Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Runtime Enforcement Monitors:
composition, synthesis, and enforcement abilities

Yliés Falcone- Laurent Mounier
Jean-Claude Fernandez- Jean-Luc Richier

Received: 11/02/09 / Accepted: date

Abstract Runtime enforcement is a powerful technique to ensure thmibgram will re-
spect a given set of properties. We extend previous work isrtapic in several directions.
Firstly, we propose a generic notion of enforcement mosibased on a memory device and
finite sets of control states and enforcement operationse®er, we specify their enforce-
ment abilities w.r.t. the general Safety-Progress clasgifin of properties. Furthermore,
we propose aystematicechnique to produce a monitor from the automaton recoggiai
given safety, guarantee, obligation or response propeityally, we show that this notion
of enforcement monitors is more amenable to implementaiimh encompasses previous
runtime enforcement mechanisms.

Keywords runtime enforcement monitor - safety-progress classificatiermonitor
synthesis composition

1 Introduction

The growing complexity of nowadays programs and systemsciesl a rise of needs in
validation. With the enhancement of engineering methoafsyware components tend to be
more and more reusable. When retrieving an external conmpotie question of how this
code meets a set of proper requirements arises. Using fonetflods appears as a solution
to provide techniques to regain the needed confidence. Howthese techniques should
remain practical enough to be adopted by software engineers
Runtime monitoringsee [1, 2] for brief overviews) falls in this category. Itnsists in

supervising at runtime the execution of an underlying pogiagainst a set of expected
properties: using a dedicated monitor allows to detect weoges of specific property vi-
olations. Such a detection might provide a sufficient asg@aHowever, for some kind of

Y. Falcone, L. Mounier, J-C. Fernandez

UJF-Grenoble 1, Grenoble INP, CNRS VERIMAG, Grenoble F8B8Brance
J-L. Richier

UJF-Grenoble 1, Grenoble INP, CNRS LIG, Grenoble F-3804hée

Tel.: +33-456520354

Fax: +33-456520446

E-mail: Firstname.Lastname@imag.fr

systems a misbehavior might be not acceptable. To preventatpossible solution is to
enforcethe desired property: the monitor not only observes thesotipprogram execution,
but it also controls it in order to ensure that the expectegerty is fulfilled.

Runtime enforcement monitorimgas initiated by the work of Schneider [3] security
automata In this work the monitors watch the current execution seqaeand halt the un-
derlying program whenever it deviates from the desired @ryp Such security automata
are able to enforce the class of safety properties [4] rgjaliatnothing bad happens during
program executionLater, Viswanathan [5] noticed that the class of enforteaboperties
is impacted by the computational power of the enforcementitoo As enforcement me-
chanisms can implement no more than computable functibesriforceable properties are
included in the decidable ones. More recently, Ligatti ef&l7] showed that it is possible
to enforce at runtime more than safety properties. Usingenporverful enforcement me-
chanisms calleédit-automatait is possible to enforce the larger classifinite renewal
properties able to express some kindsaifligationsused in security policies. To better cope
with practical resource constraints, Fong [8] studied ffeceof memory limitations on en-
forcement mechanisms (callsthallow-automatp The various mechanisms and operated
controls usually remaitransparent meaning that they always output tlangest correct
prefix of the original execution sequences. Therefore the insggjuence is minimally al-
tered.

E In this paper, we introduce a generic formalism for
nforcement . :
events |Monitor events runtime enforcement under the transparency constraint.
T " The proposed mechanism is schematically represented,
oEn? .‘\\I/'I/\\’. oM in its most general form, by the figure on the left. This
memory representation encompasses several real software imple-
mentations that can be assimilated to enforcement moni-
tors,e.g, an access control mechanism where the input sequencedisgea by a user and
the output sequence is sent to a secured server.

A runtime enforcement monitor is a decision procedure deditto a propertyl. It
reads a finite (and possibly infinite) sequence of evenend produces in output a new
finite (and possibly infinite) sequence The monitor is equipped with an internal memory
and a set of operations on the input events (possibly usegngmory). Some constraints
(e.g, transparency) may exist betweenand o that influence the operations performed
by the monitor while reading. For instance, let us consider a transactional prop8rty
to be enforced, stating that a given operation should beeldgghenever it occurs. The
transparency constraint leads the monitor to store sonmeewéo (and thus not producing
them in output) as long as the transaction is not properlypterad (the operation occurred,
but it has not been logged yet). On the other hand, whenegaartpertylT is satisfied, the
monitor simply dumps immediately each input event (togethi¢h the events previously
stored in its memory). In some particular cases, by examifin the monitor may also
determine that, at some point, whatever are the possibtEnipg events, the input sequence
will never(resp. willalwayg satisfy the property in the future. In such a situation thsut
sequence can be definitely blocked (resp. the monitor cawhiehed off, since it is not
required anymore).

Our contributions. In this paper, we propose to extend previous work in runtimferee-
ment monitoring in several directions. Firstly, we studg firoblem of enforcement rela-
tively to the so-calledsafety-Progressierarchy of regular properties [9,10]. This classi-
fication differs from the more classical safety-livenesssslfication [11,12] by offering a

rather clear characterization of a number of interestimgl&iof propertiesg.g, obligation,
accessibility, justice, etc.). Thus, it provides a fineaigrclassification of enforceable pro-
perties. Moreover, in this Safety-Progress hierarchyh edass of regular property can be
characterized by a particular kind of finite-state automat®;. Secondly, we introduce a
generic notion of enforcement monitor based dinde set of control stateand anauxil-
iary memory This general notion of enforcing monitor encompasses téé@qus notions of
security automata, edit-automata and “shallow historyomata. Thirdly, we show how to
generate an enforcement monitor farin a systematic wayfrom a recognizing automaton
.

A preliminary version of this paper appeared in [13]. Thipgebrings the following ad-
ditional contributions. It first contains a more compreliemsheoretical basis as we revisit
and extend results about the Safety-Progress classificaitiproperties. Moreover, this pa-
per introduces the notion efproperties which are more suitable to represent and deéne
the space of enforceable properties. We added more detagiach section, and complete
proofs of all mentioned theorems. Furthermore, we presenhotion of enforcement mo-
nitor composition. At last we supply a comparison with rethtvork and explain in details
the advantages of the model of enforcement monitors propioséis paper.

Paper organization.The remainder of this article is organized as follows. Sec# intro-
duces some preliminary notations for our work. In Sectione3ecall briefly the necessary
elements from the Safety-Progress classification of ptigzerWe also add additional re-
sults to this classification. Then, we present our notionrddreement monitor and their
properties in Section 4. We address the problem of enfornemenitor composition in
Section 5. Section 6 first exposes enforcement monitor sgighand the proof of its cor-
rectness, and then studies enforcement capability of wrsnit.r.t. Safety-Progress classes.
Section 7 compares these results and the enforcement msowith previous work. Finally,
Section 8 gives some concluding remarks and directionsufaré work.

2 Preliminaries and notations

This section introduces some preliminary notations abweinbtions oprogram execution
sequenceandprogram properties

2.1 Sequences, and execution sequences

SequencesConsidering a finite set of elemeris we define notations about sequences of
elements belonging tB. A sequences containing elements dE is formally defined by a
total functiono : | — E wherel is either the intervalO, n] for somen € N, or N itself (the
set of natural numbers). We denote By the set of finite sequences ovgy by E™ the set
of non-empty finite sequences overand byE® the set of infinite sequences ov€r The
setE” = E*UE® is the set of all sequences (finite or not) o#rThe empty sequence is
denotede. The length (number of elements) of a finite sequende denotedo| and the
(i+1)-th element ofo is denoted byo;. For two sequences € E*, o’ € E®, we denote by
o - ¢’ the concatenation af ando’. Wheno € E*, 0’ € E® \ {€}, we denote byo < o’
the fact thaio is a strict prefix ofo’, that is,o # € = |o| < |0’|AVi € [0,|0| - 1], 0 = T
Whena' € E*, we noted < 0 £ o < 0'vVo =o' Foro E®\ {e}, we will need to
designate its sub-sequences. In particular,nferN, o.., is the sub-sequence containing

then+ 1 first elements ob. Also, when|g| > n, the sub-sequence,... is the sequence
containing all elements af but then first ones. Foi, j € N with i < j, we denote byg;..|
the sub-sequence of containing thegi + 1)-th to the(j 4 1)-th (included) elements.

Execution sequence#\ program & is considered as a generator of execution sequences.
We are interested in a restricted set of actions or eventgrdggam can perform. These ac-
tions influence the truth value of properties the programpssed to fulfill. Such execution
sequences can be access events on a secure system to itsggsoukernel operations on

an operating system. In a software context, these eventdmabpstractions of relevant in-
structions such as variable modifications or procedurs.célé abstract these operations by

a finite set ofevents/actionsnamely an alphabef. We denote by#s a program for which

the alphabet i. The set of execution sequences®f is denotedExed #s) C =*. This

set isprefix-closedthat isvVo € Exed #5),Vo' € 2*, 0’ X 0 = 0’ € Exed Z5).

2.2 Properties

Properties as sets of execution sequendasthis paper we aim to enforce properties on
programs. A property is generally defined as a set of exatsggquences. More specifically
a setp C >* of finite sequences of events (regpC % of infinite sequences of events) is
called dfinitary property(resp. arinfinitary property. We denote by (resp.¢) the negation
of @ (resp.¢), that is the complement ap (resp.¢) in =* (resp.x%), formally defined
asX*\ ¢ (resp.Z%\ ¢). Considering a given finite (resp. infinite) execution s=wpeo
and a propertyp (resp.¢), wheno € ¢, denotedp(o) (resp.o € ¢, denotedd (o)), we
say thato satisfiesp (resp.¢). A consequence of this definition is that properties we will
consider are restricted singleexecution sequencksexcluding specific properties defined
on power-sets of execution sequences (like fairness, &aimte). Moreover, for a finitary
property ¢ and an execution sequencec >, we denote by Pref(¢, o) the set of all
(strict) prefixes ofo satisfyingg, i.e., Pref.(¢,0) = {0’ € ¢ | 0’ < o}. This set is a chain
(i.e., a totally ordered set) regarding the order relatiarThe (unique) maximal element of
the set Pref(¢, o), namely the longest prefix af satisfyingg (noted MaxPret; (¢, 0)))

is the maximal element regarding if Pref-(¢p, o) # 0. Given a propertyp C >* and an
execution sequenae € >*, a straightforward property of the setef_ (¢, 0) is thatva €

2, -@(0) = Max(Pref_(¢,0-a)) = Max(Pref_ (¢,0)).

Enforcement propertiesin this paper we are interested in enforceable propertisstéted
in the introduction, enforcement monitors should outpet ltngest “correct” prefix of an
execution sequence which does not satisfy the expecte@pyopo do so, an enforcement
monitor decides property satisfaction using always a fiolitgervation. Furthermore, as we
consider finite and infinite execution sequences (that aranegnay produce), enforceable
properties should characterize satisfaction for both kiafisequences in a uniform way.
We advocate that the separation of finitary and the infinifzasts of a property clarifies
the understanding of monitoring. An enforcement moniterg(@anonitor) can be seen as a
decision procedure reading a finite prefix and examining dtisfaction of this prefix w.r.t.
a given correctness property.

1 This is the distinction, made by Schneider [3], between ertigs and (general) policies. The set of
properties (defined over single execution sequences) ibsesof the set of policies (defined over sets of
execution sequences).

Therefore, we introduce-properties (enforcement properties) as follows.efroperty
is defined as a pair(@,¢) C =* x =, Intuitively, the finitary propertyp represents the
desirable property that finite execution sequences shaifid, fiwhereas the infinitary pro-
perty ¢ is the expected property for infinite execution sequenclks.definition of negation
of an e-property follows from definition of negation for finitary dnnfinitary properties.
For ane-property (@, ¢), we define(p,¢) as (¢, #). Boolean combinations a&proper-
ties are defined in a natural way. Ferc {U,N}, (@1, $1) * (@, ¢2) = (@1 * @, 1 % ¢2).
Considering an execution sequenzes Exed Z’s), we say thato satisfies(@, ¢) when
geXZ*Ngp(o)voeZ®A¢(0). For ane-property 1 = (¢,¢), we notelT(o) when o

satisfied @, ¢).

3 A Safety-Progress classification oé-properties

This section recalls and extends some results about theySafegress [9, 10] classification

of properties. In the original papers this classificatianaduced a hierarchy betweesgu-

lar propertie$ defined as sets affinite execution sequences. We extend the classification
to deal with finite-length execution sequences. As so wesitabiis classification for regular
e-properties.

3.1 Informal description

The Safety-Progress classification is made of four basgselover execution sequences.
Informally, the classes were defined as follows:

— safetyproperties are the properties for which whenever a sequeatisfies a property,
all its prefixessatisfy this property.

— guaranteeproperties are the properties for which whenever a sequeattsfies a pro-
perty,there are some prefixéat least one) satisfying this property.

— responseproperties are the properties for which whenever a sequsstisfies a pro-
perty,an infinite number of its prefixesatisfy this property.

— persistenceroperties are the properties for which whenever a sequsattsies a pro-
perty,all but finitely manyof its prefixes satisfy this property.

Furthermore, two extra classes can be defined as (finite)eBoatombinations (union and
intersection) of basic classes.

— The obligation classcan be defined as the class obtained by Boolean combination of
safety and guarantee properties.

— The reactivity classcan be defined as the class obtained by Boolean combination of
response and persistence properties. This is the mostajeri@ss containing all lin-
ear temporal properties [9]. In this paper, we will focus ab-slasses of reactivity to
characterize the set of enforceable properties.

The requirements provided in the following example introeiithe aforementioned classes
of properties. In Example 2, we formalize those requiresase-properties.

2 We advocate that a pair of sets makes the distinction bettreefinitary and the infinitary part of the
property more explicit. Though other notations could bestered as well.

3 In the rest of the paper, the term property will stand for tegproperty.

Example 1 (Informal requirementd)et us consider an operating system with a secured
operationops (needing an authentication) and an unsecured operafignThe system is
endowed with three primitives related to authenticatioauth (requesting authentication)
emitted by users, arglauth(granting authenticationyl_auth(denying authentication) emit-
ted by an internal authentication mechanism. Then,

— the requiremenf]; stating that “Ifops ever occurs, then it should be immediately pre-
ceded by a granted authenticatigrmuth” can be formalized as safety eproperty;

— the requiremenil; stating that “Each work session of a user should contain gt=im
authentication step terminated either by a gragnauth) or a deny ¢_auth) operation. In
case of a successful authentication, the work session maginsecured and unsecured
operations. Otherwise, it should contain only unsecuredtain and it should be termi-
nated by a user disconnectiaigcg.” can be formalized as guarantee groperty;

— the requirementls stating that “The system should run forever; or, d_authis issued,
then the user should be disconnected and then the systed sbouinate énd.” can be
formalized as ambligation eproperty;

— the requiremenfl, stating that “each occurrence mfuthshould be first written in a log
file and then answered either withgaauth or a d_auth without any occurrence aips or
r_authin the meantime” can be formalized asesponse groperty;

— the propertyls stating that “after al_auth, a (forbidden) use of operaticops should
imply that at some point any future call toauth will always result in ad_auth answer”
can be formalized aspersistence-@roperty.

The Safety-Progress classification is an alternative taldmsical Safety-Liveness [11,12]
dichotomy. Unlike this one, the Safety-Progress clasgifinas a hierarchy and not a parti-
tion. It provides a finer-grain classification, and the prtips of each class are characterized
according to fouviews[9]: a language-theoretic view, a topological view, a tenapéogic
view, and an automata-based view. The language-theoiieticdescribes the hierarchy ac-
cording to the way each class can be constructed from setstef$equences. The topolog-
ical view characterizes the classes as sets with topologioaerties. The third view links
the classes to their expression in temporal logic. At l&s,dutomata-view gives syntactic
characterization on the automata recognizing the praggedf a given class. In this paper,
we consider only the automata view dedicated-foperties.

3.2 The automata view @ properties

For the automata view of the Safety-Progress classificatienfollow [9,14] and define
e-properties using Streett automata. For each class of tfegySRrogress classification it
is possible to syntactically characterize a recognizinijefistate automaton. We defthe
variant of deterministic and complete Streett automatad@uced in [15] and used in [14])
for property recognition. These automata process evemtglacide properties of interest.
We add to original Streett automata a finite-sequence réziogncriterion in such a way
that these automata uniformly recogneproperties.

Definition 1 (Streett automaton) A deterministic finite-state Streett automaton is a tuple
(Q,0pis =, — {(R1,P1), ..., (Rm,Pn)}) defined relatively to a set of evenls The setQ

4 There exist several equivalent definitions of Streett aatandedicated to infinite sequences recogni-
tion. We choose here to follow the definition used in [9] argbadnly consider finite-state automata in the
remainder.

is the set of automaton stateg,, € Q is the initial state. The functior—: Qx 2 — Q

is the (complete) transition function. In the followingrfq,d € Q,e € = we abbreviate
— (g,e)=d byq 2, ¢.The sef{(Ry,P1),...,(Rm,Pm)} is the set of accepting pairs, for
alli <n, R C Qare the sets of recurrent states, 8nd Q are the sets of persistent states.

We refer to an automaton witim accepting pairs as am-automaton. Whem =1, a 1-
automaton is also called@ain-automaton, and we refer & andP; asR andP. In the fol-
lowing .« = (Q”,q%,%,—./,{(R,P1),...,(Rn,Pn)}) designates a Streettautomaton.

Foro € 2*, therun of o on & is the sequence of states involved by the execution of
o on . It is formally defined asun(o,.«7) = qo- a1 --- whereVi, (g € Q7 Aq &d
Gi+1) AGo = g%. Thetrace resulting in the execution off on .7 is the unique sequence
(finite or not) of tuplegdo, 0o, d1) - (01, 01,G2) - - whererun(o, <) =do - .

Also we consider the notion of infinite visitation of an exgon sequence € >* on a
Streett automaton?, denotedvinf(o, /), as the set of states appearing infinitely often in

run(o,). It is formally defined as followsinf (o, &) £ {q€ Q | vn€ N,3me N,m>
NAQ=gmwithrun(o,<)=0o-01--- }.
For a Streett automaton, the notion of acceptance condgidefined using the accep-

ting pairs.

Definition 2 (Acceptance condition (infinite sequencesfor o € ~%, we say that ac-
ceptso if Vi € [1,m],vinf(o,)NR # 0V vinf(o,</) CB.

To deal withe-properties we need to define also an acceptance critenidimiie sequences.

Definition 3 (Acceptance condition (finite sequencesfor a finite-length execution se-
quenceo € 2* such thato| = n, we say that thetrautomatons acceptw if (3qp,...,0n €
Q7,run(0, %) =qo-- - Ao = % andVi € [1,m],g, € RUR)).

The hierarchy of automataThe Safety-Progress hierarchy as defined in [14] can be seen i
the automata view by setting syntactic restrictions on eebtautomaton.

— A safety automators a plain automaton such that= 0 and there is no transition from
a stateg € P to a stategf € P.
— A guarantee automatois a plain automaton such th@t= 0 and there is no transition
from a stateg € Rto a statey € R.
— An m-obligation automatois anm-automaton such that for each [1, m}:
— there is no transition from € B toq € R,
— there is no transition frome R to g € R,
— A response automatas a plain automaton such that= 0,
— A persistence automatas a plain automaton such that= 0,
— A reactivity automatoris any unrestricted automaton.

Figure 1 schematizes each basic class. The sets of petsisttrecurrent states are repre-
sented by squares. Allowed transitions between the diffddads of states are represented
by arrows.

Automata and e-propertiesVe say that a Streett automatery; definesan e-property
(p,9) € Z* x @ if the set of finite (resp. infinite) execution sequences pisxkby o/
is equal tog (resp.¢). Conversely, ar-property (@, ¢) € Z* x 2 is said to bespecified
by an automatonr# if the set of finite (resp. infinite) execution sequences piEzkby the
automatoneZy is @ (resp.¢).

P—=Pp RO R-ROYP PR
S e S |] {
P RHRFCRHRD 4P Ph
(a) Safety (b) Guarantee (c) Response (d) Persistence

Fig. 1: Shapes of Streett automata for the basic classes

d_auth,op,, »
£\ {g-auth, op,}
(1 g-auth
— —) 2 D g-auth
i 2 6 2
op\ \/E \ {g-auth, op,} U g-auth U d_auth,disco ©
> 0P s,0Py
(a) Streett safety automaton fbly (b) Streett guarantee automaton féf
S\ {r-auth} log

{d-auth, g-auth}
3\ {d-auth, end} X\ {disco,end} X\ {end} Q e (1

(1 (1 (1 = r_auth 2 log ’
— 1

d_auth 9 disco 3
A\ {log}
em /end ‘l' end {ops, r-auth}
1D s »Cls s (4
(c) Streett obligation automaton fér; (d) Streett response automaton fay
2\ {g-auth, ops} 2\ {d-auth, g_auth}
g-auth r_auth g-auth
— 1 2 4
d_auth oPs re—_—— e ——
U U d_auth r_auth U
2\ {d-auth} S\ {r-auth} I\ {r-auth}

(e) Streett persistence féls

Fig. 2: Streett Automata for theproperties formalizing the requirements of Example 1

Example 2 (Specifying e-properties by Streett autom@te requirements introduced in
Example 1 can be formalized agroperties specified by the Streett automata represented
in Fig. 2. The requiremerR; is formalized by the-property[T; specified by the automaton
i€ {1,2,3,4,5}, with initial state 1.

— For e/n, (Fig. 2a), the set of states{4,2,3}, R=0, andP = {1,2}.
— For e/, (Fig. 2b), the set of states {4,2,3,4,5,6}, P=0, andR= {2,5}.
— For e/, (Fig. 2c), the set of states {4, 2,3,4,5}, P= {1}, andR= {5}.

Reactivity
unrestricted automata
Response Persistence
P=0 R=0
Obligation
R+RR =R
Progress

,,,,,,,,,,,,,,,,,,,,,,

Safety !
Safety | Guarantee
R=0P-»P ! P=0,R~R

Fig. 3: The Safety-Progress classificatioregiroperties

— For e/, (Fig. 2d), the set of states {4,2,3,4}, P=0, andR= {1}.
— For.a/, (Fig. 2e), the set of states {4, 2,3,4,5}, P= {3,4}, andR=0.

It is possible to relate the syntactic characterizationhenautomata to the semantic charac-
terization of the properties they specify. This is statetheyfollowing definition (transposed
from the initial definition in [14]).

Definition 4 (e-properties classes)An e-property (@, ¢) is a regulark-e-property if it is
specifiable by a finite state-automaton, where € {safety guarantegobligation response
persistencgeactivity}. Moreover, when an obligatiosproperty is specified by am-obli-
gation automaton, this-property is said to be am-obligatione-property.

Given an alphabeX, we note Safet{2) (resp. Guarantéé), ObligationX), Responsg),
Persistencg)) the set of safety (resp. guarantee, obligation, respgessistenceg-pro-
perties defined oveX. Following [14], it can be shown that the Safety-Progreasgification
of e-properties is a hierarchy, presented in Fig. 3.

3.3 Some useful facts aboerproperties

We present some straightforward consequences of the dafmiof safety and guarantee
e-properties.

Property 1 (Closure of e-propertiesjonsidering are-property 1 specified by a Streett
automatone/i; defined over an alphab2t the following facts hold:

1. If T is a safetye-property, all prefixes of a sequence belongingitalso belong tdT.
Thatis,Yo € £°,M(0) = (Vo' € £*,0’ < 0 = [1(0")).

2. If I is a guarantee-property, all continuations of a finite sequence belon¢ing also
belong tof1. Thatis,Yo € 2*,M(0) = Vo' € 2*,M(o0-0').

Proof The proof is given in Appendix A.1. It uses the acceptancealitimms and syntactic
restrictions of Streett automata for safety and guaras@®perties.

10

Properties of automataGiven a Streetin-obligation automaton (witmaccepting pairs), it

is possible first to express it as a conjunction of 1-oblgaproperties and second to charac-
terize the languages accepted by “forgetting” some aaugpiirs of the initial automaton.
This is formalized as follows.

Lemmal (About obligation e-properties) Given an m-automaton/; = (Q, G, 2, —

Ni"4 i, wherefT; is a 1-obligation e-property of the forrfil; = Safety U Guarantegwhere
Safety and Guarantegare respectively safety and guarantee e-properties. M@eagiven
a subset XC [1,m], the automatons;)x = (Q, 0,2, —,{(Ri,R) | i € X}) recognizes
the propertyicx M.

Proof For infinite execution sequences, this proof has been ddidjnFor finite execution
sequences, the proof is a straightforward adaptation.

4 Property enforcement via enforcement monitors

Considering a progran?’s, we aim at constructing an enforcement monitor forean
property(¢p, ¢) over.

4.1 Enforcement monitors

We now define the central notion of enforcement monitor. Sualntime device monitors
a target program by watching its relevant events. It is anraaton-based mechanism en-
dowed with an internal memory. On each input event its statéves and an enforcement
operation is performed. Enforcement operations operatedifitation of the internal me-
mory of the enforcement monitor and potentially produce atpat. Enforcement monitors
are parameterized by a set of enforcement opera@ps

Definition 5 (Ops- Enforcement operations) Enforcement operations take as inputs an
event and a memory contente(, a sequence of events) to produce an output sequence and
a new memory conten®psC 2(ZxZ") (I <37

Definition 6 (Generic enforcement monitor (EM(Ops)))An enforcement monito/| is a
4-tuple(Q, q}fﬁ, — ., 0ps9) defined relatively to a set of everfsand parameterized by a

. - o
set of enforcement operatio®@ps The finite seQ“ denotes the control stateg, € Q%
is the initial state. The complete functioﬂ—>%: Q% x = — Q7 x Opsis the transition

function. In the following we abbreviate— ., (q,a) = (¢, a) by q ﬂt% q.

In the remainder of this sectiomy € > designates an execution sequence, afd=
(Q“Zﬁ,q}ﬁl, —,,Op9 designates an EM(Ops).

Definition 7 (Run and trace) Therun of o on.#Z is the sequence of states involved by the
execution of#/| wheno is input. It is formally defined asun(o,.«) = qo- 01 --- where

Qo= q}fftL AV, (g € Q7 NG M(% gi+1)- Thetraceresulting in the execution @ on.«7, is

the sequence (finite or not) of tupléso, 0o/ao, t) - (A1, 01/a1,) -+ (G, 61/, Gi1) -+
whererun(o,#|) = qo-0z--- andVvi, a; € Ops

11

We formalize the way an EM(Ops) reacts to an input sequeraedad by a target program
through the standard notions @nfigurationandderivation

Definition 8 (Configurations and derivations of an EM(Ops))A configurationis a triplet
(0,0,m) € Q¥ x I* x * whereq denotes the current control state,the current input
sequence, aneh the current memory content.

We say that a configuratioft/, o’,m') is derivable in one stefrom the configuration
(g, 0, m) andproduces the outpute >*, and we notéq, g, m) N (d,0’,m) if and only if

oza-a’/\qﬂ% q Aa(a,m)=(o,n);

We say that a configuratio®’ is derivable in several stedsom a configuratiorC and
produces the output @ 2*, and we noteC :O>ML C’, if and only if there exist& > 0 and

configurationsCq, Cy, ..., Cx such thatlC = Cy, C' = Cy, G <&> Ciiforall0<i<k and
O0=0p-01"--0k_1.

The notion of enforcement is based on how a monitor transfargiven input sequence
in an output sequence. For the upcoming definitions we wslinjuish between finite and
infinite sequences.

Definition 9 (Sequence transformation)We define the transformation performed by an
EM(Ops) while reading an input sequenge= > (produced by a progran¥s) and pro-
ducing an output sequences Z*. The total function ., C 2 x 2 is defined as follows:

— The empty sequenceis transformed into itself by7, i.e. € | €. This is the case
when the underlying program does not produce any event.

— The sequence € =7 is transformed by into the sequence € Z*, which is noted
0y o, if 39 € Q% ,Ime Z*,(q{fﬁ,o,s) :O%% (d,&,m). That is, if there exists a
derivation starting from the initial state and producimg

— The sequence € >¢ is transformed by, into the sequence € >*, which is noted
0l o, if do’ < 0,0’ Loy, oAVYo" € 3%, 0’ < 0" = 0" |4 o. That is, the finite
sequenc® is produced if there exists a prefix af which produce®, and each conti-
nuation of this prefix producesas well.

— The sequence € > is transformed by, into the sequence € %, which is noted
0l o,if

Vo' € Z*,0 <0=30",0"€5*,0" <0oN0 <0"NO" |y O
AN Vo', deZ*, g <anao' Vo, od=0d<o.
That is, each prefix ab can be produced from a prefix of.

4.2 Enforcing a property

Roughly speaking, the purpose of an EM(Ops) is to read sorsafemnput sequence pro-
duced by a program and to transform it into an output sequératesatisfies a gives-
property 1. Before defining this notion more formally, we first explaihat we mean ex-
actly byproperty enforcemenaind what are the consequences of this definition on the set of
e-properties we shall consider.

Enforceable propertiesProperty enforcement by an EM(Ops) is usually defined asdhe ¢
junction of the two following constraints:

e soundnesghe output sequence should satisfy

12

e transparency the input sequence should be modifieda minimal way namely if it
already satisfied] it should remain unchanged (up to a given equivalence oslgti
otherwise itdongest prefisatisfying/1 should be issued.

A consequence of this definition of transparency is that-property (, ¢) will be consid-
ered aenforceableonly if each incorrect sequence hasangestcorrect prefix or, equiva-
lently, if any infinite incorrect sequence has onlfirite numberof correct prefixesWe use
this criterion as a definition fagnforceable propertiedMore formally:

Definition 10 (Enforceablee-property) An e-property , ¢) is enforceabléff:
Voe s (—¢(0)= (30’ €20’ < 0,vo"€5*,0' < 0" < 0= -9(0")))

The set of enforceable-properties is denoteBP. Note that an EM(Ops) will output the
empty sequence in two distinct cases: either whemnis the longest correct prefix of the
input sequence, or when this input sequence has no corefot at alP.

Finally, since we have to deal with potentially infinite inmequences, the output se-
quence should be produced in an incremental®yr each current prefio of the input
sequence read by the EM(Ops), tharent produced outpub should be sound and trans-
parent w.r.t/7T ando. Furthermore, deciding whether a finite sequeacsatisfied7 or not
should be computable in a finite amount of time (and by readirlg a finite continuation
of g). Itis indeed the case in our framework since we are dealiitly iegular properties.

This condition rules out particular properties saying fistance that “sequences con-
taining an evene are accepted only if they are finite”.

Enforceable properties w.r.t. the Safety-Progress Cfasdion. In [16], we have given a
characterization of the set of enforceable properties:

Theorem 1 (Enforceable properties [16])The set of response e-properties is the set of
enforceable properties w.r.t. the Safety-Progress cfasgion.

Proof The formal proof can be found in [16]; we give here a sketchhaf proof for the
sake of completeness.

First, we show that responseproperties are enforceable. Consider
- R 7 R 2 a response-property (¢, ¢) recognized by a response automaton,
! with the shape depicted on the left. Consider an infinite @txec
— — sequence € X, and suppose thai¢ (o). This means, according
. R 7 R ~ tothe acceptance criterion for infinite sequences (Degimi#l), that
the R-states are not visited infinitely often. In other words has
finitely many prefixes for which the run ends irRestate. According to the acceptance cri-
terion for finite sequences (Definition 3), finitely many pxe& of o belong tog. Second,

in order to explain that response propertiesexactlythe set of enforceable properties, [16]
proceeds as follows. In the Safety-Progrbgsarchy; it shows that the subset of enforce-
able persistence-properties is actually included in the set of respospeoperties. Indeed,

it is possible to show that automata specifying enforcegbigerties can be encoded as
response automata. The reader is referred to the exampBestion 6.2.2 presenting (non
enforceable) persistenegproperties.

5 This latter case is avoided in [6] by assuming that propeuisder consideration always contain

6 This limitation can be seen from a runtime verification paifiview: verifying infinitary properties at
runtime, on an execution sequence produced on-the-fly,lgl@udone by checking finite prefixes of the
current execution sequence.

13

As a straightforward consequence, safety, guarantee, blightion e-properties are en-
forceable. While Theorem 1 provides a useful characteozaif enforceable properties,
there remain some fundamental questions: “how enforcemenitors should effectively
enforce properties ?” and “how is it possible to obtain sutforeement mechanisms from
the definition of properties ?”. These questions are reg@dgiaddressed in the remainder
of this section and in Section 6.

Property-enforcementWe define the notion of property-enforcement by an EM(OpBjs T

notion of enforcement relates the input sequence produgetebprogram and fed to the
EM(Ops) and the output sequence allowed by the EM(Ops)dcbw.r.t. the property un-

der consideration). In practice, it might be difficult for &M (Ops) to produce the same
sequence since an EM(Ops) has to perform some additiortafrstats to enforce the pro-
perty or some non-observable actions or events may occur.

As a consequence, in the general case, the comparison leimmé and output se-
qguences is performed up to some equivalence relatiorn=” x >* (for which some events
may be not considered). Note that the considered equivaleiation should preserve the
e-property under consideration.

Definition 11 (Property-Enforcement.) Let us consider an enforcealdeproperty 1 =
(¢, ¢) € EP, we say thate7| enforces the propertyp, ¢), relatively to an equivalence re-
lation ~, on a programZ’s (notedEnf_ (<, (@, ¢), Z5)) iff for all o € Exed#s), there
existso € 2%, such that the following constraints hold:

0ly0)

Mio)y=o~o 2

—[(o)APref_(¢p,0)=0=0~¢ 3)

—[1(o) APref_(p,0) # 0= o~ Max(Pref_ (¢, o)) 4

(1), (2), (3), and (4) ensure soundness and transpareney :of1) stipulates that the se-
quenceo is transformed by, into a sequence; (2) ensures that i already satisfied the
property then it is not transformed. When there is no compeefix of o satisfying the pro-
perty, (3) ensures that the EM(Ops) outputs nothing (thetgsguence). If there exists
a prefix of o satisfying the property (4) ensures tlwis the longest prefix ob satisfying
the property.

Soundness is due to the fact that the produced sequeneeen different frome, always
satisfies the propertyl. Transparency is ensured by the fact that, up to the equivele
relation=, correct execution sequences are not changed, and inconex are restricted to
their longest correct prefix.

One may remark that we could have Mx(Pref_ (¢, o)) to € whenPref_ (¢,0) =0
and merge the two last constraints. However, we choose tmglissh explicitly the case
in which Pref_ (¢, o) = 0 as it highlights some differences when an EM(Ops) proslace
Sometimes it corresponds to the only correct prefix of thegnty. But it can also be an
incorrect sequence w.r.t. the property. In practice, wimeplementing an EM(Ops) for a
system, this sequence can be “tagged” as incorrect.

14

4.3 Instantiating generic enforcement monitors

In the remainder of this article we will focus our study on soparticular, but expressive
enough (regarding enforcement), enforcement monitors Hihd of monitor will comply
with the transparency constraint stated in Definition 10.

The considered enforcement operations allow enforcementtars either:

— to halt the target program (when the current input sequence i@bpawviolates the
property), or

— to storethe current event in memory devicéwhen a decision has to be postporfedy

— to dumpthe content of the memory device (when the input program sopaek to a
correct behavior), or

— to switchoff permanently the monitor (when the property is satisfied ¥er)e

We give a more precise definition of such enforcement operati

Definition 12 (Enforcement operations{halt, store dumpoff}) In the following we con-

sider a seOpsd:“{halt, store dumpoff }, where the enforcement operations are defined as
follows: Vae X U {e},Vme =7,

halt(a,m) = (&, m) storgla,m) = (&,m.a)
dumga,m) = (m.a, €) off(a,m) = (ma,¢)

(a designates the input event of the monitor amthe memory device: its content).

Note that theoff anddumpoperations have the same definitions. From a theoreticapper
tive, theoff operation is indeed not necessary. However, it has a pahotierest: in order to
limit the monitor’s impact on the original program (perfante wise), it is useful to know
when the monitor is not needed anymore.

We also distinguish two subsets of the set of states of arr@feent monitor instanti-
ated with the set of enforcement operatidhsit, store dumpoff }: the states italt (resp.
Off) are used to represent the states in which the program ¢resptor) should be stopped.
Intuitively, states irHalt (resp.Off) are those entered by a transition labeled Iak (resp.
off) operation. Furthermore, we assume that, after perforrainglt (resp.off operation),
an EM cannot perform another operation ttneaft (resp.off).

Definition 13 (Instanciated enforcement monitor)An EM is an instantiated EM(Ops)
(Q“Zﬁ,q}ﬁl, — ., 0Py WhereOpsdéf{halt, store dumpoff } and such that:

e Halt” £{¢ € Q% |Jac £,39€ Q.),
andvq e Halt” ,\vae 3,Va € OpsVq € Q%,q ﬂ(% q = a = halt

def

o Off. £{d €Q” |3ac £, 3qe QJ’“L,qﬂﬁL a},
andvq e Off“},Vae X,Va € OpsVq € Q7 ,q ﬂ% q = a = off
In the remainder of this article we consider only EMs.

Example 3 (Enforcement monitafje illustrate the enforcement of some of taproperties
introduced in Example 2 with EMs.

7 Note that postponing an event can be done only when there ¢sumsal dependency with subsequent
events in the system.

15

— Fig. 7b (p. 21) shows an EMY| 4, for the safetye-property ;. <77, has one halting
state Halt“m = {3}, and its initial state is 1. From this initial statg ;, simplydumps
a first occurrence of_auth and moves to state 2, where tbp; operation is allowed
(i.e., dumpegl and goes back to state 1. Otherwise, if the evmmtoccurs while not
being preceded by g auth, </|;, moves to state 3 and halts the underlying program
forever.

— Fig. 6b (p. 20) shows an EMy|p, for the guarantee-property 1. The initial state
of @/, is state 1 Halt“mz = {6}, and Off “Im2 = {2,5}. Its behavior is the follow-
ing. Occurrences of secured and unsecured operatiorst@salin memory until the
answer of an authentication happens. If the authenticaignanted,«/| 7, dumps the
whole memory content and switches off. Otherwise (denig¢feaication), according
to whether the user tried to perform a secured operation braig;, either waits for
the disconnection (forbidding any operation) and switabf€sor halts immediately the
underlying system.

4.4 Properties of enforcement monitors

We now study the properties of enforcement monitors witho§@nforcement operations
{halt, store dumpoff}.

Property 2 (About sequence transformatiétgr an execution sequencec Exed #s) N
>®and an EM«/, s.t. the run oo on 7| is expressed by

(0o, 00/ Q0,01) - (A1, 01/01,02) -+ (G, Gi /A, Giy1) -+,
the following properties hold:

e 0ly o=VieNJjeN,i<|,0.jly 0.j,01€ {dumpoff}
e VieNJjeN,i<j,aj e{dump,off}:>ai}{% a.

That is, for an EM, producing as output the same input sequisrequivalent to performing
regularly adumpor aoff operation.

Property 3 (Relation between input, memory, and outpyput execution sequence, me-
mory content, and produced output are related by the fafigvpiroperty:vo € =7, Vo’ €
s,
30 € QY (Ciny, - 07,€)=2 (0, 0", m)
= (0 =0-mAge Q7 \Halt”)V (o< g Aqe Halt?)

Proof The proof can be found in Appendix A.2. It is done by inductwnthe length of the
input sequence, according to the last enforcement oparpédormed.

It follows that the equivalence relation considered foroecément becomes the equality
relation. This is due to the semantics of the enforcementadjpas we considered. Thus the
enforcement predicatenf (7|, (¢, ¢), #s) becomeEnf_(.#, (¢, ¢), ¥5) (abbreviated
Enf(«,(9,9),Zs) in the remainder of this article) when tleeproperty is enforced by
</ on Ps. The following property is a straightforward consequentBroperty 3 and the
definition of enforcement operations.

Property 4 (Last enforcement operation and property satisbn) Given an EM.¢7|, an
e-property 1 s.t. Enf(e7|, 1, 25) and a finite execution sequencec Exed #s)N =™
(lo] =n+1) which run one| is expresseda, 0o/ o, 01) - - - (Gn, On/An, Ont1), We have:

16

e [1(0)= an € {dumpoff}
e —[1(0)= ap € {store halt}

Meaning that, considering an EM which enforceseguroperty, the last enforcement oper-
ation performed while reading an input sequenceusipor off (resp.halt or store when
the given sequence satisfies (resp. does not satisfy) pheperty.

Another consequence of these properties is that the prddudput are always prefixes
of the input execution sequence, thatis;,0€ 2*, o ly 0=0=0.

5 Operations on enforcement monitors

Current development of information systems makes spetidits going more and more
complex. For assessing the value of EMs as a potential $gcoechanisms, it seems de-
sirable to offer techniques to compose them so as to copetiathrelated specifications.
In this section we describe and address the problem of EM ositipn. We give the for-
mal definition of monitor composition w.r.t. Boolean comdgiions: union, intersection and
negation, and prove their correctness.

5.1 Preliminary notations

We define the complete latti¢®© ps C) over enforcement operations, whérat C storeC
dumpL off (C is a total order). Moreover, we define a negation operatioergorcement
actions: fora € Ops @ is the negation ofr. We definedumpasstore off ashalt, anda as
a.

5.2 Union and intersection

We show how disjunction (resp. conjunction) of basic (ecéable) properties can be en-
forced by constructing the union (resp. intersection) @frtassociated enforcement mo-
nitors. These operations between EMs are based on prodnstractions performed by
combining enforcement operations w.r.t. the complet&ckatOps C).

Definition 14 (Union of EMs) Given two EMs.¢/|; = (Q‘”Ll,q;ﬁfl,%%l,OpS), o)y =

(Q‘%Z,q}:i?z, —>%27Ops) defined relatively to a same input alphabigtwe defines|, =

Union(.7|1, ¢7|5) with Qv = (Q“1 x Q“12), g = (g, G7%). The transition relation of

this enforcement monitor is defined by getting the supremunof enforcement operations.
More formally— ., ;: Q' x £ x Ops— Q“u is defined a¥a € £,vq = (qu,gp) € Q,

o} a/—a%%l i o7} a/—ug%z o’

[N -
(01, 02) a/ﬂ%}) (o',)
Note thatHalt”" = Halt”* x Halt”/2 andOff“\u = Off“\1 x Q¥2 U Q“1 x Off /2. Notice
also that this construction does not introduce non-detgsmi. Indeed, since the two initial
EMs are deterministic, there is always one and only oneitianswith a given element of
2 in the resulting automaton. However, one can notice thatay fwe not minimal (as in
Example 4).

17

a/dump S/halt b/store > /off
@/halt (1 Q b/off N
— 2| —(1)—— 2
(a) e, for ey (b) e, for &
a - b/store a/off a - b/store a/dump
1,2 N
B a-b/off
a - b/store a/oft @ - b/halt a/halt
_ b/halt
b/store 227 B/t prpate G 2,1 ————2,2 D S/halt
(©) A, (d) #n

Fig. 4: Union and intersection of two enforcement moniters;, and.e7|e,

The intersection operation between enforcement monisaefined in a similar way by
using the infimum operaton between enforcement operations:

Definition 15 (Intersection of EMs) Given two EMsg7|1 = (Q“Zﬁl,q}fﬁl? —)y Ops) and

Ao = (Q‘%Z,q}:i?z? — w,,,Ops) defined relatively to a same input alphatieand enforce-
ment operation® ps we define Intersectidny|q, «7)5) = 7|, with Q¥ = (Q“1 x Q“12),

q{fﬁ” = (q;fffl, q;ﬁfz). The transition relation is defined by getting the infimum ¢f enforce-

ment operations. More formally ; _: Q7 x I x Ops— Q71 is defined a¥a € ,vq=
(01, G2) € Q7

o} a/—a%%l i o7} a/—ug%z o’

(01, 02) a/wi}fmz}) (o',)

/in

Note thatHalt“1 = Halt?1 x Q%2 U Q%1 x Halt?2 andOff %1 = Off “i1 x Off %2,

Example 4 (Union of EMd)et us consider a system on which it is possible to evaluate tw
atomic propositions andb. At system runtime, events are fed to a monitor. Those events
contain the evaluations aefandb: either true or false.

Now let us consider the following requirement: “Eithelis always true ob will be
eventually true”. Meaning that, for the observed sequefiezents a is evaluated to true in
every event or that in one of the evdnis evaluated to true.

In order to build an EM for this requirement, we use two EMs éor the requirement
“ais always true”, and the second for the requiremdnt/iil be eventually true”. Next, we
build the union of EMs to obtain an EM for the initial requirent. The alphabet of the EMs
is made of all possible evaluations of the atomic propasitiandb, > = {ab, ab, ab, ab}.

We use a Boolean notatioa,g, the evengb represents that is evaluated to true ariglto
false, the evera meansabV ab.

The EMs we consider are depicted in Fig. 4, stateldait (resp.Off) are in red (resp.
green).

18

— o/|e, enforces the requiremena s always true” Halt % = {2}, Off “le = 0.

— |, enforces the requiremen s eventually true”Halt?e = 0, Off “le2 = {2}.

— /), enforces the requiremena'is always trueor b is eventually true”. It is the EM
union .|, built from the EMs.#/|¢, ,.#/|e,. Following the definition of the construction,
the set of states is the Cartesian procﬁ)fﬁiel X Q‘%ez. The initial state i51,1). Note
that there is no state iHalt”/ sinceHalt“'e1 x Halt“'e2 = 0. <7}, is not minimal and
can be easily minimized by merging the statés?) and (2,2), which are states in
Off“4u. One can notice that7),, complies to the constraints for statesHalt”!v and
Off“Iu,

Example 5 (Intersection of EMS§)imilarly to Example 4, we build an enforcement moni-
tor for the requirementd is always trueand bis eventually true” by using the intersec-
tion construction. The resulting EM/| is shown in Fig. 4dHalt”In = {(2,1),(2,2)} and

Off“in = 0. This EM is not minimal and can be easily minimized by meggthe states
(2,1) and(2,2).

Jz)ﬂnl

init)

Theorem 2 (Union and Intersection of EMs)Given two EMs«/|q, = (Q‘%”l,q

| .

— s, OPY and |y, = (Q“’L”Z,qmifnz,ﬂmnz,Ops), enforcing two enforceable pro-
pertiesly, 1, € EP on a program?’s, the propertyl1y V I, (resp.l11 A [12) is enforced by
the union (resp. intersection) enforcement monitor. Morenglly: V.<7| 7, , .27, 1, ,

e Union(« 1, , #/,1,) andIntersectio.«| , , 7| 1,) are EMs
o d Enf(M, Zs) Enf(Union(«/|n,, /| ,), MV M2, P5)
Enf(<|,, M2, P5) Enf(Intersectiofe| 1, , 7|1,), M1 A M2, P5)

The proof of this theorem can be found in Appendix A.3.

5.3 Negation

Considering a safety or guarantee (enforceablploperty?, we show how to construct an
EM enforcing the negation of the originedproperty.

Definition 16 (Negation of an EM)Given an EM«/|;; = (Q%”,qﬁ”,ﬁ%n, Ops) de-
fined relatively to an input alphab&tand enforcing, a safety or guaranteeproperty, we

defineNegation(.«7|) = /|7 = (Q“n, qﬁ”,ﬁm,Ops) as:
- Q7 = QAN G = G,
_is the smallest relation verifying *%—— o if g ¥, o
— —7;; is the smallest relation verifying == Z—d if g ==, d.

Note thatHalt”n = Off“/n andOffin — Halt“\1.

Example 61n Fig. 4, .7, is the negation of7¢, if we replaceb with a andb with a.

8 It is only useful to deal with safety and guaranteproperties: the negation of a resporesgroperty
is a persistence (thus not enforceable), and obligaiproperties can be always written under conjunctive
normal form as a Boolean combination of safety and guaramfeeperties (Lemma 1).

19

Theorem 3 (Negation of an EM)Given an EM#| = (Q%”,q;fff” s — > OPS defined

relatively to an input alphabeX and enforcingT, a safety or guarantee e-property, the EM
Negatior{.<7, ;) enforcesT. More formally:V.7|

1 € Safety(>) U Guarante€) A ENnf(«|q, 1, P5)
= Negatior{.«7,) is an EM A Enf(Negatiorf<|), T, Z5)

The proof can be found in Appendix A.4.

6 Enforcement w.r.t. the Safety-Progress classification

We now study how to practically enforegproperties of the Safety-Progress hierarchy (Sec-
tion 3). More precisely, we show which classes of propertigs be effectively enforced
by an EM, and more important, we provide a systematic cocistmu of an EM for ane-
propertyll € EP from the Streett automaton defining tleiproperty.

6.1 From a recognizing automaton to an enforcement monitor

We define two general operations whose purpose is to trangf@treett automaton recogni-
zing an enforceable-property into an enforcement monitor enforcing the sameoperty.
The following operations use the deeach,, (q) of reachable states from a stafén ./
(denotedReacliq) when clear from context). Given a Streett automatgn with a set of

statesQ”", we haverq € Q“7, Reachy, (q) = {d € Q“ | 3(qh)i, (&)i,d 2 oy G0 — oy
Q-+ q/}

6.1.1 Response e-properties

Definition 17 (Transformation for response e-properties) Given a Streett response au-
tomaton.o/p = (Q“1, q;ff[”,z,—wn,{(R, 0)}) recognizing a response (enforceabde)
property 1T € Responsg), we define the transformation TransRespdnge) = «7|q =

| . .
Q% g, — w5, OPS using the following rules for . ;-

- qﬂdm q if e RAQ—2.. d AReachy, (q) C R (TResr)

- qaﬂn’f%n qdif d eRAQ iwn d AReachy, (q) € R (TResm)

"8, o if o ¢ RAG-5., o AReachy, (o) £ R (Ress)

-q a@ltﬂm q if ¢ RAQ ., d AReachy, (q) C R(TResm)

An EM /|7 obtained via the TransRespolisg;) transformation, applied to an automaton
/i recognizing a responseproperty 1, processes the input execution sequence and en-
forcesl1. While the current execution sequence does not safisthe current state is in

R), it stores each event of the input sequence (or halts therlyiag program iff7 can not

be satisfied in the future). Once the execution sequencsfisalfil (the current state is in

R), it dumps the content of the memory and the events storedrgoif switches off iff7 is
satisfied for ever).

20

Z\ {r-auth} log S\ {r-auth}/dump log/store
Q {d-auth, g_auth} (1 Q {d-auth, g-auth}/dump (1
N
— 1 2 g
r_auth log r_auth /store log /store
A\ {log}J E\{log}/haltl
{ops, r_auth} ;
5 (4 5 /halt < {ops, r—auth} /halt
() Response automaton fdy (b) EM for 1y

Fig. 5: A response-automaton and the corresponding EM faueaty 1,4

3
d-auth,op,, D) g-auth/o d_auth,op,, [store 3 /off

(l disco /off (1

5
op,/halt
¢

2 6 5 2 4 6 % /halt
U g-auth U d_auth,disco D U g-auth /off U d_auth,disco/halt D
= 0p4,0p, ¥ /off op,0p, /store

(a) Guarantee automaton o (b) EM for 1,

Fig. 6: A guarantee-automaton and the corresponding EMrfgpesty 1,

Example 7 (Transformation for response e-properties right-hand side of Fig. 5 shows
the EM.#7 , enforcing the responseproperty/l4, and obtained by TransResponse applied

to «7m,. We haveHalt”/ = {4} andOff“ms = 0.

6.1.2 Guarantee e-properties

The TransResponse transformation can be directly apmigdarantee properties. Indeed,
in guarantee automata, transitions leading firatates toR-states are absent. Thus the
TransResponse transformation is applied for a guaranteenata by ignoringTresr).

Example 8 (Transformation for guarantee e-propertieg). 6b shows the EM enforcing
I, obtained by TransResponse .ofy,. Halt”/m2 = {6} andOff “4m2 = {2, 5},

6.1.3 Safety e-properties

For safetye-properties, the TransResponse transformation can bepjded by “seeing”
the underlying Streett safety automaton as a response atgonWe first notice that a safety
e-property with safety automatom; = (Q“”ﬂ,qg‘,ﬁ” ,Z,— -, {(0,P)}) can be recognized
by the response automatew/, = (Q””,q;ﬁi” .2, —r s {(R0)}): same states and tran-
sitions, but different accepting conditior3-states ofe7; becomeR-states of«7/;. These
automata recognize the same sequences. Indeed, sincastimerdransition ineZ; from

21

2\ {g-auth, ops}/dump

\ {g-auth, op.}

(1 g-auth

— 1 —— 2 D g-auth
K~

g-auth/dump
_— g-auth/dump

0Ps ops /halt n _auth, op.} /halt
ops S\ {g-auth, ops} \ {g-auth, op,}/ha
» C /halt C 3
(a) Safety automaton fdmy (b) EM for My

Fig. 7: A safety-automaton and the corresponding EM for eryp 71

P-states td>-states, there is not transition frdRastates tdR-states ine7f; . According to the
acceptance conditions (Definitions 2 and 3) and transigistrictions, fore/; and.e7/; there

is no difference betwee-states andr-states regarding the role they play in the acceptance
condition. Thus, using TransResponsedf gives an enforcement monitor fét.

Example 9 (Transformation for safety e-properti€gp right-hand side of Fig. 7 shows the
EM 7|7, obtained by first converting/ny, into a response automaton and by then applying
the transformation for responseproperties ite., TransResponse) ta/, .

6.1.4 Obligation e-properties

Since an obligatiore-property can be written as intersection of union of safetgt gua-
ranteee-properties (Lemma 1), it is possible to obtain an EM fooatigation property by
using the TransResponse transformation andthien and Intersectionoperations. How-
ever, building such an EM requires first to express the otiiggproperty in conjunctive
normal form, and second the knowledge of the associateétSsafety and guarantee au-
tomata. Thus, we also define a direct transformation fogalibn automata.

Definition 18 (Transformation for obligation e-properties) Given a Streetin-obligation
automatona/; = (Q””,qﬁ”,z,ﬂdn,{(Rl,Pl),...,(Rm, Pn)}) recognizing anm-obli-
gation (enforceableg-property 1 € Obligation(X), we define the transformation Trans-

Obligation(7) = 7 = (Q/1, 0k, — 1,1, 0P8 S.L.:

A0 _ I (PN o
- Qnn —_Q ", Glnic =Gt » _ o
— —, is defined as the smallest relation verifying:

q ﬂﬂm qifq an q anda =", (LU(B;, v)) where thef; andy are obtained in
the following way:
- B =offif d € R AReach,, (q) C R,
B = dumpif € R AReachy, (d) Z R,
B =haltif q ¢ R,
y=offif €R,
y = storeif o ¢ R AReach,, (d) Z R,
y = haltif ¢ R AReach,, (q) CR.
Note that there is no transition froqc R to ¢ € R}, and no transition fromqc B toq € R.
One can notice, as a direct consequence of the definitiem&qf_,, that :

22

3\ {d-auth, end} X\ {disco end} X\ {end}

(1 d_auth disco
— 1
@%;/ sCls

(a) Obligation automaton fafrl

2\ {d-auth, end}/dump 3\ {disco, end}/store 2\ {end}/store

f

d_auth /store disco [store
3
end /halt end/halt E”d/ off
3 /halt

S/off C 5
(b) EM for I3

Fig. 8: A 1-obligation-automaton and the corresponding BWproperty/13

— Halt”n = {g € U4 (RNR) | Reachy, (a) C U4 (RNR)}, and
— Offin = {ge N4 (RUR) | Reachy, (q) € Ny (RUR)}.

We notes| 7 = TransObligatiof.ey).

Example 10 (Transformation for obligation e-propertiés)-ig. 8b is depicted the EM en-
forcing the 1-obligation propertii; of Example 2, obtained by the TransObligation trans-
formation.Halt” % = {4} andOff ‘s = {5},

6.2 Enforcement w.r.t. the Safety-Progress classification

Using the aforementioned transformations it is possibleddve an EM for a given re-
gular (enforceable) property from its recognizing finitate automaton. In the following,
we prove the correctness of the transformations. Furthexmwe discuss and justify the
enforcement limitation for non-enforceable properties.

6.2.1 Enforceable properties

Given any safety (resp. guarantee, obligation, response) Stretdtraton recognizing a
property 1, one cansynthesizean enforcing monitor for7 using the systematic trans-
formations previously presented. The following theoreravps the correctness of these
transformations. It also proves that safety, guarantdeaiton, and response properties are
enforceable by EMs.

Theorem 4 (Correctness of the transformations)Given a programZ?’s, a regularsafety
(resp. guarantee, obligation, response) e-propéditys enforceable orn?s by an EM ob-
tained by the application of the previous transformationgtte automaton recognizing .
More formally:

(I € Guarante€) A <7 ; = TransResponsers)) = Enf(«/|q, 11, P5),

(I € Obligation(Z) A «7,q = TransObligatiofe/ry)) = Enf(|q, 1, Z5),

23

(I € ResponsgX) A 7| = TransResponsesn)) = Enf(«/n, M1, Ps5),
(M € SafetyS) Ao = Q.G . 5, — o7y, (0,P))) =
| = TransRespongéQ“",qil! 5, —.,. (P.0))) = Enf(e,n, 11, Ps).

Proof We have to show thato € Exed #s),30 € 2*,

0lgp,0 ®)

Mo)y=o0=o (6)

-[(o)APref_(p,0)=0=0=¢ (7)

- (o) APref_(¢,0) # 0= 0= Max(Pref_(¢,0)) (8)

Note first that we only need to prove the correctness of TraspBnse and TransObligation.

We note| = (Q“’L”,q;ﬁf”,ﬂdm,OpS) the EM obtained from the transformation. We
only sketch the proofs, the full versions can be found in Amufiees A.5 and A.6.

For the TransResponseansformation, we examine the run of an execution sequeoce
Exed %5), and, using the definition of TransResponse, we deduce épesif the sequence
of enforcement operations performed &y .

— The first case i$1(o). We distinguish whetheu is finite or not.

— If o is a finite sequence, it means that the rurwain <77 ends in aR-state. Hence,
the last enforcement operation performedddy; is eitherdumpor off. The shape
of the sequence of enforcement operationsiere+ dump* - (dump+ off*).

— If gis aninfinite sequence, it means thatastate is visited infinitely often. Hence,
</ performs regularly thelumpoperation or persistently thaff operation. Then
the shape of the sequence of enforcement operatigssois - dump® + ((store+
dump* - off®).

— The second case is1(0). We distinguish whethew is finite or not.

— If o is a finite sequence, it means that the ruwafn <77 ends in aR-state. Hence,
the last enforcement operation performedddy; is storeor halt. The shape of the
sequence of enforcement operationgsi®re+ dump* - (store+ halt*).

— If o is an infinite sequence, it means tiRastates are visitetinitely often. Hence,
</ performs always thbalt or thestoreoperation from a certain prefix af. Then
the shape of the sequence of enforcement operatiofstase+ dump™ - (halt +
store)?.

For the TransObligationtransformation, we perform an induction ok where 7 is a k-
obligatione-property.

— Induction basisWe havek = 1, 1 is a simple obligation recognized by a 1-obligation
automatona/p; = (Q“n ,q;‘,fi/[”,z, — > {(R,P)}). The proof is done by showing that
the two following EMs are equal:

— The first EM is obtained by decomposifginto a conjuction of a safety and a gua-
ranteee-property. Then, we apply the TransResponse transformatiobtain two
EMs to which we apply the Intersection construction. Theultesy EM is correct
by construction.
— The second EM is obtained by applying directly TransObiayato <7 .
— Induction stepThe proof is done by showing that the two following EMs areaqu

24

3\ {g-auth, ops} 2\ {d-auth, g_auth}
g-auth (1 r_auth Q g-auth
/—\ /\
—1 1 2 4
d-auth OoPs v v
U U d_auth r_auth U
3\ {d-auth} 2\ {r-auth} 3\ {r-auth}

Fig. 9: Automaton recognizing the persisteregroperty/ls

— The first EM is obtained by decomposing the (k+1)-obligagotomaton into the in-
tersection of one simple obligation and one k-obligatiotomata, using Lemma 1.
Then, we apply the TransObligation transformation to the dbligation automata
and the Intersection operation. The resulting EM is corpgatonstruction.

— The second EM is obtained by the direct application of Trdsig@tion on the au-
tomaton recognizing the (k+1)-obligation propefiy

The equality is shown by exhibiting a bijection between éhB#s.

6.2.2 Non-enforceable properties

Pure persistence properties are not enforceable by ourcenfient monitors and by any
enforcement mechanism complying to the soundness angaeTEy constraints [16]. By
discussing two examples of pure persistence propertiegxplain with more details than
in [16] the enforcement limitation (Example 11) and why inist desirable to enforce pure
persistence properties in practice (Example 12).

Example 11 (Non-enforceable pure persistence propeitie)s go back on the-property

Is recognized by the Streett automaton in Fig. 9 (with acceyataniterionvinf (o, .o/,) C

P andP = {1,3}). This property is not enforceable since it has incorrefihite sequences
with an infinite number of correct prefixes. Indeed considgyy = d_auth- ops - (r_auth-
d_auth-r_auth- g_auth)®. Such an (infinite) execution sequence does not saffisfgince
vinf(Opad, ;) = {3,4,5} € {3,4}. Moreover according to the acceptance criterion for
finite sequences, each pretik, , of the formd_auth- ops - (r_auth-d_auth- r_auth-g_auth)* -
r_auth- d_auth satisfies the propertfls. We have exhibited an infinite incorrect execution
sequence with no longest correct prefix.

The following example permits to understand why it would beealistic and undesirable
to enforce pure persistence properties.

Example 12 (Non-enforceable pure persistence properties)

- {a}z \{e} An example of (pure) persistence property, definedan {a},
Q A szt .a® stating that “it will be eventually true that the evemtl-
— 1 2) ways occurs”. This property can be formalized by the persis
'\/ automaton on the left witR = {1}. This property is neither a safety,
nor a guarantee and nor an obligation property. As in theipuevexample, this property
admits infinite incorrect sequences with an infinite numbemorect prefixes.

One can explain the enforcement limitation intuitively lwihe following argument: if this
property was enforceable it would imply that an enforcenmanitor could decide from a
certain point that the underlying program will always proedhe evena. However such a
decision can never be taken by a monitor without memoriziegentire execution sequence

25

beforehand. This is unrealistic for an infinite sequencenfa more formal perspective, the
enforcement limitation can be understood as follows. Atesdtan Section 4.2, ae-property
(@, 9) is enforceable if for all infinite execution sequences offiregram when¢ (o), the
longest prefix ofo satisfyingg (Max. (Pref(g, o)) always exists; which is not the case for
this property.

Suppose that we try to buildsound and transparergnforcement monitor for the pro-
perty “it will be eventually true thaa always occur”. Now, suppose thhte > and the
sequencéa- b)® is submitted in input to such a monitor:

— When receivingg, the monitor has to output the sequercéndeed,a is correct w.r.t.
thee-property and it is the longest correct prefix of the inputLsstre.

— When receivinga- b, the monitor does not produce a new output (the output isatil
Indeed,a- bis incorrect w.r.t. thes-property.

— When receivin@- b- a, the monitor has to output the sequeiace- a. Indeeda-b-ais
correct w.r.t. thee-property and it is the longest correct prefix of the inputlsetpe.

Thus the enforcement monitor would output the input seqei€aeb)“; which is not correct
w.r.t. the considered-property.

Remark 1As a consequence, properties of the reactivity class (ountathe persistence
class) are not enforceable by our enforcement monitors.

7 Related work and discussion

This section compares our results with related work in matienforcement monitoring.
Moreover, we refer to the comparison of enforcement meshasprovided in [4] as it sets
up enforcement at runtime w.r.t. other enforcement meshanirom a computational point
of view.

7.1 Computability power of enforcement mechanisms

Hamlen, Morisett and Schneider proposed in [17,4] a clasdifin of enforceable proper-
ties considering a program as a Turing machine. Their perpass to delineate the set of
enforceable properties according to the mechanism usetdanforcement purpose. Pro-
perties are classified according to the modifications thatethforcement mechanism can
perform on the underlying program. Notably each mechanmmesponds to a computabil-
ity class of property:

— Properties enforceable by static analysis of the undegyirogram.These are decidable
properties on the underlying program.

— Properties enforceable by runtime execution monittiese are co-recursively enumer-
able properties.

— Properties enforceable by program rewritinbhe set of enforceable properties depends
on the equivalence relation used between programs.

By modifying the execution sequence, our enforcement rapein be seen as a restricted
form of program rewriting (also noticed in [4]). However welieve that the proposed me-
chanism can be affixed to a program using the constraintswoftante mechanism. It seems
to us a good trade-off between pure runtime monitoring andnam rewriting, in the sense
that we give more enforcement capability to our mechanisthaut any modification of the

26

underlying program. The only control we need on the undeglyorogram is being able to
“encapsulate” events and delay them with minimal semantaicts. There the EMs intro-
duced in this paper can be framed in the runtime executiontorarategory of enforcement
mechanisms. In the following we focus on related works datéit to this category.

7.2 Characterizing the set of enforceable properties irStfety-Progress hierarchy
independently from any enforcement mechanism [16]

In [16], we presented a unified view of runtime verificatior @mforcement of properties in

the Safety-Progress classification. We characterizedethef properties which can be veri-

fied (monitorable properties) and enforced (enforcealpegnties) at runtime. In particular,

we proposed an alternative definition of “property monitgtito the one classically used in

this context. This definition is parameterized by a truth domnof interest, and we showed

that it better suits practical needs of runtime verificatimols. However, these characteriza-
tions were independent of any specific runtime enforcemesthanism, and they did not

tell how to build an enforcement monitor from a property.

7.3 Characterizing the set of enforceable properties wigttgtion monitors

Security automata and decidable safety properti&shneider introduceskcurity automata
as the first runtime mechanism for enforcing properties3]nHe defined a variant of Biichi
automaton which runs in parallel with an underlying prograrhese automata are able
to halt the program whenever the security automaton detewislation of the property
under scrutiny. Schneider announced in this paper thatéhefsenforceable properties
with security automata is the set of safety properties. Tihdd] Schneider, Hamlen and
Morisett refined the set of enforceable properties using aunechanism. They showed that
security automata are in fact restrained by some compuotitionits. Indeed, Viswanathan
noticed in [5] that the class of enforceable properties jsated by the computational power
of the enforcement monitor. As the enforcement mechanismimplement no more than
computable functions, the enforceable properties aredied in the decidable ones. Hence,
it is shown in [4] that the set of safety properties is a stigberior limit to the power of
(execution) enforcement monitors defined as security aat@ngince in this article we are
focusing on the regular fragment of safety properties, filsigment corresponds to the set
of enforceable properties with security automata and thefsenforceable properties as
defined in [4,5].

Edit-automata and infinite renewal properties [6,7,18,1@]gatti et al. introducededit-
automataas runtime execution monitors. They noticed that, by onlyifgthe program,
the original security automata of Schneider were too mstli Depending on the current
input and its control state, an edit-automaton can eitts®rira new action by replacing the
current input, or suppress the current input (possibly nrezed in the control state for later
on). Enforcement with edit-automata was studied under thmdness and transparency
constraints. Thus, the insertions of events were perforafeet suppressions in order to
produce an output sequence which is always a prefix of the Bgmuence.

The properties enforced by edit-automata are caléidite renewalproperties. They
have been defined as the properties for which every infiniid saquence has an infinite

27

R [Reactivity] Non-Enforceable
Enforceagble "~ properties
properties L
[_Response ; [Persistence}
Edit-automata, EM S
(Obligation)
Progress o
Safety 7 | T

Fig. 10: Enforceable properties and enforcement mechanisnt. the Safety-Progress clas-
sification of properties

number of valid prefixes [6]. The set of renewal propertiea 8iper-set of safety proper-
ties and contains some liveness properties (but not alPmély, considering a common
alphabet>, the space of properties considered in [6, 7, 18Fis.Zhen a property is said

to be an infinite renewal properties ifb € Exed #s) N 2%, 0(0) < Vo' € 3*,0' <0 =
J0”,0’ X 0” < o A B(a”). The definition of renewal properties matches as expected ou
definition of enforceable properties (Definition 10). Henaecording to Theorem 1, in the
Safety-Progress classificationeproperties, infinite renewal properties are resp@igm-
perties.

Shallow History Automata and an information-based lattiée=nforceable policies [8].
Fong studied some restricted forms of runtime executionitoand their enforcement
capabilities. Shallow History Automata (SHA) keep as higtosetof events the underlying
program performed, irrespectively to the order of theiivatr Fong showed that these au-
tomata can enforce a set of properties strictly containgldrset of properties enforceable
by Schneider’'s automata. The result has been generalizasdihy abstraction mechanisms
on an equivalent variant of Schneider’s automata. It raigegn information-based lattice of
enforceable policies. At the top of this lattice is the sep@iperties enforceable by security
automata (SHA keeps history of all events). At the bottonh@f lattice is the set of policies
prohibiting a set of events (SHA do not distinguish betweiafiges of execution sequences
obtained from the same events).

Fong'’s classification has a practical interest in the sdredttstudies the effect of prac-
tical programming constraints (limited memory). It als@sis that some classical security
policies remain enforceable using such shallow automata.

7.4 Comparing EM with previous runtime enforcement mecrasi

It is rather clear that our EMs look like edit-automata. Thewmputations are produced
from a set of operations performed on a memory device. Inaditmata the computation
is realized using a set of control states. However the eafbent mechanisms we propose

28

differ in several points. To the best of our knowledge thessures are novel regarding
enforcement monitoring.

First, let us highlight the genericity of the EM(Ops) intcaedd in this paper. Security
automata of Schneider fall in the scope of our generic eefaent monitors. In fact one can
notice that by restraining the s@tpsof enforcement operations to the géglt,dump, it
is possible to find an equivalent enforcement monitor to agusty automaton. As SHA
are a restriction of Schneider’'s automata, they fall in tt@pe of our EMs. Edit-automata
fall also in the scope of our general enforcement moniterdeéd one can notice that the
primitive sets of edit-automata and EMs are the same.

We propose a translation of a recognizing automaton intondor@ng one. This sys-
tematic transformation eases the definition of the enfoesgrmechanism. Finding and en-
coding an enforcement mechanism using edit-automata iamattuitive task. In the case
where the property enforced by a security or edit automatdméwn, we can synthesize a
more concise enforcement monitor in the number of stateedd, for a security automaton
or an edit-automaton enforcing a propefly we synthesize an EM using TransObligation
or TransResponse applied arh; where.w/; is a recognizing automaton for.

Compared to edit-autom&tgour EMs propose a clear distinction between control states
(used for property recognition) and the sequence memaizéivhen the current execution
deviates from the property) in the memory device for pomiplay (if the execution se-
guence meets the property again). Hence such a mechanisisiés ® implement, since it
relies on a finite (and restricted) set of control states.mgdle, linking EMs to their im-
plementation is more compatible with formal reasoning sTgrovides more confidence in
the implementation of such mechanisms. Indeed, reducigiite of the trusted computing
mechanisms is a persistent challenge in the security domain

7.5 Synthesis of runtime enforcement mechanisms

There is relatively few research effort dedicated to thettssis of runtime enforcement
mechanisms.

In [20] Martinelli and Matteucci tackle the synthesis of emement mechanism as de-
fined by Ligatti. More generally the authors consider Sctiees security automata (trun-
cation automata), insertion, suppression and edit-autori@e monitor is modeled by an
algebraic operator expressed in CCS. The program undetirscis then a terny >g X
whereX is the target prograny the controller program andg the operator modeling the
monitor whereK is the kind of monitor (truncation, insertion, suppressioredit). The de-
sired property for the underlying system is formalized ggincalculus. In [21] Matteucci
extends the approach in the context of real-time systems.

7.6 Implementations

The runtime enforcement monitoring approach was impleateimtnumerous tools (see [22,
23] for instance). Most of them are based more or less on ispautomata, whereas Poly-
mer [19] introduces a more expressive framework based draatbhmata. Polymer is a

9 Edit-automata use a potentially infinite number of conttates for property recognition and sequence
memorization. Thus, even for a simple guarantee propegy “eventually b” an edit-automaton needs an
infinite number of states to memorize the potential incarsequence of events belongingXa {b}. Further-
more, one can notice that the size of an edit-automaton & dierost independent of the alphalietinder
consideration.

29

formal-semantics supported language and system whichecagdd to define, compose and
enforce security policies.

7.7 Discussion

In previous work in enforcement monitoring, as in our wote enforcement mechanisms
are restrained to use a peculiar set of enforcement prisitit may be interesting to notice
that, when considering enforcement with the transpareonogteaint (as in Definition 10)
the specialized enforcement mechanism we propose haveglerenforcement abilities.
Thus, considering more general forms of EMs with altermatiet of enforcement opera-
tions would not add any further enforcement ability.

Moreover, the previous development, starting from Secfi@) can be conducted con-
sidering a set of enforcement operatidrssore dump}. The interest of the operatiofmmslt
andoff is only practical: the operatidmalt (resp.off) is used to bound the size of the memory
when it is no longer necessary to memorize further evensp(t® suppress the monitor’'s
performance overhead on the program execution when it isvagh monitoring the input
sequence anymore).

8 Conclusion and perspectives

Conclusion. In this paper our purpose was to extend previous work on pippéecking
through runtime enforcement in several directions. Birste proposed a generic notion of
enforcement monitors based on a memory device, finite setsrifol states and enforce-
ment operations. This notion of EM encompasses previousasiones: security-automata
(and consequently shallow-history automata) and ediraata in a rather obvious way.
Moreover, we specified their enforcement abilities w.hé general safety-progress classi-
fication of properties. It allowed a fine-grain characteia of the space of enforceable
properties. Furthermore, we studied the question of EM amitipn w.r.t. Boolean opera-
tors. Also, we proposed a systematic technique to produ@nforcing monitor from the
Streett automaton recognizing a given safety, guarantdigiation or response property.

PerspectivesAn important working direction is now to make this runtimef@cement
technique better able to cope with practical limitationerider to deal with larger examples.
In particular it is likely that not all events produced by arderlying program can be freely
observed, suppressed, or inserted. This leads to well+kmmtions ofobservableand/or
controllable events, that have to be taken into account by the enforcemenhanisms.
Moreover, it could be also necessary to limit the resouraesemed by the monitor by
storing in memory only aabstractionof the sequence of events observee.(using abag
instead of a FIFO queue). From a theoretical point of vieis, itieans to define enforcement
up to somebstraction preserving trace equivalence relatiovge strongly believe that our
notion of enforcement monitors (with a generic memory deyis a suitable framework to
study and implement these features.

Similarly, it would be interesting to study the notion of erdement when weakening the
transparency constraint. In this case, the more generalddedit-automata and our generic
EMs could be used. Their complete enforcement potentiatireto be studied. This per-
spective would involve defining other relations betweenitipeit and the output sequences;

30

and thus defining other enforcement primitives to enforoperties in an automatic fashion.
It seems to us that such alternative constraints should ligated by practical needs.

Another working direction is a prototype tool, currentlydem development. To validate
and extend the previously defined approach we are elabgrframework implemented as
a Java toolbox, using Aspect Oriented Programming [24] asnaierlying technique. This
framework has been sketched in [25]. Taking, as inpué-property/T specified by a Streett
automatone/7, encoded in XML, it uses a first tool (consisting mainly in iepenting the
aforementioned transformations) to produce an EMToiThen a connected tool, using the
generated EM, produces an AspectJ aspect to be weaved \aited Java program. The re-
sulting program then meets propefi; in the sense that this property is actually enforced.
We believe that this prototype framework will be a good matf to investigate the im-
pact of the aforementioned practical constraints. Alsoaveecurrently studying alternative
rewriting techniques (not based on aspects) to replacethédr monitor integration in the
underlying program (such as BCEL [26] technology, or dyr@himary code insertion [27]).
The benefits would be to perform runtime enforcement fronatyirversions of the target
program.

Acknowledgements The authors would like to gratefuly thank the anonymousregfe for their helpful
remarks.

References

1. Havelund, K., Goldberg, A.: Verify your runs. Verified 8sére: Theories, Tools, Experiments: First
IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzedla®ctober 10-13, 2005, Revised Se-
lected Papers and Discussions (2008) 374—383

2. Leucker, M., Schallhart, C.: A brief account of runtimeifieation. The Journal of Logic and Algebraic
Programmingr8 (2009) 293-303

3. Schneider, F.B.: Enforceable security policies. ACMnBaction on Information and System Secufity
(2000) 30-50

4. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computabclasses for enforcement mechanisms. ACM
Trans. Program. Lang. Sy&8(2006) 175-205

5. Viswanathan, M.: Foundations for the run-time analy$isoftware systems. PhD thesis, University of
Pennsylvania, Philadelphia, PA, USA (2000) Supervisary&th Kannan and Supervisor-Insup Lee.

6. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcemefinonsafety policies. ACM Trans. Inf. Syst.
Secur.12 (2009)

7. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safetgcurity policies with program monitors. In:
ESORICS. (2005) 355-373

8. Fong, P.W.L.: Access control by tracking shallow exemuthistory. In: Proceedings of the 2004 IEEE
Symposium on Security and Privacy, IEEE Computer Sociegg$(2004) 43-55

9. Manna, Z., Pnueli, A.: A hierarchy of temporal propertida: PODC '87: Proceedings of the sixth
annual ACM Symposium on Principles of distributed computiNew York, NY, USA, ACM (1987)
205-205

10. Chang, E.Y., Manna, Z., Pnueli, A.: Characterizationeafiporal property classes. In: Automata, Lan-
guages and Programming. (1992) 474-486

11. Lamport, L.: Proving the correctness of multiprocessgpams. IEEE Transaction on Software Engi-
neering3 (1977) 125-143

12. Alpern, B., Schneider, F.B.: Defining liveness. Inf.¢&ss. Lett21(1985) 181-185

13. Falcone, Y., Fernandez, J.C., Mounier, L.: Synthegieinforcement monitors wrt. the safety-progress
classification of properties. In Sekar, R., Pujari, A.K.sedCISS. Volume 5352 of Lecture Notes in
Computer Science. (2008) 41-55

14. Chang, E., Manna, Z., Pnueli, A.: The safety-progreassdfication. Technical report, Stanford Univer-
sity, Dept. of Computer Science (1992)

15. Streett, R.S.: Propositional dynamic logic of loopimgl Zonverse. In: STOC '81: Proceedings of the
thirteenth annual ACM symposium on Theory of computing, Néwk, NY, USA, ACM (1981) 375—
383

31

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

Falcone, Y., Fernandez, J.C., Mounier, L.: Runtimefigation of Safety-Progress Properties. In Ben-
salem, S., Peled, D., eds.: RV. Volume 5779 of Lecture NateS8amputer Science., Springer (2009)
40-59

Hamlen, K.W.: Security Policy Enforcement By Automatemgram-Rewriting. PhD thesis, Cornell
University (2006)

Ligatti, J.A.: Policy Enforcement via Program Monitagi PhD thesis, Princeton University (2006)
Bauer, L., Ligatti, J., Walker, D.: Composing expressiuntime security policies. ACM Trans. Softw.
Eng. Methodol18 (2009)

Martinelli, F., Matteucci, I.: Through modeling to skesis of security automata. Electronic Notes in
Theoretical Computer Sciendg9(2007) 31-46

Matteucci, |.: Automated synthesis of enforcing meddras for security properties in a timed setting.
Electronic Notes in Theoretical Computer Scied&6 (2007) 101-120

Erlingsson, U., Schneider, F.B.: IRM enforcement ofaJstack inspection. In: IEEE Symposium on
Security and Privacy. (2000) 246—255

Erlingsson, U., Schneider, F.B.: SASI enforcement ofisty policies: A retrospective. In: WNSP: New
Security Paradigms Workshop, ACM Press (2000)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,dpC., Loingtier, J.M., Irwin, J.: Aspect-
oriented programming. Springer-Verlag (1997)

Falcone, Y., Fernandez, J.C., Mounier, L.: EnforcenMmnitoring wrt. the Safety-Progress Classifica-
tion of Properties. In: SAC '09: Proceedings of the 2009 AGhposium on Applied Computing, New
York, NY, USA, ACM (2009) 593-600

The Apache Jakarta Project: Byte Code Engineering tyibtatp://jakarta.apache.org/bcel/ (2008)
Nethercote, N., Seward, J.: Valgrind: a framework foaMysveight dynamic binary instrumentation.
SIGPLAN Not.42 (2007) 89-100

A Proofs

A.1 Proof of Property 1 (p. 9)

We prove the two facts successively:

1.

As [is a safetye-property, then there exists a Streett safety-automatgn= (Q“1, qgﬁf‘”,z, —
,{(0,P)}) specifying it. Leto be a sequence belonging fb theno is accepted by7;. If o is finite,

it means that the last state visited during the ruwafn <77 is in P (Definition 3). Thus, each prefix of
o has its run ending i since there is no transition froMto P. According to the acceptance criterion
of Streett automata for finite sequences, all prefixes arepaed by.e/; and thus belong tél. If o is
an infinite sequence, it means that all states visited iefinivften during the run o on <7 are inP
(vinf(a,e/7) C P). Since there is no transition froRto P, no prefix of o visits a state irP; i.e, all
prefixes ofo belong tolT.

. Similarly, when considering a guarantee property andgegifying automaton, all accepted sequences

(belonging to the property) have their run ending R-atate. Finite continuations of accepted sequences
still have their run ending in B-state since there is no transition frédto R. Infinite continuations of an
accepted sequence visit at least one staldiinitely often: theR-state in which the run of the accepted
sequence ends in.

[}

A.2 Proof of Property 3 (p. 15)

This proof is done by induction on the length of the input seweo.

Induction basis|o| = 1; we haveo = awith a< X. Using the definition of evolution of configurations

(Definition 8), we havelq € Q“, (64,0 - 0',£)=> (q,0',m) with a(o,) = (0,m) andg L

— If a = halt, theno = £,m= ¢ andq € Halt“} . We haveo < 0.
— Else, ifa = store theno=¢&,m= 0. We haved =0-m.
— Else @ = dumpor a = off),o=am=¢ando=0-m.

32

Induction stepSuppose that the property is verified for every executiomeece of lengttm and consider an
execution sequenae- a of lengthn+ 1, wherea € Z. By readingo, .<7| enters a statg € Q“, produces an
outputo, and hasnin its memory:3dq € Q%,(q;:i/f,ma U’,“:):owl (g,a-d’,m). Moreover, the induction
hypothesis givesiq € Halt”} Ao=< o)V (q¢ Halt”s Ag = 0-m). As 7| is complete w.r.lQ x I (definition

/
of EMs), 3a € Ops3d € Q‘%qﬂ%q/. So,30,m € =*,(g,a- a/7m)i>%(q’,a’7n{) with a(a,m) =
(d/,f). Which results (g, 0 -a- a’,e)g%(q’,a’,n{) and(q € Halt”} Ao < o)V (q¢ Halt”} Ao =
0-m). We want to show thafy € Halt”s Ao0-0' < 0-a) v (q ¢ Halt”} Ag-a=o0-0 -m). Let us treat three
cases for the enforcement operatimn

— Casea = halt. We havea (a,m) = (¢,m). Soo’ = ¢ andm= n'. And we also have, according to the
definition of EMs (Definition 6),q € Halt‘/“’l. Then, we apply the induction hypothesis with and
depending on the membership@fn Halt“} . If q € Halt”}, 0 < 0 = 0-£ < 0 -a. Else (| ¢ Halt"}),
we haveo-¢ < 0-a.

— Casea = store We haveq ¢ Halt”!, anda(a,m) = (g,m-a), sod = £ andn’ = m-a. By induction
hypothesisq ¢ Halt? (Definition 6) ando = 0-m. Hence, we have-a=0-m-a=0-0 - .

— Casea € {dumpoff}. We haveq ¢ Halt“}, anda(a,m) = (m-a,&). Thend = m-aandm = ¢. By
induction hypothesis, we have necessaqly Halt”} (Definition 6), ando = o-m. Hence, we have
g-a=o0-m-a=o0-0-m.

[}

A.3 Correctness of the Union and Intersection operatiohg¢fem 2, p. 18)

Note first that these constructions effectively build EMs @ly prove the Union operator. Fbe {1,2},
Enf(<| ., M, P5),i.e, Vo € Exed ¥x), Jo; € Z*:

0 bap O 9)

Mi(o)=o=o0 (10)

—[i(o)APref_(@,0)=0=0=¢ (11)

—[i(o) APref_(@,0) # 0= o, = Max(Pref_(q,0)) (12)

Let us notes, = Union(</|r,, | 1,) = (Q, Gy, —,0pP9), T = M1 V [T, and=- the multistep derivation
relation defined over configurations of, and —;. We have to shovEnf(.«4,, 1, &5), that is, giveno €
Exed ¥s),doe€ 3* s.t.,

0l 0 (13)

Mo)=0=o0 (24)

—l(o)APref_(p,0)=0=0=¢ (15)

—[1(o) APref_(¢,0) # 0= 0= Max(Pref_(¢,0)) (16)

We first conside € >*, and use induction ofo].

Induction basisFor the induction basis, we have| = 0 ando = €. Then we have (13) and (14) as
€l € Moreover,Pref_ (¢, &) = 0 gives us (15).

Inductive stepLetn € N and suppose that for all sequences.t.|g| = n, there exists an outputof .7,
s.t. (13), (14), (15), and (16).

As o |}, o(induction hypothesis), there exists a configuratigre, m) € Q x 5* x Z* s.t.(q, 7, €) >
(q,&,m), which implies tha(q,,,, o -a,£) = (q,a,m). That is, after reading, the EM.«7, is in a statey with
aas input, angnas memory content. Then from the configuratigra, m), it evolves towards a configuration
(d,&,n'), that is(g,a,m) AN (d,&,m') with a(a,m) = (0/,m'),ar € Ops By readingo - a, <, produces the
outputo-0o'. Also, reading ofo-aon.«/|,, i € {1,2}, induces the following evolution of configurations:

i

(G, 0-2,8) = (g, a,m) < (&, m),

with aj(a,m) = (o, m); ¢, ¢ € Q”M;m,m, 0,0 € =*.
There are two cases depending@(o - a).

33

— @(o-a). In this case, eithepi (o -a) or ¢»(0-a). Let us considewp (0 -a), @(0 -a) is similar. As
Enf(My, <\ n,, P5),301 € Z*,a-au%nl 01. Moreover,@ (0 -a) implies thato; = 0 - a. Inevitably the
last enforcement operatiam of <7, is dumpor off (Property 4). Theror = Li({a1,a2}) = dumpVv
a = off. According to the definition of enforcement operation andperty 3,0 -all ., 0-a,i.e, (13)
and (14).

— —@(0-a). Then—@(0-a) A (0 -a). Using the definition of enforcement, we have four cases de-
pending on whethePref_ (@,0-a) =0 or not,i € {1,2}.

— The first case iref . (@,0-a) #0,i € {1,2}. Fori € {12}, asEnf([1;,«/;3,, Ps5), ~@(0 - @)
givesJo € 3*,0, = Max(Pref_ (@, 0 -a)). Now, we have eithen; < 0p, 02 < 01 OF 01 = 0.

e 01 <0z (02 < 01 is symmetrical). We haveo; € *,0; < 0] < 0-a= ¢ (0}), andvo, €
2*,0p <0, < 0-a= —»(0,). Thenos < 0z implies thato, = Max(Pref_ (¢,0-a)). We have
to show thatr-all ., 02. Let us examine the sequence of enforcement operatiorns et by
</ ;. We haveoy || 4, 02, as the last enforcement operation performed while reagting o - a
is adump(«/, is obtained by taking the upperbound of enforcement opmersi

e If 01 =0y, 01 = 0, = Max(Pref_(¢,0 -a)). The previous reasoning holds.

— The second case Bref_(@,0-a) =0,i € {1,2}. Fori € {1,2}, asEnf([1;,,3,, Z5), ~@(0-a)
givesa-au%ni £,i€{1,2}.

— The third case i®ref_(@1,0-a) = 0V Pref_ (g, 0 -a) = 0. SinceEnf([1;, 4, P5),i € {1,2},
it gives us two sequences € >, s.t.o; = Max(Pref_ (@,0-a)),i € {1,2} that can be compared
similarly to the first case.

For infinite sequences, the reasoning is similar to the onérfibe sequences. It is done on the shape of the
sequence of enforcement operations and by distinguishingraing to whetheg (o) or not. Indeed, de-
pending onp (o), and using the fact tha¥| 5, enforces# ., i € {1,2}, we associate the possible sequences
of enforcement operations o# ;. to the sequence of enforcement operationsson

Note that we have indeedalt™’ — Halt”m x Halt“% . Using the definition oz ;, we have:

Halt”t = {d € Q”" | Jae >,99€ Q“" q a/ﬁgt%u q}
={(ch.%h) € Q"M x Q“z |
Jae 2.3(an,0) € QM x Q2 (a1, q2) Ty, (. 0p))
={(d.0h) € Q7™M x Q"2 | Jae 3,
o1 € QM I € Q7 Y%y nap V%, G iy = halt)
={(d.0h) € Q7™M x Q" | Jae %,
(B € Q% MV) A (e € Q2,00 T))
= {0y €Q"™ [Jac 530 € Q¥m g T, oy}
x{op € QU |Jae 5,30, € Qe VY, b}
= Halt“m x Halt”m

Note also that the states ffalt“" verify the constraint expressed in Section 4.3. Thatjs Halt™" Va ¢

S Va € Opsvg € Q% q ﬂm‘ g = a = halt. It is a direct consequence of the fact thaalt”t =

Halt”m x Halt“"2 and the fact that halt operation is performed o/ iff the operationhalt is performed
on the two corresponding transitions.drj, and.</, .

Similarly, we can show that firgbff " = Off /b x Q%”z U Q‘Wi”i x Off 472 and second that states
in Off verify the constraint of Definition 13. Therefor is indeed an EM.

The proof for the intersection operator is conducted siryila O

A.4 Correctness of the Negation operation (Theorem 3, p. 19)

Let thee-property [T be (¢,¢), with ¢ C >* and$ C >“. Let us notee’|; = Negatior(.<7|17), and:>%—l7

the multistep derivation relation defined over configuragiof.«7| and—>%. Also, sinceQ“in = QW

34

we will useQ to denote the set of states of both EMs. Similagly denotes the starting states of both EMs.
We have to shovEnf(«/| 7,17, #5), thatis,vVo € ExedZs), Jo€ 2% s.t.

g U% o] a7)

M(o)=0=0 (18)

(o) APref_(p,0) =0=0=¢ (19)

—I (o) APref_(p,0) # 0= 0= Max(Pref_ (¢, 0)) (20)

The proof is in two steps: the first one is for finite sequenttessecond one for infinite sequences.

Finite sequencesThe proof is done by induction di|.

Induction basis|o| = 0; o = €, so we have (17) and (18) a&s|.,, €. Moreover,Pref_(¢,€) = 0,
which gives (19).

Inductive stepLet n € N and suppose that for all sequenees.t.|g| = n, there exists an outpate >*
s.t. the constraints (17), (18), (19) and (20) hold. Congigea € > and a sequence-as.t.|0-al =n+1,
we study the effect of the submission in input of the last eeeliVe will prove that there exists a new output
s.t. the same constraints hold.

As o U% o (induction hypothesis), there exists a configuratiope,m) € Q x ¥* x ~* such that

(Git» T, €) :°>% (g,£,m), which implies tha{q,,, 0 - a,€) :‘5% (q,a,m). Thatis, after reading, </,

is in a stateq with a in input, andm as memory content. Then from the configuratigpa, m), it evolves

towards a configuratioiq’, &,n), that is(q,a,m) &% (d,e,m) with a(a,m) = (d/,n'),a € Ops The
reading ofo -a on.«7|; induces the evolution of configurations:

0/
(G 02, 8) =27 (@ m) S (df,e,)
p

\n
/

(qinitva'avs):pk%n (q7a7 n)%i%n (q,,f,n,),
with:
- qﬂyanq/,a(am) =(0,m),a €Opsq,q € gmm,0,0' € 2%

-q ﬂ%n q.a'(an)=(p,n),a’ €Opsq.q € Qnn',p,p' € 2"
There are two cases depending@(o - a):
— @(0-a). AsEnf(M,4\n,Ps), «/,n producess - a, i.e,, a~aug/m o -a. Necessarilya’ € {dumpoff}.
It corresponds to an operatianc {store halt} on.<7, ;. Now we distinguish according (o) or not.
— If @(0), using the induction hypothesig(= n), we have eitheo = & (whenPref _ (¢,0) = 0) or
0= Max(Pref_ (¢,0)) (whenPref_ (¢,0) # 0).
o If Pref_(p,0) = 0, then we also havBref_(p,0-a) = 0. The output ofe/ 7 is still €, i.e,
0-0' = &. We have (19). B
o If Pref_(@,0) # 0, using the induction hypothesis,= Max(Pref_(¢,0)). Yet ¢(o - a), it
implies thato = Max(Pref_ (¢, 0 -a)). We have (20).
— If =¢(0), i.e, (o), using the induction hypothesis, we have tbat}% o with 0 = 0. Then
_ o =Max(Pref_(¢,0)) sincep(a). We also obtain (20).
— @(o-a). Then, we havMax(Pref_ (¢,0-a)) < o-a. It follows thata’ € {store halt}. As a consequence
a € {dumpoff} ando- auﬂ o-a. We have (17) and (18).

Infinite sequenceswe distinguish according to the class/af Let us considet € .
— [is a safety e-propertye have two cases, depending on wheth&r) or not.
= ¢(0). AsEnf(M1, o/, Z5), we have that |}, 0. Moreover ad1 is a safetye-property, all pre-
fixes of o satisfy @ (Property 1), that i¥0’ € £*,0’ < 0 = @(0’), and consequently’ Yoy 0.
It follows (Property 4) that the sequence of enforcementatfns ong|; belongs ta/dump® +
dumgp - off®. Then using the definition of Negation, we find that the seqeef enforcement opera-
tions one| 7 belongs tastore’ - halt® + store”. It follows thato i}% €,i.e, (17). AsPref_(p,0) =

0, we obtain (19).

35

— —¢(0). ASEnf(1,4, 1, Z5), we have two cases: eitheref_(¢,0) =0A0=¢corJdoec >*,0=
Max(Pref_(@,0)).
e Let us deal first with the caseref_ (¢,0) = 0. We havevo’ € 5*,0' < 0 = —@(d’). It
follows that the sequence of enforcement operations/gn belongs tcstore - halt® + store?.
Using the definition of Negation, the sequence of enforcéroparations ofw| is off©. It
follows thato i}% o. We obtain (17).

o Let us deal now with the caderef_(¢,0) # 0. Letn = |o|. As [T is a safetye-property, we
have thatvl <i < n,¢(o..i-1) AVi > n,—¢(0o..;). Then using Property 4, we can find the
sequence of enforcement operations performedzy: (dump" - halt”. On <77, using the
definition of the transformation Negation, the sequencenfééreement operations becomes

stor€'- off®. It follows thato i}% 0 (17). Theng (o) ando = o ensure (18).
— [T is a guarantee e-propertyVe have two cases, depending @(o) or not.

— ¢(0). AsEnf(M,<n,P5), we have thao i}dm 0. Moreover adl is a guarante@-property,
there exists a prefig’ of 0 s.t.Vo” € 2*,0’ < 0" = @(0") A\V0" € £*,0" < 0’ = —¢p(0d"). Let
us noten = |o’|. Consequently, a is enforced by7|;;, we havevo” € 2*,0' < 0" = 0’ Yain
o’ AVo" € 5*,0" < 0’ = d” Lo €. It follows that the sequence of enforcement operations
on./|n is stord~1. off®. Note that for guarantee-properties, thelumpoperation is never used:
once a finite sequence satisfies a guaraefe®perty, all its continuations also do. Then, using the
definition of the transformation Negation, we find that thguence of enforcement operations on
7 is dum@~1-halt®. It follows thato u%n o’ (17). Moreover as we have seen tito’), we
have (20).

— —¢(0). I is a guarantee-property,—¢ (o) implies that there is no prefix af satisfying@. As
Enf(M, 4,75), we have thato’ < 0,0 u(%n €. The sequence of enforcement operations per-

formed by« belongs tostore - halt®. Using the definition of the Negation transformation, the
sequence of enforcement operationsagp belongs tadump - off®. It follows thato il@ o. We
have (17) and (18).

Finally, due to the definition of—_— we have easily thatalt”in = Off“4n and Off“4n = Halt“n .

Moreover, the constraints fotaltin andOff 4 states are respected since they are respected for states in
Off“4n andHalt“1, and.</qis an EM.]

A.5 Correctness of the TransResponse transformation (€hed, p. 22)

Intuitively, the proof can be understood as follows. Whereguence satisfies a response property, there
exists an alternation in the satisfaction of the prefixehisf sequence. When a sequence does not satisfy the
property, there exists an index from which the run of the geixed sequence is composed of “bad states”
forever.

We note/y = (Q71 ,qgﬁﬁ” 2, —a,1(R0)}). Let us consider an execution sequence of the program
o € ExeqZ5). We study the effect of the submission @fto .7, ;. We will associate the execution of
on «/n to the execution obr on «7| ;. The execution obr on </ produces a trac&, 0o, d1) - (A1, 01,02)
--(Gi,07,0i41)--- Which corresponds to a tradp,do/d0.91) - (Gi,Gi/Qi,0i41) -+ ON /|7 With go =

qifff”. We distinguish depending on whether the sequensatisfies/T or not.

— The first case i$7(0). We know that the automatos; accepts, let us distinguish whether is finite
or not.

* If o€ Z*, theng(o). Letn=|0|. As o is accepted by/, and according to the acceptance criterion

(Definition 3), there exists a statigs Rreachable frormﬁ” s.t. the run ofe/; ono ends in &R-state

(we haveP = 0 since«7 is a response automaton).

If o =g, then we have (5) asu%n €. Moreover,Pref_ (¢, &) = 0, which gives (7).

If (o # €), according to the constraints of the transition relatibm oesponse automaton, the run
and the trace off on.«7; are such that, € R. According to TResrl) and (TResr), the trace ofo
on.«Z|fy is such thatr, € {off, dump.

From the execution trace om| 7 and the definition of the enforcement operations, we deduee t
following derivations of configurations:

| Og On—2 On—1
(qinii’n ,0, 8) — (q17 o.l‘“vml) o (”_> (qn*lv o‘ﬂ*lwvnh*l) (”_> (qn,f,s)

36

with 0p- 01 ---0n_1 = O since the last enforcement operatian, (1) is eitheroff or dump

By deduction, using the multistep derivations, we héiqfé”,a,s) 2 (gn,€,€). Thatis,o \PTES
which ensures (5). Besides, according to the acceptanegiani of e-properties, we have(o),
which permits to deduce (6), &= 0.

* If o€ 2% then¢ (o). Using Definition 3 and the definition of a response automates have
vinf(o,.«/n) NR# 0. Formally,Vi € N,3j € N,j > iAqj € R It follows that the trace ot on
/n verifiesVi € N,3j € N,j >iA(dj-1,0)-1,0;) € trace(g,«/7) AQj € R Then, we deduce that
the trace on the enforcement monitef; (using the definition of TransResponse, Definition 17)
verifies the propertyyi € N,3j € N, j > i A (Qj-1,0j-1/dumpq;) € trace(o, </ 7). That is:Vi €
N,3j € N,j > i,aj € {off,dump}. Thus we deduce that (using Propertycﬁ)u%n g, i.e, (5).
Moreover, we have (6) a(0) Ao = 0.

— The second case is/1(0). The sequence is not accepted by#s, let us distinguish whether is finite
or not.

— 0 < Z*and then-@(0). Letn = |o|. There are two cases dependingRmef_ (¢,o) = 0 or not.

o If Pref_(¢p,0) =0, according to the acceptance criterion of response automatsstarts in
R and stays in. We deduce that the execution trace oh </ is s.t.Vi > 0,q; ¢ R. Using
the definition of TransResponse we can firate(o,.«7 7). Then, the enforcement operation
performed by 7 is alwayshalt or store Thatiso ||, € (5). ThenPref_ (¢, 0) = 0 implies
thatVo’ < o,—¢(o). We have (7).

o If (Pref_(¢,0) # 0), there is at least one prefix af satisfying ¢. Let us notedyeeq the
longest prefix ofo satisfying@: ogood = Max(Pref_ (g, @)). Letk =|0good|. Then the run and
the trace ofe/7 on o are s.tgx € RAVI € [k+1,n],q; € R According to the TransResponse
transformation, the trace @f on <7y is s.t.ax_1 = dumpAVi € [k,n— 1], a; € {store halt}.
From the execution trace om|; and the definition of the enforcement operations, we deduce
the following derivations of configurations:

4 0g Ok—2 Ok—1
(G, 0,8) = -+ < (Ok—1, Ok—1..,Mk_1) > (C, Ok...,€)

& & &
(Ok> Ok, €) > (Oks-1, Ok 1, Me1) < -+ <> (Gn, €, M)
With Ogood = O..k-1 = 0p- 01 -+ Ok_1. Indeed we havelumpox_1,Mk_1) = (Mk—1- Ok—1,€)
andvi > k, a; € {storg halt}, <7, ; produces in output (fork <i <n—1). Thatiso..,_1 i}%n
O.x_1ando U%n o..xk—1. Which ensures (5). Besides, according to the acceptaiteeian
of e-properties, we have@(o), which proves (8), as.._1 = Max(Pref_(¢,0)).

— 0 € 2% and then—¢ (o). This case is similar to the casep (o) for guarantee properties. The
acceptance criterion for response automata impliesvihbto, <77) "R = 0. We deduce that there
existsn such that the run ofr on o7 is expressed asin(og,) = do---On -+ With gg = qﬁ” A
(Vi > n,q € R). Let us consideny,n the smallest integer verifying this property. Fok < nmp, it is
then possible to apply the previous reasoning (the géeg) for o..x. Hence we find an alternation
in the run of the execution sequenzey,;,, between states belonging®andR. We find in a similar
way that fork > Nmin, 0.k oy Ovny @NAP(T...ny,)- IS €@SY tO See that...ny, is the longest
prefix (by definition offimin) satisfyinge (o...n,,,, = Max(Pref_ (¢, 0..x))).

O

A.6 Correctness of the TransObligation transformatiore@rem 4 continued, p. 22)

We rely on showing that the EM obtained by applying of the SR&sponse, Union and Intersection trans-
formations (this EM is correct by construction), and the Efained by applying directly TransObligation,
are equivalent. To do so, we perform an inductionkormhere 7 is a k-obligation e-property. Let us note
</, = TransObligatiof.e/y).

— Induction basisWe takek = 1, 1 is a 1-obligation. Let/n = (Q“7 i1, %, — . {(R,P)}). Let
o € 2”. [1 can be expressefl = sU Mg where lls (resp.[lg) is a safety (resp. guarantee)
property recognized by the safety (resp. guarantee) atubonme; = (Qn ,qgﬁi/t” 2 a7, 1(0,P)})
(resp./ng = (Qn ,q;fn” ,Z,—rwn,1(R0)})). These automata differ fromvyy only on their accepting
states. We can apply the TransResponse transformatiosrseen as a response automaton, and on
/g directly. It yields two enforcement monitorg| 7 and.«7| ;.

37

Now, using the definition of TransResponse fgyn,, we have thaQ‘Wi”s = Q‘“’”s. Moreover, for any
transitionq ﬂ’%ns q in #,ng, the enforcement operatian verifies:
(d ePA Reacmns(q’)

c
A (d €PA Reacmns(q/) ¢z
A (d €P)= o =halt

P) = a = off
P) = a =dump

Similarly, using the definition of TransResponse £, for any transitiorg ﬂ’ﬂ’ms q'in 7 g, the

enforcement operatiof verifies:

(d eRA Reachy, (d) CR) = B =halt
A (d €RA React}/ns(q’) ¢ R) = [= store
A (d €R) = B =off

Now, notice that every transition iy, = Union(«| ng, <7, ;) is in the form(q, q) ﬂp% (d,q) where
0,9 € Q40 = Q%M = Q7. Moreover,y verifiesy = a LI B whereq ﬂdms g andq ﬂ%% q.

Furthermore, for any transitictmﬂ%,7 q in 7|7, the enforcement operatignverifies the same previ-
ous condition € LI 3). Using the definition of TransObligation, there is a bijectbetween TransObliga-
tion(.«/7) and Unior{.«/, g, 7, 1): YV € Q7N the stategin TransObligatiofie7) is in relation with the
state(q,q) in Union(.«7| ng, <7). This allows to state that TransObligation is correct faliligation
properties.
Induction step.Let n € N* and suppose that fdc < n, if T is a k-obligation recognized by &-
obligation automatone7, then the EM.<7|; = TransObligatiorie/;) enforces/T, that is, we have
Enf(</n, M1, P5).
Now consider a (k+1)-obligatiofl, </ a recognizing (k+1)-obligation automaton, anti; = Trans-
Obligation(.«77). As 1 is a (k+1)-obligation property;] can be expressed 5}#(:*11 My where thelT; are
1-obligation properties (Lemma 1). The expressionotan be rewritten agl = (ﬂikzl) N M.
Using Lemma 1, one can find two recognizing automafay(; recognizingﬂ}‘:l M and o7 k1)
recognizingli, 1. Using the induction hypothesis, we can apply TransOhbgab these two automata
to obtain two EMs¢/| 71y enforcing N and <7\ (k+1) enforcing Mi,1. With the Intersection
construction (Definition 15), we obtain the EM|n’ = Intersectior@m@,—,/[l‘k],ch{i,-,/{kﬂ}) enforcing
(Theorem 2Y(K_, M) N My 1 = MK, that isrT.
Now let us examine the EMy|; obtained by applying directly the TransObligation tramsfation on
/7. We compare it withe| 7" obtained by the induction hypothesis and the intersect@rstruction;
this EM is correct by construction.
— For.«| 7, according to Definition 18 of TransObligation:

o QYn =Qm,

O

e andvac 5, Y%, o wherea = < LI({B, %)),

’ .n i=1 (RR L
- For«|q’, according to Definition 15 of the intersection between EMs:
. Q%n’ _ Q‘Q//U'l/{kJrl} % Q%n/[Lk] = Q9 x Q“n,

o Qi = g s Guin/BK i e,
e andvac 2,0 %%, o wherea = M, L ({8) M (L({Ber. en), L8, o = ML
({B.v}).
— where,Vi € [1,k+1]:
e [iis

- off if € R AReach,, ()NR =0
- dumpif o € R AReachy, ()R #0
- haltif o ¢ R
e yis
- offif d eR
- haltif o ¢ RA Aq” € R.,q" € Reachy, ()
- storeif o ¢ R A3 € R,q" € Reachy, (o)

38

That is, we can exhibit a bijection relation betweefy;" and </ ;;: for each state) € Q71 qin A\n
is in relation with the statéq,q) in «/|’. Formally, between the two EM&/|7 andlcz{u-,’, there is a
relationZ C (Q“N x (Q“n x Q) defined byZ = {(q,(q,q)) | g € Q¥ }. The two EMs are equal
(they differ only by the name of their states). As a conseqgeethe EM produced by directly applying
TransObligation o, is correct. This concludes the proof for the TransOblaratransformation and
Obligation properties.

O

