guarantee,obligation, response,
persistence, reactivity}. Moreover, when an obligatione-property is specified by anm-obli-
gation automaton, thise-property is said to be anm-obligatione-property.

Given an alphabetΣ , we note Safety(Σ ) (resp. Guarantee(Σ ), Obligation(Σ ), Response(Σ ),
Persistence(Σ )) the set of safety (resp. guarantee, obligation, response,persistence)e-pro-
perties defined overΣ . Following [14], it can be shown that the Safety-Progress classification
of e-properties is a hierarchy, presented in Fig. 3.

3.3 Some useful facts aboute-properties

We present some straightforward consequences of the definitions of safety and guarantee
e-properties.

Property 1 (Closure of e-properties)Considering ane-propertyΠ specified by a Streett
automatonAΠ defined over an alphabetΣ , the following facts hold:

1. If Π is a safetye-property, all prefixes of a sequence belonging toΠ also belong toΠ .
That is,∀σ ∈ Σ ∞,Π (σ )⇒

(

∀σ ′ ∈ Σ ∗,σ ′ ≺ σ ⇒ Π (σ ′)
)

.
2. If Π is a guaranteee-property, all continuations of a finite sequence belongingto Π also

belong toΠ . That is,∀σ ∈ Σ ∗,Π (σ )⇒∀σ ′ ∈ Σ ∞,Π (σ ·σ ′).

Proof The proof is given in Appendix A.1. It uses the acceptance conditions and syntactic
restrictions of Streett automata for safety and guaranteee-properties.
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Properties of automata.Given a Streettm-obligation automaton (withmaccepting pairs), it
is possible first to express it as a conjunction of 1-obligation properties and second to charac-
terize the languages accepted by “forgetting” some accepting pairs of the initial automaton.
This is formalized as follows.

Lemma 1 (About obligation e-properties) Given an m-automatonAΠ = (Q, qinit ,Σ ,−→,
{(R1,P1), . . . ,(Rm,Pm)}) recognizing an m-obligation e-propertyΠ . Π can be expressed as
⋂m

i=1 Πi , whereΠi is a1-obligation e-property of the formΠi = Safetyi ∪Guaranteei where
Safetyi andGuaranteei are respectively safety and guarantee e-properties. Moreover, given
a subset X⊆ [1,m], the automatonAΠ/X = (Q,qinit,Σ ,−→,{(Ri ,Pi) | i ∈ X}) recognizes
the property

⋂

i∈X Πi .

Proof For infinite execution sequences, this proof has been done in[14]. For finite execution
sequences, the proof is a straightforward adaptation.

4 Property enforcement via enforcement monitors

Considering a programPΣ , we aim at constructing an enforcement monitor for ane-
property(φ ,ϕ) overΣ .

4.1 Enforcement monitors

We now define the central notion of enforcement monitor. Sucha runtime device monitors
a target program by watching its relevant events. It is an automaton-based mechanism en-
dowed with an internal memory. On each input event its state evolves and an enforcement
operation is performed. Enforcement operations operate a modification of the internal me-
mory of the enforcement monitor and potentially produce an output. Enforcement monitors
are parameterized by a set of enforcement operationsOps.

Definition 5 (Ops - Enforcement operations)Enforcement operations take as inputs an
event and a memory content (i.e., a sequence of events) to produce an output sequence and
a new memory content:Ops⊆ 2(Σ×Σ∗)→(Σ∗×Σ∗).

Definition 6 (Generic enforcement monitor (EM(Ops)))An enforcement monitorA↓ is a

4-tuple(QA↓ ,q
A↓
init ,−→A↓

,Ops) defined relatively to a set of eventsΣ and parameterized by a

set of enforcement operationsOps. The finite setQA↓ denotes the control states,q
A↓
init ∈ QA↓

is the initial state. The complete function−→A↓
: QA↓ ×Σ → QA↓ ×Ops is the transition

function. In the following we abbreviate−→A↓
(q,a) = (q′,α) by q

a/α
−→A↓

q′.

In the remainder of this section,σ ∈ Σ ∞ designates an execution sequence, andA↓ =

(QA↓ ,q
A↓
init ,−→A↓

,Ops) designates an EM(Ops).

Definition 7 (Run and trace)Therun of σ onA↓ is the sequence of states involved by the
execution ofA↓ whenσ is input. It is formally defined asrun(σ ,A↓) = q0 ·q1 · · · where

q0 = q
A↓
init ∧∀i,(qi ∈ QA↓ ∧qi

σi/αi
−→A↓

qi+1). Thetraceresulting in the execution ofσ onA↓ is
the sequence (finite or not) of tuples(q0,σ0/α0,q1) · (q1,σ1/α1,q2) · · ·(qi ,σi/αi ,qi+1) · · ·
whererun(σ ,A↓) = q0 ·q1 · · · and∀i,αi ∈ Ops.
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We formalize the way an EM(Ops) reacts to an input sequence provided by a target program
through the standard notions ofconfigurationandderivation.

Definition 8 (Configurations and derivations of an EM(Ops))A configurationis a triplet
(q,σ ,m) ∈ QA↓ ×Σ ∗ ×Σ ∗ whereq denotes the current control state,σ the current input
sequence, andm the current memory content.

We say that a configuration(q′,σ ′,m′) is derivable in one stepfrom the configuration

(q,σ ,m) andproduces the output o∈ Σ ∗, and we note(q,σ ,m)
o
→֒ (q′,σ ′,m′) if and only if

σ = a·σ ′∧q
a/α
−→A↓

q′∧α(a,m) = (o,m′);
We say that a configurationC′ is derivable in several stepsfrom a configurationC and

produces the output o∈ Σ ∗, and we noteC o
=⇒A↓

C′, if and only if there existsk ≥ 0 and

configurationsC0, C1, . . . ,Ck such thatC = C0, C′ = Ck, Ci
oi
→֒Ci+1 for all 0≤ i < k, and

o= o0 ·o1 · · ·ok−1.

The notion of enforcement is based on how a monitor transforms a given input sequence
in an output sequence. For the upcoming definitions we will distinguish between finite and
infinite sequences.

Definition 9 (Sequence transformation)We define the transformation performed by an
EM(Ops) while reading an input sequenceσ ∈ Σ ∞ (produced by a programPΣ ) and pro-
ducing an output sequenceo∈ Σ ∞. The total function⇓A↓

⊆ Σ ∞ ×Σ ∞ is defined as follows:

– The empty sequenceε is transformed into itself byA↓, i.e., ε ⇓A↓
ε . This is the case

when the underlying program does not produce any event.
– The sequenceσ ∈ Σ+ is transformed byA↓ into the sequenceo∈ Σ ∗, which is noted

σ ⇓A↓
o, if ∃q′ ∈ QA↓ ,∃m∈ Σ ∗,(q

A↓
init ,σ ,ε) o

=⇒A↓
(q′,ε ,m). That is, if there exists a

derivation starting from the initial state and producingo.
– The sequenceσ ∈ Σ ω is transformed byA↓ into the sequenceo∈ Σ ∗, which is noted

σ ⇓A↓
o, if ∃σ ′ ≺ σ ,σ ′ ⇓A↓

o∧ ∀σ ′′ ∈ Σ ∗,σ ′ ≺ σ ′′ ⇒ σ ′′ ⇓A↓
o. That is, the finite

sequenceo is produced if there exists a prefix ofσ which produceso, and each conti-
nuation of this prefix produceso as well.

– The sequenceσ ∈ Σ ω is transformed byA↓ into the sequenceo∈ Σ ω , which is noted
σ ⇓A↓

o, if

∀o′ ∈ Σ ∗,o′ ≺ o⇒∃σ ′′,o′′ ∈ Σ ∗,σ ′′ ≺ σ ∧o′ ≺ o′′ ∧σ ′′ ⇓A↓
o′′

∧ ∀σ ′,o′ ∈ Σ ∗,σ ′ ≺ σ ∧σ ′ ⇓A↓
o′ ⇒ o′ ≺ o.

That is, each prefix ofo can be produced from a prefix ofσ .

4.2 Enforcing a property

Roughly speaking, the purpose of an EM(Ops) is to read some unsafe input sequence pro-
duced by a program and to transform it into an output sequencethat satisfies a givene-
propertyΠ . Before defining this notion more formally, we first explain what we mean ex-
actly byproperty enforcement, and what are the consequences of this definition on the set of
e-properties we shall consider.

Enforceable properties.Property enforcement by an EM(Ops) is usually defined as the con-
junction of the two following constraints:

• soundness: the output sequence should satisfyΠ ;
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• transparency: the input sequence should be modifiedin a minimal way, namely if it
already satisfiesΠ it should remain unchanged (up to a given equivalence relation),
otherwise itslongest prefixsatisfyingΠ should be issued.

A consequence of this definition of transparency is that ane-property (φ ,ϕ) will be consid-
ered asenforceableonly if each incorrect sequence has alongestcorrect prefix, or, equiva-
lently, if any infinite incorrect sequence has only afinite numberof correct prefixes. We use
this criterion as a definition forenforceable properties. More formally:

Definition 10 (Enforceablee-property) An e-property (φ ,ϕ) is enforceableiff:

∀σ ∈ Σ ω ,
(

¬ϕ(σ )⇒ (∃σ ′ ∈ Σ ∗,σ ′ ≺ σ ,∀σ ′′ ∈ Σ ∗,σ ′ ≺ σ ′′ ≺ σ ⇒¬φ(σ ′′))
)

The set of enforceablee-properties is denotedEP. Note that an EM(Ops) will output the
empty sequenceε in two distinct cases: either whenε is the longest correct prefix of the
input sequence, or when this input sequence has no correct prefix at all5.

Finally, since we have to deal with potentially infinite input sequences, the output se-
quence should be produced in an incremental way6: for each current prefixσ of the input
sequence read by the EM(Ops), thecurrentproduced outputo should be sound and trans-
parent w.r.t.Π andσ . Furthermore, deciding whether a finite sequenceσ satisfiesΠ or not
should be computable in a finite amount of time (and by readingonly a finite continuation
of σ ). It is indeed the case in our framework since we are dealing with regular properties.

This condition rules out particular properties saying for instance that “sequences con-
taining an evente are accepted only if they are finite”.

Enforceable properties w.r.t. the Safety-Progress Classification. In [16], we have given a
characterization of the set of enforceable properties:

Theorem 1 (Enforceable properties [16])The set of response e-properties is the set of
enforceable properties w.r.t. the Safety-Progress classification.

Proof The formal proof can be found in [16]; we give here a sketch of this proof for the
sake of completeness.

R R

R R

First, we show that responsee-properties are enforceable. Consider
a responsee-property(φ ,ϕ) recognized by a response automaton,
with the shape depicted on the left. Consider an infinite execution
sequenceσ ∈ Σ ω , and suppose that¬ϕ(σ ). This means, according
to the acceptance criterion for infinite sequences (Definition 2), that
the R-states are not visited infinitely often. In other words,σ has

finitely many prefixes for which the run ends in aR-state. According to the acceptance cri-
terion for finite sequences (Definition 3), finitely many prefixes ofσ belong toφ . Second,
in order to explain that response properties areexactlythe set of enforceable properties, [16]
proceeds as follows. In the Safety-Progresshierarchy, it shows that the subset of enforce-
able persistencee-properties is actually included in the set of responsee-properties. Indeed,
it is possible to show that automata specifying enforceableproperties can be encoded as
response automata. The reader is referred to the examples inSection 6.2.2 presenting (non
enforceable) persistencee-properties.

5 This latter case is avoided in [6] by assuming that properties under consideration always containε .
6 This limitation can be seen from a runtime verification pointof view: verifying infinitary properties at

runtime, on an execution sequence produced on-the-fly, should be done by checking finite prefixes of the
current execution sequence.
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As a straightforward consequence, safety, guarantee, and obligation e-properties are en-
forceable. While Theorem 1 provides a useful characterization of enforceable properties,
there remain some fundamental questions: “how enforcementmonitors should effectively
enforce properties ?” and “how is it possible to obtain such enforcement mechanisms from
the definition of properties ?”. These questions are respectively addressed in the remainder
of this section and in Section 6.

Property-enforcement.We define the notion of property-enforcement by an EM(Ops). This
notion of enforcement relates the input sequence produced by the program and fed to the
EM(Ops) and the output sequence allowed by the EM(Ops) (correct w.r.t. the property un-
der consideration). In practice, it might be difficult for anEM(Ops) to produce the same
sequence since an EM(Ops) has to perform some additional statements to enforce the pro-
perty or some non-observable actions or events may occur.

As a consequence, in the general case, the comparison between input and output se-
quences is performed up to some equivalence relation≈⊆ Σ ∞×Σ ∞ (for which some events
may be not considered). Note that the considered equivalence relation should preserve the
e-property under consideration.

Definition 11 (Property-Enforcement≈) Let us consider an enforceablee-propertyΠ =
(φ ,ϕ) ∈ EP, we say thatA↓ enforces the property(φ ,ϕ), relatively to an equivalence re-
lation≈, on a programPΣ (notedEnf≈(A↓,(φ ,ϕ),PΣ)) iff for all σ ∈ Exec(PΣ ), there
existso∈ Σ ∞, such that the following constraints hold:

σ ⇓A↓
o (1)

Π (σ )⇒ σ ≈ o (2)

¬Π (σ )∧Pref≺(φ ,σ ) = /0⇒ o≈ ε (3)

¬Π (σ )∧Pref≺(φ ,σ ) 6= /0⇒ o≈ Max(Pref≺(φ ,σ )) (4)

(1), (2), (3), and (4) ensure soundness and transparency ofA↓: (1) stipulates that the se-
quenceσ is transformed byA↓ into a sequenceo; (2) ensures that ifσ already satisfied the
property then it is not transformed. When there is no correctprefix of σ satisfying the pro-
perty, (3) ensures that the EM(Ops) outputs nothing (the empty sequenceε). If there exists
a prefix ofσ satisfying the property (4) ensures thato is the longest prefix ofσ satisfying
the property.

Soundness is due to the fact that the produced sequenceo, when different fromε , always
satisfies the propertyΠ . Transparency is ensured by the fact that, up to the equivalence
relation≈, correct execution sequences are not changed, and incorrect ones are restricted to
their longest correct prefix.

One may remark that we could have setMax(Pref≺(φ ,σ )) to ε whenPref≺(φ ,σ ) = /0
and merge the two last constraints. However, we choose to distinguish explicitly the case
in which Pref≺(φ ,σ ) = /0 as it highlights some differences when an EM(Ops) produces ε .
Sometimes it corresponds to the only correct prefix of the property. But it can also be an
incorrect sequence w.r.t. the property. In practice, when implementing an EM(Ops) for a
system, this sequence can be “tagged” as incorrect.
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4.3 Instantiating generic enforcement monitors

In the remainder of this article we will focus our study on some particular, but expressive
enough (regarding enforcement), enforcement monitors. This kind of monitor will comply
with the transparency constraint stated in Definition 10.

The considered enforcement operations allow enforcement monitors either:

– to halt the target program (when the current input sequence irreparably violates the
property), or

– to storethe current event in amemory device(when a decision has to be postponed)7, or
– to dumpthe content of the memory device (when the input program comes back to a

correct behavior), or
– to switchoff permanently the monitor (when the property is satisfied for ever).

We give a more precise definition of such enforcement operations.

Definition 12 (Enforcement operations{halt,store,dump,off}) In the following we con-

sider a setOps
def
= {halt,store,dump,off}, where the enforcement operations are defined as

follows: ∀a∈ Σ ∪{ε},∀m∈ Σ ∗,

halt(a,m) = (ε ,m) store(a,m) = (ε ,m.a)
dump(a,m) = (m.a,ε) off(a,m) = (m.a,ε)

(a designates the input event of the monitor andm the memory device: its content).

Note that theoff anddumpoperations have the same definitions. From a theoretical perspec-
tive, theoff operation is indeed not necessary. However, it has a practical interest: in order to
limit the monitor’s impact on the original program (performance wise), it is useful to know
when the monitor is not needed anymore.

We also distinguish two subsets of the set of states of an enforcement monitor instanti-
ated with the set of enforcement operations{halt,store,dump,off}: the states inHalt (resp.
Off) are used to represent the states in which the program (resp.monitor) should be stopped.
Intuitively, states inHalt (resp.Off) are those entered by a transition labeled by ahalt (resp.
off) operation. Furthermore, we assume that, after performinga halt (resp.off operation),
an EM cannot perform another operation thanhalt (resp.off).

Definition 13 (Instanciated enforcement monitor)An EM is an instantiated EM(Ops)

(QA↓ ,q
A↓
init ,−→A↓

,Ops) whereOps
def
= {halt,store,dump,off} and such that:

• HaltA↓
def
= {q′ ∈ QA↓ | ∃a∈ Σ ,∃q∈ QA↓ ,q

a/halt
−→A↓

q′},

and∀q∈ HaltA↓ ,∀a∈ Σ ,∀α ∈ Ops,∀q′ ∈ QA↓ ,q
a/α
−→A↓

q′ ⇒ α = halt

• OffA↓
def
= {q′ ∈ QA↓ | ∃a∈ Σ ,∃q∈ QA↓ ,q

a/off
−→A↓

q′},

and∀q∈ OffA↓ ,∀a∈ Σ ,∀α ∈ Ops,∀q′ ∈ QA↓ ,q
a/α
−→A↓

q′ ⇒ α = off

In the remainder of this article we consider only EMs.

Example 3 (Enforcement monitor)We illustrate the enforcement of some of thee-properties
introduced in Example 2 with EMs.

7 Note that postponing an event can be done only when there is nocausal dependency with subsequent
events in the system.
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– Fig. 7b (p. 21) shows an EMA↓Π1 for the safetye-propertyΠ1. A↓Π1 has one halting

state,HaltA↓Π1 = {3}, and its initial state is 1. From this initial stateA↓Π1 simplydumps
a first occurrence ofg auth and moves to state 2, where theops operation is allowed
(i.e., dumped) and goes back to state 1. Otherwise, if the eventops occurs while not
being preceded by ag auth, A↓Π1 moves to state 3 and halts the underlying program
forever.

– Fig. 6b (p. 20) shows an EMA↓Π2 for the guaranteee-propertyΠ2. The initial state

of A↓Π2 is state 1,HaltA↓Π2 = {6}, andOffA↓Π2 = {2,5}. Its behavior is the follow-
ing. Occurrences of secured and unsecured operations arestoredin memory until the
answer of an authentication happens. If the authenticationis granted,A↓Π2 dumps the
whole memory content and switches off. Otherwise (denied authentication), according
to whether the user tried to perform a secured operation or not, A↓Π2 either waits for
the disconnection (forbidding any operation) and switchesoff, or halts immediately the
underlying system.

4.4 Properties of enforcement monitors

We now study the properties of enforcement monitors with setof enforcement operations
{halt,store,dump,off}.

Property 2 (About sequence transformation)For an execution sequenceσ ∈ Exec(PΣ )∩
Σ ω and an EMA↓, s.t. the run ofσ onA↓ is expressed by

(q0,σ0/α0,q1) · (q1,σ1/α1,q2) · · ·(qi ,σi/αi ,qi+1) · · · ,

the following properties hold:

• σ ⇓A↓
σ ⇒∀i ∈ N,∃ j ∈ N, i ≤ j,σ··· j ⇓A↓

σ··· j , α j ∈ {dump,off}
• ∀i ∈ N,∃ j ∈ N, i ≤ j,α j ∈ {dump,off}⇒ σ ⇓A↓

σ .

That is, for an EM, producing as output the same input sequence is equivalent to performing
regularly adumpor aoff operation.

Property 3 (Relation between input, memory, and output)Input execution sequence, me-
mory content, and produced output are related by the following property:∀σ ∈ Σ+,∀σ ′ ∈
Σ ∗,

∃q∈ QA↓ ,(q
A↓
init ,σ ·σ ′,ε) o

=⇒A↓
(q,σ ′,m)

⇒ (σ = o·m∧q∈ QA↓ \HaltA↓)∨ (o≺ σ ∧q∈ HaltA↓)

Proof The proof can be found in Appendix A.2. It is done by inductionon the length of the
input sequence, according to the last enforcement operation performed.

It follows that the equivalence relation considered for enforcement becomes the equality
relation. This is due to the semantics of the enforcement operations we considered. Thus the
enforcement predicateEnf≈(A↓,(φ ,ϕ),PΣ) becomesEnf=(A↓,(φ ,ϕ),PΣ) (abbreviated
Enf(A↓,(φ ,ϕ),PΣ) in the remainder of this article) when thee-property is enforced by
A↓ on PΣ . The following property is a straightforward consequence of Property 3 and the
definition of enforcement operations.

Property 4 (Last enforcement operation and property satisfaction) Given an EMA↓, an
e-propertyΠ s.t. Enf(A↓, Π ,PΣ ) and a finite execution sequenceσ ∈ Exec(PΣ )∩ Σ+

(|σ |= n+1) which run onA↓ is expressed(q0,σ0/α0,q1) · · ·(qn,σn/αn,qn+1), we have:
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• Π (σ )⇒ αn ∈ {dump,off}
• ¬Π (σ )⇒ αn ∈ {store,halt}

Meaning that, considering an EM which enforces ane-property, the last enforcement oper-
ation performed while reading an input sequence isdumpor off (resp.halt or store) when
the given sequence satisfies (resp. does not satisfy) thee-property.

Another consequence of these properties is that the produced output are always prefixes
of the input execution sequence, that is:∀σ ,o∈ Σ ∞,σ ⇓A↓

o⇒ o� σ .

5 Operations on enforcement monitors

Current development of information systems makes specifications going more and more
complex. For assessing the value of EMs as a potential security mechanisms, it seems de-
sirable to offer techniques to compose them so as to cope withtheir related specifications.
In this section we describe and address the problem of EM composition. We give the for-
mal definition of monitor composition w.r.t. Boolean combinations: union, intersection and
negation, and prove their correctness.

5.1 Preliminary notations

We define the complete lattice(Ops,⊑) over enforcement operations, wherehalt⊑ store⊑
dump⊑ off (⊑ is a total order). Moreover, we define a negation operation onenforcement
actions: forα ∈ Ops, α is the negation ofα . We definedumpasstore, off ashalt, andα as
α .

5.2 Union and intersection

We show how disjunction (resp. conjunction) of basic (enforceable) properties can be en-
forced by constructing the union (resp. intersection) of their associated enforcement mo-
nitors. These operations between EMs are based on product constructions performed by
combining enforcement operations w.r.t. the complete lattice (Ops,⊑).

Definition 14 (Union of EMs) Given two EMsA↓1 = (QA↓1,q
A↓1
init ,−→A↓1

,Ops), A↓2 =

(QA↓2,q
A↓2
init ,−→A↓2

,Ops) defined relatively to a same input alphabetΣ , we defineA↓⊔ =

Union(A↓1,A↓2) with QA↓⊔ =(QA↓1×QA↓2), q
A↓⊔
init =(q

A↓1
init ,q

A↓2
init ). The transition relation of

this enforcement monitor is defined by getting the supremum (⊔) of enforcement operations.
More formally→A↓⊔

: QA↓⊔ ×Σ ×Ops→ QA↓⊔ is defined as∀a∈ Σ ,∀q= (q1,q2) ∈ QA↓⊔ ,

q1
a/α1
−→A↓1

q1
′ q2

a/α2
−→A↓2

q2
′

A↓⊔

(q1,q2)
a/⊔({α1,α2})
−→A↓⊔

(q1
′,q2

′)

Note thatHaltA↓⊔ =HaltA↓1×HaltA↓2 andOffA↓⊔ =OffA↓1×QA↓2 ∪ QA↓1×OffA↓2. Notice
also that this construction does not introduce non-determinism. Indeed, since the two initial
EMs are deterministic, there is always one and only one transition with a given element of
Σ in the resulting automaton. However, one can notice that it may be not minimal (as in
Example 4).
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1 2

a/dump

a/halt

Σ/halt

(a)A↓e1 for e1

1 2

b/store

b/off

Σ/off

(b) A↓e2 for e2

1,1 1,2

2,1 2,2

a · b/store

a · b/off

a/off

a · b/store

b/store
b/off

Σ/off

a/off
a · b/off

(c) A↓⊔

1,1 1,2

2,1 2,2

a · b/store

a · b/dump

a/dump

a · b/halt

b/halt
b/halt

Σ/halt

a/halt

a · b/halt

(d) A↓⊓

Fig. 4: Union and intersection of two enforcement monitors:A↓e1 andA↓e2

The intersection operation between enforcement monitors is defined in a similar way by
using the infimum operator⊓ between enforcement operations:

Definition 15 (Intersection of EMs)Given two EMsA↓1 = (QA↓1,q
A↓1
init ,−→A↓1

, Ops) and

A↓2 = (QA↓2,q
A↓2
init ,−→A↓2

,Ops) defined relatively to a same input alphabetΣ and enforce-

ment operationsOps, we define Intersection(A↓1,A↓2) = A↓⊓ with QA↓⊓ = (QA↓1 ×QA↓2),

q
A↓⊓
init = (q

A↓1
init ,q

A↓2
init ). The transition relation is defined by getting the infimum (⊓) of enforce-

ment operations. More formally→A↓⊓
: QA↓⊓ ×Σ ×Ops→ QA↓⊓ is defined as∀a∈ Σ ,∀q=

(q1,q2) ∈ QA↓⊓ ,

q1
a/α1
−→A↓1

q1
′ q2

a/α2
−→A↓2

q2
′

A↓⊓

(q1,q2)
a/⊓({α1,α2})
−→A↓⊓

(q1
′,q2

′)

Note thatHaltA↓⊓ = HaltA↓1 ×QA↓2 ∪QA↓1 ×HaltA↓2 andOffA↓⊓ = OffA↓1 ×OffA↓2.

Example 4 (Union of EMs)Let us consider a system on which it is possible to evaluate two
atomic propositionsa andb. At system runtime, events are fed to a monitor. Those events
contain the evaluations ofa andb: either true or false.

Now let us consider the following requirement: “Eithera is always true orb will be
eventually true”. Meaning that, for the observed sequence of events,a is evaluated to true in
every event or that in one of the eventb is evaluated to true.

In order to build an EM for this requirement, we use two EMs, one for the requirement
“a is always true”, and the second for the requirement “b will be eventually true”. Next, we
build the union of EMs to obtain an EM for the initial requirement. The alphabet of the EMs
is made of all possible evaluations of the atomic propositionsa andb, Σ = {ab,ab,ab,ab}.
We use a Boolean notation,e.g., the eventab represents thata is evaluated to true andb to
false, the eventa meansab∨ab.

The EMs we consider are depicted in Fig. 4, states inHalt (resp.Off) are in red (resp.
green).
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– A↓e1 enforces the requirement “a is always true”.HaltA↓e1 = {2},OffA↓e1 = /0.

– A↓e2 enforces the requirement “b is eventually true”.HaltA↓e2 = /0,OffA↓e2 = {2}.
– A↓⊔ enforces the requirement “a is always trueor b is eventually true”. It is the EM

unionA↓⊔ built from the EMsA↓e1,A↓e2. Following the definition of the construction,

the set of states is the Cartesian productQA↓e1 ×QA↓e2 . The initial state is(1,1). Note
that there is no state inHaltA↓⊔ sinceHaltA↓e1 ×HaltA↓e2 = /0. A↓⊔ is not minimal and
can be easily minimized by merging the states(1,2) and (2,2), which are states in
OffA↓⊔ . One can notice thatA↓⊔ complies to the constraints for states inHaltA↓⊔ and
OffA↓⊔ .

Example 5 (Intersection of EMs)Similarly to Example 4, we build an enforcement moni-
tor for the requirement “a is always trueand b is eventually true” by using the intersec-
tion construction. The resulting EMA↓⊓ is shown in Fig. 4d.HaltA↓⊓ = {(2,1),(2,2)} and
OffA↓⊓ = /0. This EM is not minimal and can be easily minimized by merging the states
(2,1) and(2,2).

Theorem 2 (Union and Intersection of EMs) Given two EMsA↓Π1 = (QA↓Π1 ,q
A↓Π1
init ,

−→A↓Π1
,Ops) and A↓Π2 = (QA↓Π2 ,q

A↓Π2
init ,−→A↓Π2

,Ops), enforcing two enforceable pro-
pertiesΠ1,Π2 ∈ EP on a programPΣ , the propertyΠ1∨Π2 (resp.Π1∧Π2) is enforced by
the union (resp. intersection) enforcement monitor. More formally: ∀A↓Π1,A↓Π2,

• Union(A↓Π1,A↓Π2) andIntersection(A↓Π1,A↓Π2) are EMs

•

{

Enf(A↓Π1,Π1,PΣ )
Enf(A↓Π2,Π2,PΣ )

=⇒

{

Enf(Union(A↓Π1,A↓Π2),Π1∨Π2,PΣ )
Enf(Intersection(A↓Π1,A↓Π2),Π1∧Π2,PΣ )

The proof of this theorem can be found in Appendix A.3.

5.3 Negation

Considering a safety or guarantee (enforceable)e-property8, we show how to construct an
EM enforcing the negation of the originale-property.

Definition 16 (Negation of an EM)Given an EMA↓Π = (QA↓Π ,q
A↓Π
init ,−→A↓Π , Ops) de-

fined relatively to an input alphabetΣ and enforcingΠ , a safety or guaranteee-property, we

defineNegation(A↓Π ) = A↓Π = (QA↓Π ,q
A↓Π
init ,−→

A↓Π
,Ops) as:

– QA↓Π = QA↓Π , q
A↓Π
init = q

A↓Π
init ,

– →
A↓Π

is the smallest relation verifyingq
a/α
−→

A↓Π
q′ if q

a/α
−→A↓Π q′.

Note thatHaltA↓Π = OffA↓Π andOffA↓Π = HaltA↓Π .

Example 6In Fig. 4,A↓e2 is the negation ofA↓e1 if we replaceb with a andb with a.

8 It is only useful to deal with safety and guaranteee-properties: the negation of a responsee-property
is a persistence (thus not enforceable), and obligatione-properties can be always written under conjunctive
normal form as a Boolean combination of safety and guaranteee-properties (Lemma 1).
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Theorem 3 (Negation of an EM)Given an EMA↓Π = (QA↓Π ,q
A↓Π
init ,−→A↓Π , Ops) defined

relatively to an input alphabetΣ and enforcingΠ , a safety or guarantee e-property, the EM
Negation(A↓Π ) enforcesΠ . More formally:∀A↓Π

Π ∈ Safety(Σ )∪Guarantee(Σ )∧Enf(A↓Π ,Π ,PΣ)
⇒ Negation(A↓Π ) is an EM∧Enf(Negation(A↓Π ),Π ,PΣ )

The proof can be found in Appendix A.4.

6 Enforcement w.r.t. the Safety-Progress classification

We now study how to practically enforcee-properties of the Safety-Progress hierarchy (Sec-
tion 3). More precisely, we show which classes of propertiescan be effectively enforced
by an EM, and more important, we provide a systematic construction of an EM for ane-
propertyΠ ∈ EP from the Streett automaton defining thise-property.

6.1 From a recognizing automaton to an enforcement monitor

We define two general operations whose purpose is to transform a Streett automaton recogni-
zing an enforceablee-property into an enforcement monitor enforcing the samee-property.
The following operations use the setReachAΠ (q) of reachable states from a stateq in AΠ
(denotedReach(q) when clear from context). Given a Streett automatonAΠ with a set of

statesQAΠ , we have∀q∈ QAΠ ,ReachAΠ (q) = {q′ ∈ QAΠ | ∃(qi)i ,(ai)i ,q
a0−→AΠ q0

a1−→AΠ
q1 · · ·q′}.

6.1.1 Response e-properties

Definition 17 (Transformation for responsee-properties) Given a Streett response au-
tomatonAΠ = (QAΠ , qAΠ

init ,Σ ,−→AΠ ,{(R, /0)}) recognizing a response (enforceable)e-
propertyΠ ∈ Response(Σ ), we define the transformation TransResponse(AΠ ) = A↓Π =

(QA↓Π ,q
A↓Π
init ,−→A↓Π ,Ops) using the following rules for→A↓Π :

– q
a/off
−→A↓Π q′ if q′ ∈ R∧q

a
−→AΠ q′ ∧ReachAΠ (q

′)⊆ R (TRESP1)

– q
a/dump
−→ A↓Π q′ if q′ ∈ R∧q

a
−→AΠ q′∧ReachAΠ (q

′) 6⊆ R (TRESP2)

– q
a/store
−→ A↓Π q′ if q′ /∈ R∧q

a
−→AΠ q′∧ReachAΠ (q

′) 6⊆ R (TRESP3)

– q
a/halt
−→A↓Π q′ if q′ /∈ R∧q

a
−→AΠ q′ ∧ReachAΠ (q

′)⊆ R (TRESP4)

An EM A↓Π obtained via the TransResponse(AΠ ) transformation, applied to an automaton
AΠ recognizing a responsee-propertyΠ , processes the input execution sequence and en-
forcesΠ . While the current execution sequence does not satisfyΠ (the current state is in
R), it stores each event of the input sequence (or halts the underlying program ifΠ can not
be satisfied in the future). Once the execution sequence satisfiesΠ (the current state is in
R), it dumps the content of the memory and the events stored so far (or switches off ifΠ is
satisfied for ever).
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(a) Response automaton forΠ4
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Σ \ {r auth}/dump

(b) EM for Π4

Fig. 5: A response-automaton and the corresponding EM for propertyΠ4
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Fig. 6: A guarantee-automaton and the corresponding EM for propertyΠ2

Example 7 (Transformation for response e-properties)The right-hand side of Fig. 5 shows
the EMA↓Π4 enforcing the responsee-propertyΠ4, and obtained by TransResponse applied

to AΠ4. We haveHaltA↓Π4 = {4} andOffA↓Π4 = /0.

6.1.2 Guarantee e-properties

The TransResponse transformation can be directly applied to guarantee properties. Indeed,
in guarantee automata, transitions leading fromR-states toR-states are absent. Thus the
TransResponse transformation is applied for a guarantee automata by ignoring(TRESP2).

Example 8 (Transformation for guarantee e-properties)Fig. 6b shows the EM enforcing
Π2, obtained by TransResponse onAΠ2. HaltA↓Π2 = {6} andOffA↓Π2 = {2,5}.

6.1.3 Safety e-properties

For safetye-properties, the TransResponse transformation can be alsoapplied by “seeing”
the underlying Streett safety automaton as a response automaton. We first notice that a safety
e-property with safety automatonAΠ = (QAΠ ,qAΠ

init ,Σ ,−→AΠ , {( /0,P)}) can be recognized

by the response automatonA ′
Π = (QAΠ ,qAΠ

init ,Σ ,−→AΠ , {(P, /0)}): same states and tran-
sitions, but different accepting conditions.P-states ofAΠ becomeR-states ofA ′

Π . These
automata recognize the same sequences. Indeed, since thereis no transition inAΠ from
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(a) Safety automaton forΠ1
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Σ/halt

(b) EM for Π1

Fig. 7: A safety-automaton and the corresponding EM for property Π1

P-states toP-states, there is not transition fromR-states toR-states inA ′
Π . According to the

acceptance conditions (Definitions 2 and 3) and transition restrictions, forAΠ andA ′
Π there

is no difference betweenP-states andR-states regarding the role they play in the acceptance
condition. Thus, using TransResponse onA ′

Π gives an enforcement monitor forΠ .

Example 9 (Transformation for safety e-properties)The right-hand side of Fig. 7 shows the
EM A↓Π1 obtained by first convertingAΠ1 into a response automaton and by then applying
the transformation for responsee-properties (i.e., TransResponse) toAΠ1.

6.1.4 Obligation e-properties

Since an obligatione-property can be written as intersection of union of safety and gua-
ranteee-properties (Lemma 1), it is possible to obtain an EM for anobligationproperty by
using the TransResponse transformation and theUnion and Intersectionoperations. How-
ever, building such an EM requires first to express the obligation property in conjunctive
normal form, and second the knowledge of the associated Streett safety and guarantee au-
tomata. Thus, we also define a direct transformation for obligation automata.

Definition 18 (Transformation for obligation e-properties) Given a Streettm-obligation
automatonAΠ = (QAΠ ,qAΠ

init ,Σ ,−→AΠ ,{(R1,P1), . . . ,(Rm,Pm)}) recognizing anm-obli-
gation (enforceable)e-property Π ∈ Obligation(Σ ), we define the transformation Trans-

Obligation(AΠ ) = A↓Π = (QA↓Π ,q
A↓Π
init ,−→A↓Π ,Ops) s.t.:

– QA↓Π = QAΠ ,q
A↓Π
init = qAΠ

init ,
– →A↓Π is defined as the smallest relation verifying:

q
a/α
−→A↓Π q′ if q

a
−→AΠ q′ andα = ⊓m

i=1(⊔(βi,γi)) where theβi andγi are obtained in
the following way:
– βi = off if q′ ∈ Pi ∧ReachAΠ (q

′)⊆ Pi ,
– βi = dumpif q′ ∈ Pi ∧ReachAΠ (q

′) 6⊆ Pi ,
– βi = halt if q′ /∈ Pi ,
– γi = off if q′ ∈ Ri ,
– γi = storeif q′ /∈ Ri ∧ReachAΠ (q

′) 6⊆ Ri ,
– γi = halt if q′ /∈ Ri ∧ReachAΠ (q

′)⊆ Ri .

Note that there is no transition fromq∈ Ri to q′ ∈ Ri , and no transition fromq∈ Pi to q′ ∈Pi .
One can notice, as a direct consequence of the definition of→A↓Π , that :
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1 2 3

4 5

Σ \ {d auth, end}/dump

d auth/store

Σ \ {disco, end}/store

disco/store

Σ \ {end}/store

end/halt
Σ/halt

end/halt end/off

Σ/off

(b) EM for Π3

Fig. 8: A 1-obligation-automaton and the corresponding EM for propertyΠ3

– HaltA↓Π = {q∈
⋃m

i=1(Pi ∩Ri) | ReachAΠ (q)⊆
⋃m

i=1(Pi ∩Ri)}, and
– OffA↓Π = {q∈

⋂m
i=1(Pi ∪Ri) | ReachAΠ (q)⊆

⋂m
i=1(Pi ∪Ri)}.

We noteA↓Π = TransObligation(AΠ ).

Example 10 (Transformation for obligation e-properties)In Fig. 8b is depicted the EM en-
forcing the 1-obligation propertyΠ3 of Example 2, obtained by the TransObligation trans-
formation.HaltA↓Π3 = {4} andOffA↓Π3 = {5}.

6.2 Enforcement w.r.t. the Safety-Progress classification

Using the aforementioned transformations it is possible toderive an EM for a given re-
gular (enforceable) property from its recognizing finite-state automaton. In the following,
we prove the correctness of the transformations. Furthermore, we discuss and justify the
enforcement limitation for non-enforceable properties.

6.2.1 Enforceable properties

Given any safety (resp. guarantee, obligation, response) Streett automaton recognizing a
property Π , one cansynthesizean enforcing monitor forΠ using the systematic trans-
formations previously presented. The following theorem proves the correctness of these
transformations. It also proves that safety, guarantee, obligation, and response properties are
enforceable by EMs.

Theorem 4 (Correctness of the transformations)Given a programPΣ , a regularsafety
(resp. guarantee, obligation, response) e-propertyΠ is enforceable onPΣ by an EM ob-
tained by the application of the previous transformations on the automaton recognizingΠ .
More formally:

(Π ∈ Guarantee(Σ )∧A↓Π = TransResponse(AΠ ))⇒ Enf(A↓Π ,Π ,PΣ ),
(Π ∈ Obligation(Σ )∧A↓Π = TransObligation(AΠ ))⇒ Enf(A↓Π ,Π ,PΣ ),
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(Π ∈ Response(Σ )∧A↓Π = TransResponse(AΠ ))⇒ Enf(A↓Π ,Π ,PΣ),

(Π ∈ Safety(Σ )∧AΠ = (QAΠ ,qAΠ
init ,Σ ,−→AΠ ,( /0,P)))⇒

A↓Π = TransResponse
(

(QAΠ ,qAΠ
init ,Σ ,−→AΠ ,(P, /0))

)

⇒ Enf(A↓Π ,Π ,PΣ ).

Proof We have to show that∀σ ∈ Exec(PΣ ),∃o∈ Σ ∗,

σ ⇓A↓Π o (5)

Π (σ )⇒ σ = o (6)

¬Π (σ )∧Pref≺(φ ,σ ) = /0⇒ o= ε (7)

¬Π (σ )∧Pref≺(φ ,σ ) 6= /0⇒ o= Max(Pref≺(φ ,σ )) (8)

Note first that we only need to prove the correctness of TransResponse and TransObligation.

We noteA↓Π = (QA↓Π ,q
A↓Π
init ,−→A↓Π ,Ops) the EM obtained from the transformation. We

only sketch the proofs, the full versions can be found in Appendixes A.5 and A.6.

For theTransResponsetransformation,we examine the run of an execution sequenceσ ∈
Exec(PΣ ), and, using the definition of TransResponse, we deduce the shape of the sequence
of enforcement operations performed byA↓Π .

– The first case isΠ (σ ). We distinguish whetherσ is finite or not.
– If σ is a finite sequence, it means that the run ofσ onAΠ ends in aR-state. Hence,

the last enforcement operation performed byA↓Π is eitherdumpor off . The shape
of the sequence of enforcement operations is(store+dump)∗ · (dump+off∗).

– If σ is an infinite sequence, it means that anR-state is visited infinitely often. Hence,
A↓Π performs regularly thedumpoperation or persistently theoff operation. Then
the shape of the sequence of enforcement operations is(store∗ ·dump)ω +

(

(store+
dump)∗ ·offω).

– The second case is¬Π (σ ). We distinguish whetherσ is finite or not.
– If σ is a finite sequence, it means that the run ofσ onAΠ ends in aR-state. Hence,

the last enforcement operation performed byA↓Π is storeor halt. The shape of the
sequence of enforcement operations is(store+dump)∗ · (store+halt∗).

– If σ is an infinite sequence, it means thatR-states are visitedfinitely often. Hence,
A↓Π performs always thehalt or thestoreoperation from a certain prefix ofσ . Then
the shape of the sequence of enforcement operations is(store+ dump)∗ · (halt+
store)ω .

For the TransObligationtransformation,we perform an induction onk whereΠ is a k-
obligatione-property.

– Induction basis.We havek = 1, Π is a simple obligation recognized by a 1-obligation
automatonAΠ = (QAΠ ,qAΠ

init ,Σ ,−→AΠ , {(R,P)}). The proof is done by showing that
the two following EMs are equal:

– The first EM is obtained by decomposingΠ into a conjuction of a safety and a gua-
ranteee-property. Then, we apply the TransResponse transformation to obtain two
EMs to which we apply the Intersection construction. The resulting EM is correct
by construction.

– The second EM is obtained by applying directly TransObligation toAΠ .
– Induction step.The proof is done by showing that the two following EMs are equal:
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Fig. 9: Automaton recognizing the persistencee-propertyΠ5

– The first EM is obtained by decomposing the (k+1)-obligationautomaton into the in-
tersection of one simple obligation and one k-obligation automata, using Lemma 1.
Then, we apply the TransObligation transformation to the two obligation automata
and the Intersection operation. The resulting EM is correctby construction.

– The second EM is obtained by the direct application of TransObligation on the au-
tomaton recognizing the (k+1)-obligation propertyΠ .

The equality is shown by exhibiting a bijection between those EMs.

6.2.2 Non-enforceable properties

Pure persistence properties are not enforceable by our enforcement monitors and by any
enforcement mechanism complying to the soundness and transparency constraints [16]. By
discussing two examples of pure persistence properties, weexplain with more details than
in [16] the enforcement limitation (Example 11) and why it isnot desirable to enforce pure
persistence properties in practice (Example 12).

Example 11 (Non-enforceable pure persistence properties)Let us go back on thee-property
Π5 recognized by the Streett automaton in Fig. 9 (with acceptance criterionvinf(σ ,AΠ5)⊆
P andP= {1,3}). This property is not enforceable since it has incorrect infinite sequences
with an infinite number of correct prefixes. Indeed considerσbad = d auth· ops · (r auth·
d auth· r auth·g auth)ω . Such an (infinite) execution sequence does not satisfyΠ5 since
vinf(σbad,AΠ5) = {3,4,5} 6⊆ {3,4}. Moreover according to the acceptance criterion for
finite sequences, each prefixσ ′

bad of the formd auth·ops ·(r auth·d auth·r auth·g auth)∗ ·
r auth·d auth satisfies the propertyΠ5. We have exhibited an infinite incorrect execution
sequence with no longest correct prefix.

The following example permits to understand why it would be unrealistic and undesirable
to enforce pure persistence properties.

Example 12 (Non-enforceable pure persistence properties)

1 2

a
Σ \ {a}

a

Σ \ {a} An example of (pure) persistence property, defined onΣ ⊃ {a},
is Σ ∗ ·aω stating that “it will be eventually true that the eventa al-
ways occurs”. This property can be formalized by the persistence
automaton on the left withP= {1}. This property is neither a safety,

nor a guarantee and nor an obligation property. As in the previous example, this property
admits infinite incorrect sequences with an infinite number of correct prefixes.

One can explain the enforcement limitation intuitively with the following argument: if this
property was enforceable it would imply that an enforcementmonitor could decide from a
certain point that the underlying program will always produce the eventa. However such a
decision can never be taken by a monitor without memorizing the entire execution sequence
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beforehand. This is unrealistic for an infinite sequence. From a more formal perspective, the
enforcement limitation can be understood as follows. As stated in Section 4.2, ane-property
(φ ,ϕ) is enforceable if for all infinite execution sequences of theprogram when¬ϕ(σ ), the
longest prefix ofσ satisfyingφ (Max≺(Pref(φ ,σ )) always exists; which is not the case for
this property.

Suppose that we try to build asound and transparentenforcement monitor for the pro-
perty “it will be eventually true thata always occur”. Now, suppose thatb ∈ Σ and the
sequence(a·b)ω is submitted in input to such a monitor:

– When receivinga, the monitor has to output the sequencea. Indeed,a is correct w.r.t.
thee-property and it is the longest correct prefix of the input sequence.

– When receivinga ·b, the monitor does not produce a new output (the output is still a).
Indeed,a·b is incorrect w.r.t. thee-property.

– When receivinga·b·a, the monitor has to output the sequencea·b·a. Indeed,a·b·a is
correct w.r.t. thee-property and it is the longest correct prefix of the input sequence.

Thus the enforcement monitor would output the input sequence:(a·b)ω ; which is not correct
w.r.t. the considerede-property.

Remark 1As a consequence, properties of the reactivity class (containing the persistence
class) are not enforceable by our enforcement monitors.

7 Related work and discussion

This section compares our results with related work in runtime enforcement monitoring.
Moreover, we refer to the comparison of enforcement mechanisms provided in [4] as it sets
up enforcement at runtime w.r.t. other enforcement mechanisms from a computational point
of view.

7.1 Computability power of enforcement mechanisms

Hamlen, Morisett and Schneider proposed in [17,4] a classification of enforceable proper-
ties considering a program as a Turing machine. Their purpose was to delineate the set of
enforceable properties according to the mechanism used forthe enforcement purpose. Pro-
perties are classified according to the modifications that the enforcement mechanism can
perform on the underlying program. Notably each mechanism corresponds to a computabil-
ity class of property:

– Properties enforceable by static analysis of the underlying program.These are decidable
properties on the underlying program.

– Properties enforceable by runtime execution monitor.These are co-recursively enumer-
able properties.

– Properties enforceable by program rewriting.The set of enforceable properties depends
on the equivalence relation used between programs.

By modifying the execution sequence, our enforcement monitor can be seen as a restricted
form of program rewriting (also noticed in [4]). However we believe that the proposed me-
chanism can be affixed to a program using the constraints of a runtime mechanism. It seems
to us a good trade-off between pure runtime monitoring and program rewriting, in the sense
that we give more enforcement capability to our mechanism without any modification of the
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underlying program. The only control we need on the underlying program is being able to
“encapsulate” events and delay them with minimal semantic impacts. There the EMs intro-
duced in this paper can be framed in the runtime execution monitor category of enforcement
mechanisms. In the following we focus on related works dedicated to this category.

7.2 Characterizing the set of enforceable properties in theSafety-Progress hierarchy
independently from any enforcement mechanism [16]

In [16], we presented a unified view of runtime verification and enforcement of properties in
the Safety-Progress classification. We characterized the set of properties which can be veri-
fied (monitorable properties) and enforced (enforceable properties) at runtime. In particular,
we proposed an alternative definition of “property monitoring” to the one classically used in
this context. This definition is parameterized by a truth domain of interest, and we showed
that it better suits practical needs of runtime verificationtools. However, these characteriza-
tions were independent of any specific runtime enforcement mechanism, and they did not
tell how to build an enforcement monitor from a property.

7.3 Characterizing the set of enforceable properties with execution monitors

Security automata and decidable safety properties.Schneider introducedsecurity automata
as the first runtime mechanism for enforcing properties. In [3], he defined a variant of Büchi
automaton which runs in parallel with an underlying program. These automata are able
to halt the program whenever the security automaton detectsa violation of the property
under scrutiny. Schneider announced in this paper that the set of enforceable properties
with security automata is the set of safety properties. Thenin [4] Schneider, Hamlen and
Morisett refined the set of enforceable properties using such a mechanism. They showed that
security automata are in fact restrained by some computational limits. Indeed, Viswanathan
noticed in [5] that the class of enforceable properties is impacted by the computational power
of the enforcement monitor. As the enforcement mechanism can implement no more than
computable functions, the enforceable properties are included in the decidable ones. Hence,
it is shown in [4] that the set of safety properties is a strictsuperior limit to the power of
(execution) enforcement monitors defined as security automata. Since in this article we are
focusing on the regular fragment of safety properties, thisfragment corresponds to the set
of enforceable properties with security automata and the set of enforceable properties as
defined in [4,5].

Edit-automata and infinite renewal properties [6,7,18,19]. Ligatti et al. introducededit-
automataas runtime execution monitors. They noticed that, by only halting the program,
the original security automata of Schneider were too restricted. Depending on the current
input and its control state, an edit-automaton can either insert a new action by replacing the
current input, or suppress the current input (possibly memorized in the control state for later
on). Enforcement with edit-automata was studied under the soundness and transparency
constraints. Thus, the insertions of events were performedafter suppressions in order to
produce an output sequence which is always a prefix of the input sequence.

The properties enforced by edit-automata are calledinfinite renewalproperties. They
have been defined as the properties for which every infinite valid sequence has an infinite
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Fig. 10: Enforceable properties and enforcement mechanisms w.r.t. the Safety-Progress clas-
sification of properties

number of valid prefixes [6]. The set of renewal properties isa super-set of safety proper-
ties and contains some liveness properties (but not all). Formally, considering a common
alphabetΣ , the space of properties considered in [6,7,18] is 2Σ∞

. Then a propertyθ is said
to be an infinite renewal properties iff∀σ ∈ Exec(PΣ )∩Σ ∞,θ(σ )⇔∀σ ′ ∈ Σ ∗,σ ′ ≺ σ ⇒
∃σ ′′,σ ′ � σ ′′ ≺ σ ∧ θ(σ ′′). The definition of renewal properties matches as expected our
definition of enforceable properties (Definition 10). Hence, according to Theorem 1, in the
Safety-Progress classification ofe-properties, infinite renewal properties are responsee-pro-
perties.

Shallow History Automata and an information-based latticeof enforceable policies [8].
Fong studied some restricted forms of runtime execution monitors and their enforcement
capabilities. Shallow History Automata (SHA) keep as history asetof events the underlying
program performed, irrespectively to the order of their arrival. Fong showed that these au-
tomata can enforce a set of properties strictly contained inthe set of properties enforceable
by Schneider’s automata. The result has been generalized byusing abstraction mechanisms
on an equivalent variant of Schneider’s automata. It raisedup an information-based lattice of
enforceable policies. At the top of this lattice is the set ofproperties enforceable by security
automata (SHA keeps history of all events). At the bottom of this lattice is the set of policies
prohibiting a set of events (SHA do not distinguish between prefixes of execution sequences
obtained from the same events).

Fong’s classification has a practical interest in the sense that it studies the effect of prac-
tical programming constraints (limited memory). It also shows that some classical security
policies remain enforceable using such shallow automata.

7.4 Comparing EM with previous runtime enforcement mechanisms.

It is rather clear that our EMs look like edit-automata. Their computations are produced
from a set of operations performed on a memory device. In edit-automata the computation
is realized using a set of control states. However the enforcement mechanisms we propose



28

differ in several points. To the best of our knowledge these features are novel regarding
enforcement monitoring.

First, let us highlight the genericity of the EM(Ops) introduced in this paper. Security
automata of Schneider fall in the scope of our generic enforcement monitors. In fact one can
notice that by restraining the setOpsof enforcement operations to the set{halt,dump}, it
is possible to find an equivalent enforcement monitor to any security automaton. As SHA
are a restriction of Schneider’s automata, they fall in the scope of our EMs. Edit-automata
fall also in the scope of our general enforcement monitors. Indeed one can notice that the
primitive sets of edit-automata and EMs are the same.

We propose a translation of a recognizing automaton into an enforcing one. This sys-
tematic transformation eases the definition of the enforcement mechanism. Finding and en-
coding an enforcement mechanism using edit-automata is notan intuitive task. In the case
where the property enforced by a security or edit automaton is known, we can synthesize a
more concise enforcement monitor in the number of states. Indeed, for a security automaton
or an edit-automaton enforcing a propertyΠ , we synthesize an EM using TransObligation
or TransResponse applied onAΠ whereAΠ is a recognizing automaton forΠ .

Compared to edit-automata9, our EMs propose a clear distinction between control states
(used for property recognition) and the sequence memorization (when the current execution
deviates from the property) in the memory device for potential replay (if the execution se-
quence meets the property again). Hence such a mechanism is easier to implement, since it
relies on a finite (and restricted) set of control states. Meanwhile, linking EMs to their im-
plementation is more compatible with formal reasoning. This provides more confidence in
the implementation of such mechanisms. Indeed, reducing the size of the trusted computing
mechanisms is a persistent challenge in the security domain.

7.5 Synthesis of runtime enforcement mechanisms

There is relatively few research effort dedicated to the synthesis of runtime enforcement
mechanisms.

In [20] Martinelli and Matteucci tackle the synthesis of enforcement mechanism as de-
fined by Ligatti. More generally the authors consider Schneider’s security automata (trun-
cation automata), insertion, suppression and edit-automata. The monitor is modeled by an
algebraic operator expressed in CCS. The program under scrutiny is then a termY ⊲K X
whereX is the target program,Y the controller program and⊲K the operator modeling the
monitor whereK is the kind of monitor (truncation, insertion, suppressionor edit). The de-
sired property for the underlying system is formalized using µ-calculus. In [21] Matteucci
extends the approach in the context of real-time systems.

7.6 Implementations

The runtime enforcement monitoring approach was implemented in numerous tools (see [22,
23] for instance). Most of them are based more or less on security automata, whereas Poly-
mer [19] introduces a more expressive framework based on edit-automata. Polymer is a

9 Edit-automata use a potentially infinite number of control states for property recognition and sequence
memorization. Thus, even for a simple guarantee propertye.g., “eventuallyb” an edit-automaton needs an
infinite number of states to memorize the potential incorrect sequence of events belonging toΣ \{b}. Further-
more, one can notice that the size of an edit-automaton is here almost independent of the alphabetΣ under
consideration.
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formal-semantics supported language and system which can be used to define, compose and
enforce security policies.

7.7 Discussion

In previous work in enforcement monitoring, as in our work, the enforcement mechanisms
are restrained to use a peculiar set of enforcement primitives. It may be interesting to notice
that, when considering enforcement with the transparency constraint (as in Definition 10)
the specialized enforcement mechanism we propose have enough enforcement abilities.
Thus, considering more general forms of EMs with alternative set of enforcement opera-
tions would not add any further enforcement ability.

Moreover, the previous development, starting from Section4.3, can be conducted con-
sidering a set of enforcement operations{store,dump}. The interest of the operationshalt
andoff is only practical: the operationhalt (resp.off) is used to bound the size of the memory
when it is no longer necessary to memorize further events (resp. to suppress the monitor’s
performance overhead on the program execution when it is notworth monitoring the input
sequence anymore).

8 Conclusion and perspectives

Conclusion. In this paper our purpose was to extend previous work on property checking
through runtime enforcement in several directions. Firstly, we proposed a generic notion of
enforcement monitors based on a memory device, finite sets ofcontrol states and enforce-
ment operations. This notion of EM encompasses previous similar ones: security-automata
(and consequently shallow-history automata) and edit-automata in a rather obvious way.
Moreover, we specified their enforcement abilities w.r.t. the general safety-progress classi-
fication of properties. It allowed a fine-grain characterization of the space of enforceable
properties. Furthermore, we studied the question of EM composition w.r.t. Boolean opera-
tors. Also, we proposed a systematic technique to produce anenforcing monitor from the
Streett automaton recognizing a given safety, guarantee, obligation or response property.

Perspectives.An important working direction is now to make this runtime enforcement
technique better able to cope with practical limitations inorder to deal with larger examples.
In particular it is likely that not all events produced by an underlying program can be freely
observed, suppressed, or inserted. This leads to well-known notions ofobservableand/or
controllable events, that have to be taken into account by the enforcementmechanisms.
Moreover, it could be also necessary to limit the resources consumed by the monitor by
storing in memory only anabstractionof the sequence of events observed (i.e., using abag
instead of a FIFO queue). From a theoretical point of view, this means to define enforcement
up to someabstraction preserving trace equivalence relations. We strongly believe that our
notion of enforcement monitors (with a generic memory device) is a suitable framework to
study and implement these features.

Similarly, it would be interesting to study the notion of enforcement when weakening the
transparency constraint. In this case, the more general form of edit-automata and our generic
EMs could be used. Their complete enforcement potentials remain to be studied. This per-
spective would involve defining other relations between theinput and the output sequences;
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and thus defining other enforcement primitives to enforce properties in an automatic fashion.
It seems to us that such alternative constraints should be motivated by practical needs.

Another working direction is a prototype tool, currently under development. To validate
and extend the previously defined approach we are elaborating a framework implemented as
a Java toolbox, using Aspect Oriented Programming [24] as anunderlying technique. This
framework has been sketched in [25]. Taking, as input, ane-propertyΠ specified by a Streett
automatonAΠ , encoded in XML, it uses a first tool (consisting mainly in implementing the
aforementioned transformations) to produce an EM forΠ . Then a connected tool, using the
generated EM, produces an AspectJ aspect to be weaved with a target Java program. The re-
sulting program then meets propertyΠ , in the sense that this property is actually enforced.
We believe that this prototype framework will be a good platform to investigate the im-
pact of the aforementioned practical constraints. Also, weare currently studying alternative
rewriting techniques (not based on aspects) to replace the tool for monitor integration in the
underlying program (such as BCEL [26] technology, or dynamic binary code insertion [27]).
The benefits would be to perform runtime enforcement from binary versions of the target
program.

Acknowledgements The authors would like to gratefuly thank the anonymous referees for their helpful
remarks.
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A Proofs

A.1 Proof of Property 1 (p. 9)

We prove the two facts successively:

1. As Π is a safetye-property, then there exists a Streett safety-automatonAΠ = (QAΠ , qAΠ
init ,Σ ,−→AΠ

,{( /0,P)}) specifying it. Letσ be a sequence belonging toΠ , thenσ is accepted byAΠ . If σ is finite,
it means that the last state visited during the run ofσ on AΠ is in P (Definition 3). Thus, each prefix of
σ has its run ending inP since there is no transition fromP to P. According to the acceptance criterion
of Streett automata for finite sequences, all prefixes are accepted byAΠ and thus belong toΠ . If σ is
an infinite sequence, it means that all states visited infinitely often during the run ofσ on AΠ are inP
(vinf(σ ,AΠ ) ⊆ P). Since there is no transition fromP to P, no prefix ofσ visits a state inP; i.e., all
prefixes ofσ belong toΠ .

2. Similarly, when considering a guarantee property and itsspecifying automaton, all accepted sequences
(belonging to the property) have their run ending in aR-state. Finite continuations of accepted sequences
still have their run ending in aR-state since there is no transition fromR to R. Infinite continuations of an
accepted sequence visit at least one state inR infinitely often: theR-state in which the run of the accepted
sequence ends in.

⊓⊔

A.2 Proof of Property 3 (p. 15)

This proof is done by induction on the length of the input sequenceσ .
Induction basis.|σ | = 1; we haveσ = a with a∈ Σ . Using the definition of evolution of configurations

(Definition 8), we have∃q∈ QA↓ ,(q
A↓
init ,σ ·σ ′,ε) o

=⇒A↓
(q,σ ′,m) with α(σ ,ε) = (o,m) andq

A↓
init

σ/α
−→ q.

– If α = halt, theno= ε ,m= ε andq∈ HaltA↓ . We haveo≺ σ .
– Else, ifα = store, theno= ε ,m= σ . We haveσ = o·m.
– Else (α = dumpor α = off), o= a,m= ε andσ = o·m.
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Induction step.Suppose that the property is verified for every execution sequence of lengthn and consider an
execution sequenceσ ·a of lengthn+1, wherea∈ Σ . By readingσ , A↓ enters a stateq∈ QA↓ , produces an

outputo, and hasm in its memory:∃q∈ QA↓ ,(q
A↓
init ,σ ·a ·σ ′,ε) o

=⇒A↓
(q,a ·σ ′,m). Moreover, the induction

hypothesis gives:(q∈HaltA↓ ∧o�σ)∨(q /∈HaltA↓ ∧σ = o·m). AsA↓ is complete w.r.t.QA↓×Σ (definition

of EMs), ∃α ∈ Ops,∃q′ ∈ QA↓ ,q
a/α
−→A↓

q′. So, ∃o′,m′ ∈ Σ ∗,(q,a · σ ′,m)
o′
→֒A↓

(q′,σ ′,m′) with α(a,m) =

(o′,m′). Which results in(q
A↓
init ,σ ·a ·σ ′,ε) o·o′

=⇒A↓
(q′,σ ′,m′) and(q∈ HaltA↓ ∧o� σ)∨ (q /∈ HaltA↓ ∧σ =

o·m). We want to show that(q′ ∈ HaltA↓ ∧o·o′ � σ ·a)∨ (q′ 6∈ HaltA↓ ∧σ ·a= o·o′ ·m′). Let us treat three
cases for the enforcement operationα .

– Caseα = halt. We haveα(a,m) = (ε ,m). Soo′ = ε andm= m′. And we also have, according to the
definition of EMs (Definition 6),q′ ∈ HaltA↓ . Then, we apply the induction hypothesis withσ , and
depending on the membership ofq in HaltA↓ . If q ∈ HaltA↓ , o� σ ⇒ o · ε � σ ·a. Else (q /∈ HaltA↓ ),
we haveo·ε � σ ·a.

– Caseα = store. We haveq /∈ HaltA↓ , andα(a,m) = (ε ,m·a), soo′ = ε andm′ = m·a. By induction
hypothesis,q′ /∈ HaltA↓ (Definition 6) andσ = o·m. Hence, we haveσ ·a= o·m·a = o·o′ ·m′.

– Caseα ∈ {dump,off}. We haveq /∈ HaltA↓ , andα(a,m) = (m·a,ε). Theno′ = m·a andm′ = ε . By
induction hypothesis, we have necessarilyq′ /∈ HaltA↓ (Definition 6), andσ = o ·m. Hence, we have
σ ·a= o·m·a = o·o′ ·m′.

⊓⊔

A.3 Correctness of the Union and Intersection operations (Theorem 2, p. 18)

Note first that these constructions effectively build EMs. We only prove the Union operator. Fori ∈ {1,2},
Enf(A↓Πi , Πi ,PΣ ), i.e., ∀σ ∈ Exec(PΣ ), ∃oi ∈ Σ ∗:

σ ⇓A↓Πi
oi (9)

Πi(σ)⇒ σ = oi (10)

¬Πi(σ)∧Pref≺(φi ,σ) = /0⇒ oi = ε (11)

¬Πi (σ)∧Pref≺(φi ,σ) 6= /0⇒ oi = Max(Pref≺(φi ,σ)) (12)

Let us noteA⊔ = Union(A↓Π1 ,A↓Π2) = (Q,qinit ,−→,Ops), Π = Π1∨Π2, and⇒ the multistep derivation
relation defined over configurations ofA⊔ and−→. We have to showEnf(A⊔,Π ,PΣ ), that is, givenσ ∈
Exec(PΣ ), ∃o∈ Σ ∗ s.t.,

σ ⇓A⊔ o (13)

Π(σ)⇒ σ = o (14)

¬Π(σ)∧Pref≺(φ ,σ) = /0⇒ o= ε (15)

¬Π(σ)∧Pref≺(φ ,σ) 6= /0⇒ o= Max(Pref≺(φ ,σ)) (16)

We first considerσ ∈ Σ ∗, and use induction on|σ |.
Induction basis.For the induction basis, we have|σ | = 0 andσ = ε . Then we have (13) and (14) as

ε ⇓A↓Π ε . Moreover,Pref≺(φ ,ε) = /0 gives us (15).
Inductive step.Let n∈N and suppose that for all sequencesσ s.t.|σ |= n, there exists an outputo of A⊔

s.t. (13), (14), (15), and (16).
As σ ⇓A⊔ o (induction hypothesis), there exists a configuration(q,ε ,m)∈Q×Σ ∗×Σ ∗ s.t.(qinit ,σ ,ε) o

⇒

(q,ε ,m), which implies that(qinit,σ ·a,ε) o
⇒ (q,a,m). That is, after readingσ , the EMA⊔ is in a stateq with

a as input, andmas memory content. Then from the configuration(q,a,m), it evolves towards a configuration

(q′,ε ,m′), that is(q,a,m)
o′
→֒ (q′,ε ,m′) with α(a,m) = (o′,m′),α ∈ Ops. By readingσ ·a, A⊔ produces the

outputo·o′. Also, reading ofσ ·a onA↓Πi , i ∈ {1,2}, induces the following evolution of configurations:

(qinit,σ ·a,ε) oi⇒ (qi ,a,mi )
o′i
→֒ (q′i ,ε ,m′

i ),

with αi(a,mi) = (o′i ,m
′
i );qi ,q′i ∈ QA↓Πi ;mi ,m′

i ,oi ,o′i ∈ Σ ∗.
There are two cases depending onφ(σ ·a).
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– φ(σ · a). In this case, eitherφ1(σ · a) or φ2(σ · a). Let us considerφ1(σ · a), φ2(σ · a) is similar. As
Enf(Π1,A↓Π1 ,PΣ ),∃o1 ∈ Σ ∗,σ ·a⇓A↓Π1

o1. Moreover,φ1(σ ·a) implies thato1 = σ ·a. Inevitably the

last enforcement operationα1 of A↓Π1 is dumpor off (Property 4). Thenα = ⊔({α1,α2}) = dump∨
α = off . According to the definition of enforcement operation and Property 3,σ ·a⇓A⊔ σ ·a, i.e., (13)
and (14).

– ¬φ(σ · a). Then¬φ1(σ · a)∧¬φ2(σ ·a). Using the definition of enforcement, we have four cases de-
pending on whetherPref≺(φi ,σ ·a) = /0 or not,i ∈ {1,2}.

– The first case isPref≺(φi ,σ · a) 6= /0, i ∈ {1,2}. For i ∈ {1,2}, asEnf(Πi ,A↓Πi , PΣ ), ¬φi(σ · a)
gives∃oi ∈ Σ ∗,oi = Max(Pref≺(φi ,σ ·a)). Now, we have eithero1 ≺ o2, o2 ≺ o1 or o1 = o2.

• o1 ≺ o2 (o2 ≺ o1 is symmetrical). We have∀o′1 ∈ Σ ∗,o1 ≺ o′1 � σ ·a ⇒¬φ1(o′1), and∀o′2 ∈
Σ ∗,o2 ≺ o′2 � σ ·a⇒¬φ2(o′2). Theno1 ≺ o2 implies thato2 =Max(Pref≺(φ ,σ ·a)). We have
to show thatσ ·a⇓A⊔ o2. Let us examine the sequence of enforcement operations performed by
A⊔. We haveo2 ⇓A⊔ o2, as the last enforcement operation performed while readingo2 � σ ·a
is adump(A⊔ is obtained by taking the upperbound of enforcement operations).

• If o1 = o2, o1 = o2 = Max(Pref≺(φ ,σ ·a)). The previous reasoning holds.
– The second case isPref≺(φi ,σ ·a) = /0, i ∈ {1,2}. For i ∈ {1,2}, asEnf(Πi ,A↓Πi , PΣ ), ¬φi(σ ·a)

givesσ ·a⇓A↓Πi
ε , i ∈ {1,2}.

– The third case isPref≺(φ1,σ ·a) = /0∨Pref≺(φ2,σ ·a) = /0. SinceEnf(Πi ,A↓Πi , PΣ ), i ∈ {1,2},
it gives us two sequencesoi ∈ Σ ∗, s.t.oi = Max(Pref≺(φi ,σ ·a)), i ∈ {1,2} that can be compared
similarly to the first case.

For infinite sequences, the reasoning is similar to the one for finite sequences. It is done on the shape of the
sequence of enforcement operations and by distinguishing according to whetherϕ(σ) or not. Indeed, de-
pending onϕ(σ), and using the fact thatA↓Πi enforcesA↓Πi , i ∈ {1,2}, we associate the possible sequences
of enforcement operations onA↓Πi to the sequence of enforcement operations onA⊔.

Note that we have indeedHaltA⊔ = HaltA↓Π1 ×HaltA↓Π2 . Using the definition ofA↓⊔, we have:

HaltA⊔ = {q′ ∈ QA⊔ | ∃a∈ Σ ,∃q∈ QA⊔ ,q
a/halt
−→A↓⊔

q′}

= {(q′1,q
′
2) ∈ QA↓Π1 ×QA↓Π2 |

∃a∈ Σ ,∃(q1,q2) ∈ QA↓Π1 ×QA↓Π2 ,(q1,q2)
a/halt
−→A⊔ (q′1,q

′
2)}

= {(q′1,q
′
2) ∈ QA↓Π1 ×QA↓Π2 | ∃a∈ Σ ,

∃q1 ∈ QA↓Π1 ,∃q2 ∈ QA↓Π2 ,q1
a/α1−→A↓Π1

q′1∧q2
a/α2−→A↓Π2

q′2∧α1⊔α2 = halt}

= {(q′1,q
′
2) ∈ QA↓Π1 ×QA↓Π2 | ∃a∈ Σ ,
(

∃q1 ∈ QA↓Π1 ,q1
a/halt
−→A↓Π1

q′1
)

∧
(

∃q2 ∈ QA↓Π2 ,q2
a/halt
−→A↓Π2

q′2
)

}

= {q′1 ∈ QA↓Π1 | ∃a∈ Σ ,∃q1 ∈ QA↓Π1 ,q1
a/halt
−→A↓Π1

q′1}

×{q′2 ∈ QA↓Π2 | ∃a∈ Σ ,∃q2 ∈ QA↓Π2 ,q2
a/halt
−→A↓Π2

q′2}

= HaltA↓Π1 ×HaltA↓Π2

Note also that the states inHaltA⊔ verify the constraint expressed in Section 4.3. That is∀q∈ HaltA⊔ ,∀a ∈

Σ ,∀α ∈ Ops,∀q′ ∈ QA⊔ ,q
a/α
−→A⊔ q′ ⇒ α = halt. It is a direct consequence of the fact thatHaltA⊔ =

HaltA↓Π1 ×HaltA↓Π2 and the fact that ahalt operation is performed onA⊔ iff the operationhalt is performed
on the two corresponding transitions inA↓Π1 andA↓Π2 .

Similarly, we can show that firstOffA⊔ = OffA↓Π1 ×QA↓Π2 ∪ QA↓Π1 ×OffA↓Π2 and second that states
in OffA⊔ verify the constraint of Definition 13. ThereforeA⊔ is indeed an EM.

The proof for the intersection operator is conducted similarly. ⊓⊔

A.4 Correctness of the Negation operation (Theorem 3, p. 19)

Let thee-propertyΠ be (φ ,ϕ), with φ ⊆ Σ ∗ andϕ ⊆ Σ ω . Let us noteA↓Π = Negation(A↓Π ), and⇒
A↓Π

the multistep derivation relation defined over configurations ofA↓Π and−→
A↓Π

. Also, sinceQA↓Π = QA↓Π ,
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we will useQ to denote the set of states of both EMs. Similarlyqinit denotes the starting states of both EMs.
We have to showEnf(A↓Π ,Π ,PΣ ), that is,∀σ ∈ Exec(PΣ ), ∃o∈ Σ ∞ s.t.

σ ⇓
A↓Π

o (17)

Π (σ)⇒ σ = o (18)

¬Π (σ)∧Pref≺(φ ,σ) = /0⇒ o= ε (19)

¬Π (σ)∧Pref≺(φ ,σ) 6= /0⇒ o= Max(Pref≺(φ ,σ)) (20)

The proof is in two steps: the first one is for finite sequences,the second one for infinite sequences.

Finite sequences.The proof is done by induction on|σ |.
Induction basis.|σ | = 0; σ = ε , so we have (17) and (18) asε ⇓A↓Π ε . Moreover,Pref≺(φ ,ε) = /0,

which gives (19).
Inductive step.Let n∈ N and suppose that for all sequencesσ s.t.|σ | = n, there exists an outputo∈ Σ ∗

s.t. the constraints (17), (18), (19) and (20) hold. Considering a∈ Σ and a sequenceσ ·a s.t. |σ ·a| = n+1,
we study the effect of the submission in input of the last event a. We will prove that there exists a new output
s.t. the same constraints hold.

As σ ⇓
A↓Π

o (induction hypothesis), there exists a configuration(q,ε ,m) ∈ Q× Σ ∗ × Σ ∗ such that

(qinit ,σ ,ε) o
=⇒

A↓Π
(q,ε ,m), which implies that(qinit ,σ ·a,ε) o

=⇒
A↓Π

(q,a,m). That is, after readingσ , A↓Π

is in a stateq with a in input, andm as memory content. Then from the configuration(q,a,m), it evolves

towards a configuration(q′,ε ,m′), that is(q,a,m)
o′
→֒

A↓Π
(q′,ε ,m′) with α(a,m) = (o′,m′),α ∈ Ops. The

reading ofσ ·a onA↓Π induces the evolution of configurations:

(qinit ,σ ·a,ε) o
=⇒

A↓Π
(q,a,m)

o′
→֒

A↓Π
(q′,ε ,m′)

(qinit ,σ ·a,ε) p
=⇒A↓Π (q,a,n)

p′
→֒A↓Π (q

′,ε ,n′),

with:

– q
a/α
−→

A↓Π
q′,α(a,m) = (o′,m′),α ∈ Ops;q,q′ ∈ Q;m,m′ ,o,o′ ∈ Σ ∗;

– q
a/α ′

−→A↓Π q′,α ′(a,n) = (p′,n′),α ′ ∈ Ops;q,q′ ∈ Q;n,n′, p, p′ ∈ Σ ∗.

There are two cases depending onφ(σ ·a):

– φ(σ ·a). As Enf(Π ,A↓Π ,PΣ ), A↓Π producesσ ·a, i.e., σ ·a⇓A↓Π σ ·a. Necessarily,α ′ ∈ {dump,off}.

It corresponds to an operationα ∈ {store,halt} onA↓Π . Now we distinguish according toφ(σ) or not.
– If φ(σ), using the induction hypothesis (|σ | = n), we have eithero= ε (whenPref≺(φ ,σ) = /0) or

o= Max(Pref≺(φ ,σ)) (whenPref≺(φ ,σ) 6= /0).
• If Pref≺(φ ,σ) = /0, then we also havePref≺(φ ,σ ·a) = /0. The output ofA↓Π is still ε , i.e.,

o·o′ = ε . We have (19).
• If Pref≺(φ ,σ) 6= /0, using the induction hypothesis,o = Max(Pref≺(φ ,σ)). Yet φ(σ · a), it

implies thato= Max(Pref≺(φ ,σ ·a)). We have (20).
– If ¬φ(σ), i.e., φ(σ), using the induction hypothesis, we have thatσ ⇓

A↓Π
o with σ = o. Then

σ = Max(Pref≺(φ ,σ)) sinceφ(σ). We also obtain (20).
– φ(σ ·a). Then, we haveMax(Pref≺(φ ,σ ·a))≺σ ·a. It follows thatα ′ ∈ {store,halt}. As a consequence

α ∈ {dump,off} andσ ·a⇓
A↓Π

σ ·a. We have (17) and (18).

Infinite sequences.We distinguish according to the class ofΠ . Let us considerσ ∈ Σ ω .

– Π is a safety e-property.We have two cases, depending on whetherϕ(σ) or not.
– ϕ(σ). As Enf(Π ,A↓Π ,PΣ ), we have thatσ ⇓A↓Π σ . Moreover asΠ is a safetye-property, all pre-

fixes ofσ satisfyφ (Property 1), that is∀σ ′ ∈ Σ ∗,σ ′ ≺ σ ⇒ φ(σ ′), and consequentlyσ ′ ⇓A↓Π σ ′.
It follows (Property 4) that the sequence of enforcement operations onA↓Π belongs to(dump)ω +
dump∗ ·offω . Then using the definition of Negation, we find that the sequence of enforcement opera-
tions onA↓Π belongs tostore∗ ·haltω +storeω . It follows thatσ ⇓

A↓Π
ε , i.e., (17). AsPref≺(φ ,σ) =

/0, we obtain (19).
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– ¬ϕ(σ). As Enf(Π ,A↓Π ,PΣ ), we have two cases: eitherPref≺(φ ,σ) = /0∧o= ε or ∃o∈ Σ ∗,o=
Max(Pref≺(φ ,σ)).

• Let us deal first with the casePref≺(φ ,σ) = /0. We have∀σ ′ ∈ Σ ∗,σ ′ ≺ σ ⇒ ¬φ(σ ′). It
follows that the sequence of enforcement operations onA↓Π belongs tostore∗ ·haltω +storeω .
Using the definition of Negation, the sequence of enforcement operations ofA↓Π is offω . It
follows thatσ ⇓

A↓Π
σ . We obtain (17).

• Let us deal now with the casePref≺(φ ,σ) 6= /0. Let n= |o|. As Π is a safetye-property, we
have that∀1 ≤ i ≤ n,φ(σ···i−1)∧ ∀i > n,¬φ(σ···i). Then using Property 4, we can find the
sequence of enforcement operations performed byA↓Π : (dump)n ·haltω . OnA↓Π , using the
definition of the transformation Negation, the sequence of enforcement operations becomes
storen ·off ω . It follows thatσ ⇓

A↓Π
σ (17). Then,ϕ(σ) andσ = σ ensure (18).

– Π is a guarantee e-property.We have two cases, depending onϕ(σ) or not.
– ϕ(σ). As Enf(Π ,A↓Π ,PΣ ), we have thatσ ⇓A↓Π σ . Moreover asΠ is a guaranteee-property,

there exists a prefixσ ′ of σ s.t.∀σ ′′ ∈ Σ ∗,σ ′ � σ ′′ ⇒ φ(σ ′′)∧∀σ ′′ ∈ Σ ∗,σ ′′ ≺ σ ′ ⇒¬φ(σ ′′). Let
us noten= |σ ′|. Consequently, asΠ is enforced byA↓Π , we have∀σ ′′ ∈ Σ ∗,σ ′ � σ ′′ ⇒ σ ′′ ⇓A↓Π
σ ′′ ∧ ∀σ ′′ ∈ Σ ∗,σ ′′ ≺ σ ′ ⇒ σ ′′ ⇓A↓Π ε . It follows that the sequence of enforcement operations

on A↓Π is storen−1 ·offω . Note that for guaranteee-properties, thedumpoperation is never used:
once a finite sequence satisfies a guaranteee-property, all its continuations also do. Then, using the
definition of the transformation Negation, we find that the sequence of enforcement operations on
A↓Π is dumpn−1 ·haltω . It follows thatσ ⇓

A↓Π
σ ′ (17). Moreover as we have seen thatφ(σ ′), we

have (20).
– ¬ϕ(σ). Π is a guaranteee-property,¬ϕ(σ) implies that there is no prefix ofσ satisfyingφ . As

Enf(Π ,A↓Π ,PΣ ), we have that∀σ ′ ≺ σ ,σ ⇓A↓Π ε . The sequence of enforcement operations per-
formed byA↓Π belongs tostore∗ ·haltω . Using the definition of the Negation transformation, the
sequence of enforcement operations onA↓Π belongs todump∗ ·offω . It follows thatσ ⇓

A↓Π
σ . We

have (17) and (18).

Finally, due to the definition of−→
A↓Π

we have easily thatHaltA↓Π = OffA↓Π and OffA↓Π = HaltA↓Π .

Moreover, the constraints forHaltA↓Π andOffA↓Π states are respected since they are respected for states in
OffA↓Π andHaltA↓Π , andA↓Π is an EM. ⊓⊔

A.5 Correctness of the TransResponse transformation (Theorem 4, p. 22)

Intuitively, the proof can be understood as follows. When a sequence satisfies a response property, there
exists an alternation in the satisfaction of the prefixes of this sequence. When a sequence does not satisfy the
property, there exists an index from which the run of the recognized sequence is composed of “bad states”
forever.

We noteAΠ = (QAΠ ,qAΠ
init ,Σ ,−→AΠ ,{(R, /0)}). Let us consider an execution sequence of the program

σ ∈ Exec(PΣ ). We study the effect of the submission ofσ to A↓Π . We will associate the execution ofσ
on AΠ to the execution ofσ on A↓Π . The execution ofσ on AΠ produces a trace(q0,σ0,q1) · (q1,σ1,q2)
· · · (qi ,σi ,qi+1) · · · which corresponds to a trace(q0,σ0/α0,q1) · · · (qi ,σi/αi ,qi+1) · · · on A↓Π with q0 =

q
A↓Π
init . We distinguish depending on whether the sequenceσ satisfiesΠ or not.

– The first case isΠ(σ). We know that the automatonAΠ acceptsσ , let us distinguish whetherσ is finite
or not.

* If σ ∈Σ ∗, thenφ(σ). Letn= |σ |. Asσ is accepted byAΠ , and according to the acceptance criterion

(Definition 3), there exists a stateq∈R reachable fromqAΠ
init s.t. the run ofAΠ onσ ends in aR-state

(we haveP= /0 sinceAΠ is a response automaton).
If σ = ε , then we have (5) asε ⇓A↓Π ε . Moreover,Pref≺(φ ,ε) = /0, which gives (7).
If (σ 6= ε), according to the constraints of the transition relation of a response automaton, the run
and the trace ofσ onAΠ are such thatqn ∈ R. According to (TRESP1) and (TRESP2), the trace ofσ
onA↓Π is such thatαn ∈ {off ,dump}.
From the execution trace onA↓Π and the definition of the enforcement operations, we deduce the
following derivations of configurations:

(q
A↓Π
init ,σ ,ε)

o0
→֒ (q1,σ1···,m1) · · ·

on−2
→֒ (qn−1,σn−1···,mn−1)

on−1
→֒ (qn,ε ,ε)
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with o0 ·o1 · · ·on−1 = σ since the last enforcement operation (αn−1) is eitheroff or dump.

By deduction, using the multistep derivations, we have(q
A↓Π
init ,σ ,ε) σ

⇒ (qn,ε ,ε). That is,σ ⇓A↓Π σ ,
which ensures (5). Besides, according to the acceptance criterion of e-properties, we haveφ(σ),
which permits to deduce (6), asσ = σ .

* If σ ∈ Σ ω , then ϕ(σ). Using Definition 3 and the definition of a response automaton, we have
vinf(σ ,AΠ )∩R 6= /0. Formally,∀i ∈ N,∃ j ∈ N, j ≥ i ∧ qj ∈ R. It follows that the trace ofσ on
AΠ verifies∀i ∈ N,∃ j ∈ N, j ≥ i∧ (qj−1,σ j−1,qj ) ∈ trace(σ ,AΠ )∧qj ∈ R. Then, we deduce that
the trace on the enforcement monitorA↓Π (using the definition of TransResponse, Definition 17)
verifies the property:∀i ∈ N,∃ j ∈ N, j ≥ i ∧ (qj−1,σ j−1/dump,qj ) ∈ trace(σ ,A↓Π ). That is:∀i ∈
N,∃ j ∈ N, j ≥ i,α j ∈ {off ,dump}. Thus we deduce that (using Property 2)σ ⇓A↓Π σ , i.e., (5).
Moreover, we have (6) asϕ(σ)∧σ = σ .

– The second case is¬Π(σ). The sequenceσ is not accepted byAΠ , let us distinguish whetherσ is finite
or not.

– σ ∈ Σ ∗ and then¬φ(σ). Let n= |σ |. There are two cases depending onPref≺(φ ,σ) = /0 or not.
• If Pref≺(φ ,σ) = /0, according to the acceptance criterion of response automata, AΠ starts in

R and stays in. We deduce that the execution trace ofσ on AΠ is s.t.∀i ≥ 0,qi /∈ R. Using
the definition of TransResponse we can findtrace(σ ,A↓Π ). Then, the enforcement operation
performed byA↓Π is alwayshalt or store. That isσ ⇓A↓Π ε (5). ThenPref≺(φ ,σ) = /0 implies
that∀σ ′ ≺ σ ,¬φ(σ). We have (7).

• If (Pref≺(φ ,σ) 6= /0), there is at least one prefix ofσ satisfying φ . Let us noteσgood the
longest prefix ofσ satisfyingφ : σgood= Max(Pref≺(σ ,φ)). Let k= |σgood|. Then the run and
the trace ofAΠ on σ are s.t.qk ∈ R∧∀i ∈ [k+1,n],qi ∈ R. According to the TransResponse
transformation, the trace ofσ on A↓Π is s.t.αk−1 = dump∧∀i ∈ [k,n−1],αi ∈ {store,halt}.
From the execution trace onA↓Π and the definition of the enforcement operations, we deduce
the following derivations of configurations:

(q
A↓Π
init ,σ ,ε)

o0
→֒ ·· ·

ok−2
→֒ (qk−1,σk−1···,mk−1)

ok−1
→֒ (qk,σk···,ε)

(qk,σk···,ε)
ε
→֒ (qk+1,σk+1···,mk+1)

ε
→֒ ·· ·

ε
→֒ (qn,ε ,mn)

with σgood = σ···k−1 = o0 ·o1 · · ·ok−1. Indeed we havedump(σk−1,mk−1) = (mk−1 ·σk−1,ε)
and∀i ≥ k,αi ∈ {store,halt}, A↓Π producesε in output (fork≤ i ≤ n−1). That isσ···k−1 ⇓A↓Π
σ···k−1 andσ ⇓A↓Π σ···k−1. Which ensures (5). Besides, according to the acceptance criterion
of e-properties, we have¬φ(σ), which proves (8), asσ···k−1 = Max(Pref≺(φ ,σ)).

– σ ∈ Σ ω and then¬ϕ(σ). This case is similar to the case¬ϕ(σ) for guarantee properties. The
acceptance criterion for response automata implies thatvinf (σ ,AΠ )∩R= /0. We deduce that there

existsn such that the run ofσ on AΠ is expressed asrun(σ ,AΠ ) = q0 · · ·qn · · · with q0 = qAΠ
init ∧

(∀i ≥ n,qi ∈ R). Let us considernmin the smallest integern verifying this property. Fork≤ nmin, it is
then possible to apply the previous reasoning (the caseφ(σ)) for σ···k. Hence we find an alternation
in the run of the execution sequenceσ···nmin between states belonging toRandR. We find in a similar
way that fork > nmin, σ···k ⇓A↓Π σ···nmin andφ(σ···nmin). It is easy to see thatσ···nmin is the longest

prefix (by definition ofnmin) satisfyingφ
(

σ···nmin = Max(Pref≺(φ ,σ···k))
)

.
⊓⊔

A.6 Correctness of the TransObligation transformation (Theorem 4 continued, p. 22)

We rely on showing that the EM obtained by applying of the TransResponse, Union and Intersection trans-
formations (this EM is correct by construction), and the EM obtained by applying directly TransObligation,
are equivalent. To do so, we perform an induction onk whereΠ is a k-obligation e-property. Let us note
A↓Π = TransObligation(AΠ ).

– Induction basis.We takek = 1, Π is a 1-obligation. LetAΠ = (QAΠ ,qAΠ
init ,Σ ,−→AΠ ,{(R,P)}). Let

σ ∈ Σ ∞. Π can be expressedΠ = ΠS∪ ΠG where ΠS (resp. ΠG) is a safety (resp. guarantee)e-
property recognized by the safety (resp. guarantee) automaton AΠS = (QAΠ ,qAΠ

init ,Σ ,−→AΠ ,{( /0,P)})

(resp.AΠG = (QAΠ ,qAΠ
init ,Σ ,−→AΠ ,{(R, /0)})). These automata differ fromAΠ only on their accepting

states. We can apply the TransResponse transformation onAΠS seen as a response automaton, and on
AΠG directly. It yields two enforcement monitorsA↓ΠS

andA↓ΠG
.
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Now, using the definition of TransResponse forA↓ΠS
, we have thatQA↓ΠS = QAΠS. Moreover, for any

transitionq
a/α
−→A↓ΠS

q′ in A↓ΠS
, the enforcement operationα verifies:

(q′ ∈ P∧ReachAΠS
(q′)⊆ P)⇒ α = off

∧ (q′ ∈ P∧ReachAΠS
(q′) 6⊆ P)⇒ α = dump

∧ (q′ ∈ P)⇒ α = halt

Similarly, using the definition of TransResponse forA↓ΠG
, for any transitionq

a/β
−→A↓ΠG

q′ in A↓ΠG
, the

enforcement operationβ verifies:

(q′ ∈ R∧ReachAΠG
(q′)⊆ R)⇒ β = halt

∧ (q′ ∈ R∧ReachAΠS
(q′) 6⊆ R)⇒ β = store

∧ (q′ ∈ R)⇒ β = off

Now, notice that every transition inA⊔ = Union(A↓ΠS
,A↓ΠG

) is in the form(q,q)
a/γ
−→A⊔ (q′,q′) where

q,q′ ∈ QA↓ΠS = QA↓ΠG = QAΠ . Moreover,γ verifiesγ = α ⊔β whereq
a/α
−→A↓ΠS

q′ andq
a/β
−→A↓ΠG

q′.

Furthermore, for any transitionq
a/γ ′
−→A↓Π q′ in A↓Π , the enforcement operationγ ′ verifies the same previ-

ous condition (α ⊔β ). Using the definition of TransObligation, there is a bijection between TransObliga-
tion(AΠ ) and Union(A↓ΠS

,A↓ΠG
): ∀q∈QAΠ , the stateq in TransObligation(AΠ ) is in relation with the

state(q,q) in Union(A↓ΠS
,A↓ΠG

). This allows to state that TransObligation is correct for 1-obligation
properties.

– Induction step.Let n ∈ N
∗ and suppose that fork ≤ n, if Π is a k-obligation recognized by ak-

obligation automatonAΠ , then the EMA↓Π = TransObligation(AΠ ) enforcesΠ , that is, we have
Enf(A↓Π ,Π ,PΣ ).
Now consider a (k+1)-obligationΠ , AΠ a recognizing (k+1)-obligation automaton, andA↓Π = Trans-
Obligation(AΠ ). As Π is a (k+1)-obligation property,Π can be expressed as

⋂k+1
i=1 Πi where theΠi are

1-obligation properties (Lemma 1). The expression ofΠ can be rewritten asΠ = (
⋂k

i=1 Πi)∩ Πk+1.
Using Lemma 1, one can find two recognizing automataAΠ/[1,k] recognizing

⋂k
i=1 Πi andAΠ/{k+1}

recognizingΠk+1. Using the induction hypothesis, we can apply TransObligation to these two automata
to obtain two EMsA↓Π/[1,k] enforcing

⋂k
i=1 Πi andA↓Π/{k+1} enforcingΠk+1. With the Intersection

construction (Definition 15), we obtain the EMA↓Π
′ = Intersection(A↓Π/[1,k],A↓Π/{k+1}) enforcing

(Theorem 2)(
⋂k

i=1 Πi)∩Πk+1 =
⋂k+1

i=1 Πi , that isΠ .
Now let us examine the EMA↓Π obtained by applying directly the TransObligation transformation on
AΠ . We compare it withA↓Π

′ obtained by the induction hypothesis and the intersection construction;
this EM is correct by construction.

– ForA↓Π , according to Definition 18 of TransObligation:
• QA↓Π = QAΠ ,

• q
A↓Π
init = qAΠ

init ,

• and∀a∈ Σ ,q
a/α
−→A↓Π q′ whereα = ⊓k+1

i=1 ⊔ ({βi ,γi}).

– ForA↓Π
′, according to Definition 15 of the intersection between EMs:

• QA↓Π
′
= QA↓Π/{k+1} ×QA↓Π/[1,k] = QAΠ ×QAΠ ,

• q
A↓Π

′

init = q
A↓Π/{k+1}
init ×q

A↓Π/[1,k]
init = qAΠ

init ×qAΠ
init ,

• and∀a ∈ Σ ,q
a/α
−→

A↓Π
′ q′ whereα = ⊓k

i=1 ⊔ ({βi ,γi})⊓ (⊔({βk+1,γk+1)), i.e., α = ⊓k+1
i=1 ⊔

({βi ,γi}).
– where,∀i ∈ [1,k+1]:

• βi is
· off if q′ ∈ Pi ∧ReachAΠ (q′)∩Pi = /0
· dumpif q′ ∈ Pi ∧ReachAΠ (q′)∩Pi 6= /0
· halt if q′ /∈ Pi

• γi is
· off if q′ ∈ Ri
· halt if q′ /∈ Ri∧ 6 ∃q′′ ∈ Ri ,q′′ ∈ ReachAΠ (q′)
· storeif q′ /∈ Ri ∧∃q′′ ∈ Ri ,q′′ ∈ ReachAΠ (q′)
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That is, we can exhibit a bijection relation betweenA↓Π
′ andA↓Π : for each stateq ∈ QAΠ , q in A↓Π

is in relation with the state(q,q) in A↓Π
′. Formally, between the two EMsA↓Π andA↓Π

′, there is a
relationR ⊆ (QAΠ × (QAΠ ×QAΠ )) defined byR = {(q,(q,q)) | q ∈ QAΠ }. The two EMs are equal
(they differ only by the name of their states). As a consequence, the EM produced by directly applying
TransObligation onAΠ , is correct. This concludes the proof for the TransObligation transformation and
Obligationproperties.

⊓⊔


