
A Compositional Testing Framework Driven by

Partial Specifications

Yliès Falcone1, Jean-Claude Fernandez1, Laurent Mounier1, and
Jean-Luc Richier2

{Ylies.Falcone,Jean-Claude.Fernandez,Laurent.Mounier,
Jean-Luc.Richier}@imag.fr

1 Vérimag Laboratory, 2 avenue de Vignate 38610 Gières, France
2 LIG Laboratory, 681, rue de la Passerelle, BP 72, 38402 Saint Martin d’Hères

Cedex, France

Abstract. We present a testing framework using a compositional ap-
proach to generate and execute test cases. Test cases are generated and
combined with respect to a partial specification expressed as a set of
requirements and elementary test cases. These approach and framework
are supported by a prototype tool presented here. The framework is
presented here in its LTL-like application, besides other specification
formalisms can be added.

1 Introduction

Testing is a popular validation technique which purpose is essentially to find
defects on a system implementation, either during its development, or once a
final version has been completed. Therefore, and even if lots of work have already
been carried out on this topic, improving the effectiveness of a testing phase while
reducing its cost and time consumption remains a very important challenge,
sustained by a strong industrial demand.

From a practical point of view, a test campaign consists in producing a test
suite (test generation), and executing it on the target system (test execution).
Automating test generation means deriving the test suite from some initial de-
scription of the system under test. The test suite consists in a set of test cases,
where each test case is a set of interaction sequences to be executed by an exter-
nal tester. Any execution of a test case should lead to a test verdict, indicating
if the system succeeded or not on this particular test (or if the test was not
conclusive).

The initial system description used to produce the test cases may be for
instance the source code of the software, some hypothesis on the sets of inputs
it may receive (user profiles), or some requirements on its expected properties at
run-time (i.e., a characterization of its (in)-correct execution sequences). In this
latter case, when the purpose of the test campaign is to check the correctness
of some behavioral requirements, an interesting approach for automatic test
generation is the so-called model-based testing technique. Model-based testing

is rather successful in the communication protocol area, especially because it
is able to cope with some non-determinism of the system under test. It has
been implemented in several tools, see for example [1] for a survey. However, it
suffers from some drawbacks that may prevent its use in other application areas.
First of all, it strongly relies on the availability of a system specification, which
is not always the case in practice. Moreover, when it exists, this specification
should be complete enough to ensure some relevance of the test suite produced.
Finally, it is likely the case that this specification cannot encompass all the
implementation details, and is restricted to a given abstraction level. Therefore,
to become executable, the test cases produced have to be refined into more
concrete interaction sequences. Automating this process in the general case is
still a challenging problem [2], and most of the time, when performed by hand,
the soundness of the result cannot be fully guaranteed.

We propose here an alternative approach to produce a test suite dedicated
to the validation of behavioral requirements of a software (see Fig. 1). In this
framework the requirements R are expressed by logical formulas ϕ built upon a
set of (abstract) predicates Pi describing (possibly non-atomic) operations per-
formed on the system under test. A typical example of such requirements could
be for instance a security policy, where the abstract predicates would denote
some high-level operations like “user A is authenticated”, or “message M has
been corrupted”. The approach we propose relies on the following consideration:
a perfect knowledge of the implementation details is required to produce ele-
mentary test cases Tci able to decide whether such predicates hold or not at
some state of the software execution. Therefore, writing the test cases dedicated
to these predicates should be left to the programmer (or tester) expertise when
a detailed system specification is not available. However, correctly orchestrating
the execution of these “basic test cases” and combining their results to deduce
the validity of the overall logical formula is much easier to automate since it
depends only of the semantics of the operators used in this formula. This step
can therefore be produced by an automatic test generator, and this test gen-
eration can even be performed in a compositional way (on the structure of the
logical formula). More precisely, from the formula ϕ, a test generation function
automatically produces an (abstract) tester ATϕ. This tester consists of a set
of communicating test controllers, one for each operator appearing in ϕ. Thus,
ATϕ depends only on the structure of formula ϕ. ATϕ is then instantiated using
the elementary test cases Tci to obtain a concrete tester Tϕ for the formula ϕ.
Execution of this tester on the implementation I produces the final verdict.

We believe that this approach is general enough to be instantiated with
several logic formalisms commonly used to express requirements on execution
traces (e.g., extended regular expressions or linear temporal logics).

This works extends some preliminary descriptions on this technique [3, 4] in
several directions: first we try to demonstrate that it is general enough to support
several logical formalisms, then we apply it for the well-known LTL temporal
logic, and finally we evaluate it on a small case study using a prototype tool
under development.

In addition to the numerous works proposed in the context of model-based
test generation for conformance testing, this work also takes credits from the
community of run-time verification. In fact, one of the techniques commonly
used in this area consists in generating a monitor able to check the correctness
of an execution trace with respect to a given logical requirement (see for instance
[5, 6] or [7] for a short survey). In practice, this technique needs to instrument
the software under verification with a set of observation points to produce the
traces to be verified by the monitor. This instrumentation should of course be
correlated with the requirement to verify (i.e., the trace produced should contain
enough information). In the approach proposed here, these instrumentation di-
rectives are replaced by the elementary test cases associated to each elementary
predicates. The main difference is that these test cases are not restricted to pure
observation actions, but they may also contain some active testing operations,
like calling some methods, or communicating with some remote process to check
the correctness of an abstract predicate.

The rest of the paper is organized as follows: Sect. 2 introduces the general
approach, while Sect. 3 details its sound-proved application for a particular vari-
ant of the linear temporal logic LTL. Section 4 and 5 respectively describe the
architecture of a prototype tool based on this framework, and its application on
a small case study. The conclusion and perspectives of this work are given is
Sect. 6.

Implementation I

Logic Plug-in

Test Execution

Verdict

Informal Requirements R

Abstract testers {ATϕ}

Formal requirements {ϕ}

Concrete testers {Tϕ}

Elementary test cases {Tci}

(using abstract predicates Pi)

Test InstantiationTest Generation

Fig. 1. Test generation overview

2 The general approach

We describe here more formally the test generation approach sketched in the
introduction. As it has been explained, this approach relies on the following
steps:

– generation of an abstract tester ATϕ from a formal requirement ϕ;
– instantiation of ATϕ into a concrete tester Aϕ using the set of elementary

testers associated to each atomic predicate of ϕ;
– execution of Tϕ against the System Under Test (SUT) to obtain a test ver-

dict.

2.1 Notations

A labelled transition system (LTS, for short) is a quadruplet S = (Q, A, T, q0)
where Q is a set of states, A a set of labels, T ⊆ Q × A × Q the transition relation
and q0 ∈ Q the initial state. We will denote by p

a−→T q (or simply p
a−→ q) when

(p, a, q) ∈ T . A finite execution sequence of S is a sequence (pi, ai, qi){0≤i≤m}
where p0 = q0 and pi+1 = qi. For each finite execution sequence λ, the se-
quence of actions (a0, a1, . . . , am) is called a finite execution trace of S. We de-
note by Exec(S) the set of all finite execution traces of S. For an execution
trace σ = (a0, a1, . . . , am), we denote by | σ | the length m + 1 of σ, by σk...l the
sub-sequence (ak, . . . , al) when 0 ≤ k ≤ l ≤ m, and by σk... the sub-sequence
(ak, . . . , am) when 0 ≤ k ≤ m. Finally, σ↓X denotes the projection of σ on action
set X . Namely, σ↓X = {a0·· · ··am | ∀i·ai ∈ X∧σ = w0 ·a0 · · ·wm ·am ·wm+1∧wi ∈
(A \ X)∗}.

2.2 Formal requirements

We assume in the following that the formal requirements ϕ we consider are
expressed using a logic L . Formulas of L are built upon a finite set of n-ary
operators Fn and a finite set of abstract predicates {p1, p2, . . . , pn} as follows:

formula ::= Fn(formula1, formula2, . . . , formulan) | pi

We suppose that each formula of L is interpreted over a finite execution
trace of a LTS S, and we say that S satisfies ϕ (we note S |= ϕ) iff all sequences
of Exec(S) satisfy ϕ. Relation |= is supposed to be defined inductively on the
syntax of L in the usual way: abstract predicates are interpreted over Exec(S),
and the semantics of each operator Fn(ϕ1, . . . , ϕn) is defined in terms of sets of
execution traces satisfying respectively ϕ1, . . . , ϕn.

2.3 Test process algebra

In order to outline the compositionality of our test generation technique, we
express a tester using an algebraic notation. We recall here the dedicated “test
process algebra” introduced in [4], but other existing process algebras could also
be used.

Syntax. Let Act be a set of actions, T be a set of types (with τ ∈ T), Var
a set of variables (with x ∈ Var), and Val a set of values (union of values of
types T). We denote by exprτ (resp. xτ) any expression (resp. variable) of type
τ . In particular, we assume the existence of a special type called Verdict which
associated values are {pass, fail, inconc} and which is used to denote the verdicts
produced during the test execution.The syntax of a test process t is given by the
following grammar:

t ::= [b] γ ◦ t | t + t | nil | recX t | X
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ

γ ::= xτ := exprτ | !c(exprτ) | ?c(xτ)

In this grammar t denotes a basic tester (nil being the empty tester doing
nothing), b a boolean expression, c a channel name, γ an action, ◦ is the prefix-
ing operator, + the choice operator, X a term variable, recX allows recursive
process definition (with X a term variable)3. When the condition b is true, we
abbreviate [true]γ by γ. Atomic actions performed by a basic tester are either in-
ternal assignments (xτ := exprτ), value emissions (!c(exprτ)) or value receptions
(?c(xτ)) over a channel c4.

Semantics. We first give a semantics of basic testers (t) using rewriting rule
between uninterpreted terms in a CCS-like style (see Fig. 2).

γ ∈ Act
(◦)

[b]γ ◦ t
[b]γ
⇀ t

t[recX ◦ t/X]
[b]γ
⇀ t′ γ ∈ Act

(rec)

recX ◦ t
[b]γ
⇀ t′

γ ∈ Act t1
[b]γ
⇀ t′1 (+)l

t1 + t2
[b]γ
⇀ t′1

γ ∈ Act t2
[b]γ
⇀ t′2 (+)r

t1 + t2
[b]γ
⇀ t′2

Fig. 2. Rules for term rewriting

The semantics of a basic test process t is then given by means of a LTS
St = (Qt, At, T t, qt

0) in the usual way: states Qt are “configurations” of the form
(t, ρ), where t is a term and ρ : V ar → V al is an environment. States and transi-
tion of St (relation −→) are the smallest sets defined by the rules given in Fig. 3
(using the auxiliary relation ⇀ defined in Fig. 2). The initial state qt

0 of S is
the configuration (t0, ρ0), where ρ0 maps all the variables to an undefined value.
Finally, note that actions At of St are labelled either by internal assignments
(xτ := v) or external emission (!c(v)). In the following we denote by At

ext ⊆ At

the external emissions and receptions performed by the LTS associated to a test
process t.

Complex testers are obtained by parallel composition of test processes with
synchronisation on a channel set cs (operator ‖cs), or using a so-called “join-
exception” operator (�I), allowing to interrupt a process on reception of a
communication using the interruption channel set I. We note ‖ for ‖∅ and
Act chan(s) all possible actions using a channel in the set s. To tackle with
communication in our semantics, we give two sets of rules specifying how LTSs
are composed relatively to the communication operators (‖cs, �

I). These rules
aim to maintain asynchronous execution, communication by rendez-vous. Let
St

i = (Qt
i, A

t
i, T

t
i , qt

0i) be two LTSs modelling the behaviours of two processes t1
and t2, we define the LTS S = (Q, A, T, q0) modelling the behaviours of St

1 ‖cs St
2

3 We will only consider ground terms: each occurrence of X is bound to recX.
4 To simplify the calculus, we supposed that all channels exchange one value. In the

testers, we also use “synchronisation channels”, without exchanged argument, as a
straightforward extension.

and St
1 �

I St
2 as the product of St

1 and St
2 where Q ⊆ (Qt

1 ∪ {⊥})× Qt
2 and the

transition rules are given in Fig. 4.

ρ(exprτ) = v t
[b]xτ :=exprτ

⇀ t′ ρ(b) = true
(:=)

(t, ρ)
xτ :=v−→ (t′, ρ[v/xτ])

ρ(exprτ) = v t
[b]!c(exprτ)

⇀ t′ ρ(b) = true
(!)

(t, ρ)
!c(v)−→ (t′, ρ)

v ∈ Dom(τ) t
[b]?c(xτ)

⇀ t′ ρ(b) = true
(?)

(t, ρ)
!c(v)−→ (t, ρ[v/xτ])

Fig. 3. Rules for environment modification

p1
a−→ p′

1 a /∈ Act chan(cs)
(‖l

cs)
(p1, p2)

a−→ (p′
1, p2)

p2
a−→ p′

2 a /∈ Act chan(cs)
(‖r

cs)
(p1, p2)

a−→ (p1, p
′
2)

p1
a−→ p′

1 p2
a−→ p′

2 a ∈ Act chan(cs)
(‖cs)

(p1, p2)
a−→ (p′

1, p
′
2)

p1
a−→ p′

1 a /∈ Act chan(I)
(�I)

(p1, p2)
a−→ (p′

1, p2)

p2
a−→ p′

2 a ∈ Act chan(I)
(�I)

(p1, p2)
a−→ (⊥, p′

2)

Fig. 4. LTS composition related to ‖cs and �
I

2.4 Test Generation

Principle. The test generation technique we propose aims to produce a tester
process tϕ associated to a formal requirement ϕ and it can be formalized by
a function called GenTest in the rest of the paper (GenTest(ϕ) = tϕ). This
generation step depends of course of the logical formalism under consideration,
but it is compositionally defined in the following way:

– a basic tester tpi is associated with each abstract predicate pi of ϕ;
– for each sub-formula φ = Fn(φ1, · · · , φn) of ϕ, a test process tφ is produced,

where tφ is a parallel composition between test processes tφ1 , . . . , tφn and a
test process �F n called a test controller for operator Fn.

The purpose of test controllers �F n is both to schedule the test execution
of the tφk

(starting, stopping or restarting their execution), and to combine
their verdicts to produce the overall verdict associated to φ. As a result, the
architecture of a tester tϕ matches the abstract syntax tree corresponding to
formula ϕ: leaves are basic tester processes corresponding to abstract predicates
pi of ϕ, intermediate nodes are controllers associated with operators of ϕ.

Hypothesis. To allow interactions between the internal sub-processes of a tester
tϕ, we assume the following hypotheses:

Each tester sub-process tφk
(basic tester or controller) owns a special variable

used to store its local verdict. This variable is supposed to be set to one of these
values when the test execution terminates – its intuitive meaning is similar to
the conformance testing case:

• pass means that the test execution of tφk
did not reveal any violation of the

sub-formula associated to tφk
;

• fail means that the test execution of tφk
did reveal a violation of the sub-

formula associated to tφk
;

• inconc (inconclusive) means that the test execution of tφk
did not allow to

conclude about the validity of the sub-formula associated to tφk
.

Each tester process tφk
(basic tester or controller) owns a set of four ded-

icated communication channels csk = {c startk, c stopk, c loopk, c verk} used
respectively to start its execution, to stop it, to resume it from its initial state
and to deliver a verdict. In the following, we denote by �(cs, cs1, · · · , csn) each
controller � where cs is the channel set dedicated to the communication with
the embracing controller whereas the (csi) are the channel sets dedicated to the
communication with the sub-test processes. Finally, a “starter” process is also
required to start the topmost controller associated to t and to read the verdict
it delivered.

Each basic tester process tpi associated to an LTS Stpi
is supposed to have a

subset of actions A
tpi
ext ⊆ Atpi used to communicate with the SUT. Considering

t = GenTest(ϕ), the set At
ext is defined as the union of the A

tpi
ext where pi is a

basic predicate of ϕ.

Test generation function definition (GenTest). GenTest can then be de-
fined as follows using GT as an intermediate function:

GenTest(ϕ)
def
= GT (ϕ, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

where cs is the set {c start, c stop, c loop, c ver} of channel names associated to tϕ.

GT (pi, cs)
def
= Test(tpi , cs)

GT (F n(φ1, . . . , φn), cs)
def
= (GT (φ1, cs1) ‖ · · · ‖ GT (φn, csn)) ‖cs′ �F n(cs, cs1, . . . , csn)

where cs1, . . . , csn are sets of fresh channel names and cs′ = cs1 ∪ · · · ∪ csn.

Test(tp, {c start, c stop, c loop, c ver}) def
=

recX (?c start() ◦ tp◦!c ver(ver)◦?c loop() ◦ X) �
{c stop} (?c stop() ◦ nil)

2.5 Test execution and test verdicts

As seen in the previous subsections, the semantics of a tester represented by
a test process t is expressed by a LTS St = (Qt, At, T t, qt

0) where At
ext ⊆ At

denotes the external actions it may perform. Although the system under test
I is not described by a formal model, its behaviour can also be expressed by

a LTS SI = (QI , AI , T I , qI
0). A test execution is a sequence of interactions (on

At
ext) between t and I in order to deliver a verdict indicating whether the test

succeeded or not. We define here more precisely these notions of test execution
and test verdict.

Formally speaking, a test execution of a test process t on a SUT I can be
viewed as an execution trace of the parallel product ⊗At

ext
between LTSs St and

SI with synchronizations on actions of At
ext. This product is defined as follows:

St ⊗At
ext

SI is the LTS (Q, A, T, q0) where Q ⊆ Qt × QI , A ⊆ At ∪ AI ,
q0 = (qt

0, q
I
0), and

T = {(pt, pI) a−→ (qt, qI) | (pt, a, qt) ∈ T t ∧ (pI , a, qI) ∈ T I ∧ a ∈ At
ext} ∪

{(pt, pI) a−→ (qt, pI) | (pt, a, qt) ∈ T t ∧ a ∈ At \ At
ext} ∪ {(pt, pI) a−→ (pt, qI) |

(pI , a, qI) ∈ T I ∧ a ∈ AI \ At
ext}.

For any test execution σ ∈ Exec(St ⊗At
ext

SI), we define the verdict function:
VExec(σ) = pass (resp. fail , inconc) iff σ = c start() · σ′ · c ver(pass) (resp.
σ = c start() · σ′ · c ver(fail), σ = c start() · σ′ · c ver(inconc)) and c start
(resp. c ver) is the starting (resp. the verdict) channel associated to the topmost
controller of t.

3 Application to variant of LTL

This section presents an instantiation of the previous framework for a (non
atomic) action-based version of LTL-X, the next-free variant of LTL [8].

3.1 The logic

Syntax. The syntax of a formula ϕ is given by the following grammar, where
the atoms {p1, . . . , pn} are action predicates.

ϕ ::= ¬ϕ | ϕ U ϕ | ϕ ∧ ϕ | pi

Semantics. Formulas ϕ are interpreted over the finite execution traces σ ∈ A∗

of a LTS. We introduce the following notations.
To each atomic predicate pi of ϕ we associate a subset of actions Api and two

subsets Lpi and Lpi of A∗
pi

. Intuitively, Api denotes the actions that influence the
truth value of pi, and Lpi (resp. Lpi

) the set of finite execution traces satisfying
(resp. non satisfying) pi. We suppose that the action sets Api are such that
{(Api)i} forms a partition of A, that for all i, j, Lpi ∩Lpi

= ∅ and (Lpi ∪Lpi
) ∩

(Lpj ∪ Lpj) = ∅. The sets of actions for a predicate are easily extended to sets
of actions for a formula: A¬ϕ = Aϕ, Aϕ1∧ϕ2 = Aϕ1Uϕ2 = Aϕ1 ∪ Aϕ2 .

The truth value of a formula is given in a three-valued logic matching our no-
tion of test verdicts: a formula ϕ can be evaluated to true on a trace σ (σ |=T ϕ),
or it can be evaluated to false (σ |=F ϕ), or its evaluation may remain inconclu-
sive (σ |=I ϕ).

The semantics for a formula ϕ is defined by three sets. The set of sequences
that satisfy (resp. violate) the formula ϕ is noted [[ϕ]]T (resp. [[ϕ]]F). We also
note [[ϕ]]I the set of sequences for which the satisfaction remains inconclusive.

– [[pi]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′
↓Api

∈ Lpi}
[[pi]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′

↓Api

∈ Lpi
}

– [[¬ϕ]]T = [[ϕ]]F

[[¬ϕ]]F = [[ϕ]]T

– [[ϕ1 ∧ ϕ2]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′
↓Aϕ1

∈ [[ϕ1]]T ∧ ω′
↓Aϕ2

∈ [[ϕ2]]T }
[[ϕ1 ∧ ϕ2]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′

↓Aϕ1
∈ [[ϕ1]]F ∨ ω′

↓Aϕ2
∈ [[ϕ2]]F }

– [[ϕ1Uϕ2]]T = {ω | ∃ω1, . . . , ωn, ω′ · ω = ω1 · · ·ωn · ω′

∧∀i < n · ωi↓Aϕ1
∈ [[ϕ1]]T ∧ ωn↓Aϕ2

∈ [[ϕ2]]T }
[[ϕ1Uϕ2]]F = {ω | ∃ω1, . . . , ωn, ω′ · ω = ω1 · · ·ωn · ω′

∧
“
∀i ≤ n·ωi↓Aϕ2

∈ [[ϕ2]]
F∨(∃l ≤ n·ωl↓Aϕ2

∈ [[ϕ2]]
T ∧∃k < l·ωk↓Aϕ1

∈ [[ϕ1]]
F)

”
}

– [[ϕ]]I = A∗ \ ([[ϕ]]P ∪ [[ϕ]]F)

Finally we note σ |=T ϕ (resp. σ |=F ϕ, σ |=I ϕ) for σ ∈ [[ϕ]]T (resp.
σ ∈ [[ϕ]]F ,σ ∈ [[ϕ]]I).

3.2 Test generation

Following the structural test generation principle given in Sect. 2.4, it is possible
to obtain a GenTest function for our LTL-like logic. The GenTest definition can
be made explicit simply by giving controller definitions. So, we give a graphical
description of each controller used by GenTest. To simplify the presentation, the
stop transitions are not represented: the receptions all lead from each state of the
controller to some “sink” state corresponding to the nil process, and emissions
are sent by controllers to stop sub-tests when their execution is not needed
anymore for the verdict computation.

The �¬({c start, c loop, c ver}, {c start′, c loop′, c ver′}) controller is shown on
Fig. 5. It inverts the verdict received by transforming pass verdict into fail
verdict (and conversely) and keeping inconc verdict unchanged.

!c start′()

?c start()

?c ver′(x′
v) [x′

v = inc]xv := inc

[x′
v = fail]xv := pass

[x′
v = pass]xv := fail

!c ver(xv)

?c loop()

!c loop′()

Fig. 5. The �¬ controller

The �∧({c start, c loop, c ver}, {c startl, c loopl, c verl}, {c startr, c loopr, c verr})
controller is shown on Fig. 6. It starts both controlled sub-tests and waits for
their verdict returns, and sets the global verdict depending on received values.

!c startl()

?c verr(xvr)

?c verl(xvl
)

?c verr(xvr)

?c verl(xvl
)

[othercases]xv := inc

[xvl
= fail ∨ xvr = fail]xv := fail

[xvl
= pass ∧ xvr = pass]xv := pass

!c ver(xv)

?c loop()

!c loopr()!c loopl()

!c startr()

?c start()

Fig. 6. The �∧ controller

The �U ({c start, c loop, c ver}, {c startl, c loopl, c verl}, {c startr, c loopr, c verr})
controller is shown on Fig. 7 and Fig. 8. It is composed of three sub-processes
executing in parallel and starting on the same action ?c start(). The first sub-
process �m is represented on Fig. 7. The second and third ones corresponds to
two instantiations

�l({c start, c loop, c ver}, {c startl, c loopl, c verl}),
�r({c start, c loop, c ver}, {c startr, c loopr, c verr})

of �x({c start, c loop, c ver}, {c startx, c loopx, c verx}) for the two controlled sub-
test for the two sub-formulas. An algebraic expression of this controller could
be

�U(· · ·) = (�l(· · ·) ‖ �r(· · ·)) ‖{r fail,l fail,r pass,l pass} �m(· · ·)

One could understand �l and �r as two sub-controllers in charge of communi-
cating with the controlled tests that send relevant information to the “main”
sub-controller �m deciding the verdict. The reception of an inconclusive verdict
from a sub-test process interrupts the controller which emits an inconclusive
verdict (not represented on the figure). If no answer is received from the sub-
processes after some finite amount of time, then the tester delivers its verdict
(timeout transitions). For the sake of clarity we simplified the controller rep-
resentation. First, we represent the emission of the controller verdict and the
return to the initial state under a reception of a loop signal (?c loop()) by a
state which name represents the value of the emitted verdict. Second, we do not
represent inconc verdict, the controller propagates it.

3.3 Soundness proposition

We express that an abstract test case produced by the GenTest function is always
sound, i.e. it delivers a pass (resp. fail) verdict when it is executed on a SUT
behavior I only if the formula used to generate it is satisfied (resp. violated) on
I.
This proposition relies on one hypothesis, and two intermediate lemmas.

?c start()

?l fail()

?l pass()
Pass

Fail

?l fail()

Pass

?r pass()

?r fail() ?r pass()

?r fail()

?l pass()

?l pass()
?r pass()

?r fail()

?r pass()

Pass

?l pass()

Fail

?l fail()

?l pass()

?r fail()

Fail

Pass

?l fail()

?r pass()
?l pass()

Fail

?l fail()

Cm

Fig. 7. The �U controller, the �m part

?c start() !c startx() ?c verx(xvx) [vx = fail]!x fail()

�x
[xvx = pass]!x pass()

?c loop()

?c loop()

!c loopx()

?c loop()

!c loopx()

Fig. 8. The �U controller, the �x part

Hypothesis 1 Each test case tpi associated to a predicate pi is strongly sound
in the following sense:

∀σ ∈ Exec(tpi ⊗Api
I), VExec(σ) = pass ⇒ σ |=T pi

∀σ ∈ Exec(tpi ⊗Api
I), VExec(σ) = fail ⇒ σ |=F pi

The lemmas state that the verdict computed by tϕ on a sequence σ only
depends on actions of σ belonging to Aϕ.

Lemma 1. All execution sequences with the same projection on a formula ϕ
actions have the same satisfaction relation towards ϕ. That is:

∀σ, σ′ · σ↓Aϕ
= σ′

↓Aϕ
⇒ (σ |=T ϕ ⇔ σ′ |=T ϕ) ∧ (σ |=F ϕ ⇔ σ′ |=F ϕ)

Lemma 2. For each formula ϕ, each sequence σ, the verdicts pass and fail of
a sequence do not change if we project it on ϕ’s actions. That is:

∀ϕ, ∀σ · σ |=T ϕ ⇒ σ↓Aϕ
|=T ϕ

∀ϕ, ∀σ · σ |=F ϕ ⇒ σ↓Aϕ
|=F ϕ

These lemmas come directly from the definition of our logic and the con-
trollers used in GenTest . Now we can formulate the proposition.

Theorem 1. Let ϕ be a formula, and t = GenTest(ϕ), S a LTS, σ ∈ Exec(t ⊗Aϕ S)
a test execution sequence, the proposition is:

V Exec(σ) = pass =⇒ σ |=T ϕ

V Exec(σ) = fail =⇒ σ |=F ϕ

Sketch of the soundness proof. The proof is done by structural induction
on ϕ. We give the proof for two cases.

For the predicates The proof relies directly on predicate strong soundness (Hy-
pothesis 1).

For the negation operator. Let suppose ϕ = ¬ϕ′. We have to prove that:

∀σ ∈ Exec(GT (¬ϕ′,L) ⊗Aϕ I), VExec(σ) = pass ⇒ σ |=T ¬ϕ′

∀σ ∈ Exec(GT (¬ϕ′,L) ⊗Aϕ I), VExec(σ) = fail ⇒ σ |=F ¬ϕ′

Let σ ∈ Exec(GT (¬ϕ′,L) ⊗Aϕ I) suppose that VExec(σ) = pass.
By definition of GT ,

GT (¬ϕ′,L) = GT (ϕ′,L′) ‖L′ C¬(L,L′)

Since controller C¬ does not trigger the c loop transition of its subtest when it
is used as a main tester process, execution sequence σ is necessarily in the form:

c start() · σI · σ′ · σI ·
([xv = pass]xvg := fail | [xv = fail]xvg := pass | [xv = inconc]xvg :=

inconc) · σI · c ver(xvg)

with σ′ ∈ Exec(GT (ϕ′,L′)⊗Aϕ′ I), σI denoting SUT’s actions, and ω · (a | b) · ω′

denoting the sequences ω · a · ω′ and ω · b · ω′.
As the controller emits a pass verdict (!c ver(xvg) with xvg evaluated to pass
in the C¬’s environment) it means that it necessarily received a fail verdict
([xv = fail]xvg := pass) on c ver′ from the sub-test corresponding to GT (ϕ′,L′).
So we have σ′ ∈ Exec(GT (ϕ′,L′) ⊗A′

ϕ
I) and VExec(σ′) = fail.

The induction hypothesis implies that σ′ |=F ϕ′. The Lemma 2 gives that
σ′↓A

ϕ′ |=F ϕ′. And we have:

σ′
↓A

ϕ′
= σ′

↓Aϕ
(∀ϕ, Aϕ = A¬ϕ)

= σ↓Aϕ
(c start, σI /∈ Aϕ

∗)

So σ↓Aϕ
|=F ϕ′. We conclude using the Lemma 1 that σ |=F ϕ′ that is σ |=T ¬ϕ′.

The proof for ∀σ ∈ Exec(GT (¬ϕ′,L) ⊗Aϕ I), VExec(σ) = fail ⇒ σ |=F ¬ϕ′ is
similar.

Others operators. Proofs for the other operators follow the same principle and
can be found in [9].

4 j-POST

We now present j-POST, a prototype of a testing framework tool for the Java
environment which follows our approach. We just describe an abstract view
of the tool. Interested readers can refer to [9] which contains a more detailed
description.

j-POST contains a test generator using the compositional approach for Java,
i.e. the tester is generated in Java, for a SUT written in the same language.
An interface is provided for the user to write a library of elementary test cases
from the SUT interface. Indeed, the interface defines a set of methods that can
be called. Elementary test cases are terms of our test calculus which external
actions correspond to these methods: execution of an external action on the
tester leads to a complete execution of the method on the SUT (from the call
to the return). An elementary test case execution on the tester leads to the
execution of some methods in the SUT interface.

Afterwards, using our method, the tool transforms a specification in a given
formalism in a abstract test case. Then it is combined with the library to provide
an executable test case.

Synthesis algorithms of controlled tests for different formalisms have been
defined and implemented. Two interfaces are provided to the user: a command-
line mode and a graphic interface. A simplified version of the test generation
and execution is depicted on Fig. 9.

Library

ATC
Architecture

j−POST

initial

Stub

SPEC
ERE | LTL

modified SUTTester

Communication

Messages over Java−RMI

ATC

SUT

SUT

Generation

initial

Device

ATC
Engine

Interface

Fig. 9. Simplified working principle

Elementary test cases library establishment. The SUT’s architecture description
provides the set of controllable and observable actions on the system. The user
can compose them, with respect to the test calculus, and write new elemen-
tary test cases. Programming is eased by the abstraction furnished by the SUT
interface.

Specification as a set of requirements. j-POST offers several formalisms to ex-
press requirements on the system.

• Temporal logics. Temporal logics [8] are frequently used to express specifica-
tion for reactive systems. Their use has proved to be useful and appreciated
for system verification. Our case studies have shown that many concepts in
security policies are in the scope of these logics.

• Regular Expression. Regular expressions [10] allows to define behaviour
schemes expressed on a system traces. They are commonly used and well-
understood by engineers for their practical aspect.

Test of a system. j-POST translates the specification into abstract test cases fol-
lowing the specification formula structure. Depending on the used specification
formalism and the expressed requirement, the tool generates a test architecture
whose test cases are coming from the controller library in accordance with Gen-
Test. An execution engine is also generated. So, the generated tester can execute
different test cases translated into a unique representation formalism on the test
calculus engine. The initial SUT is also modified by adding a stub to commu-
nicate with the tester. This component provides means to launch method calls
on the reception of specific signals. Thus, abstract test cases executing on the
tester guide concrete test cases execution on the modified SUT. Communication
between tester and SUT is done using the Java-RMI mechanism as we plan to
support distributed SUT in a future evolution of our tool.

5 Case study

We present a case study illustrating the approach presented above. From some
credit card security documents [11], we established a security policy and a credit
card model. We applied our method with the security policy as a partial speci-
fication and the executable credit card model as a SUT. The credit card model
and part of its security policy are overviewed here.

The card. The architecture of the credit card is presented on Fig. 10. The in-
terface is modeled by the Device component, corresponding to the possible ac-
tion set on the card. Several banking operations are proposed, e.g. provide pin,
change pin, init session, transaction, close session. Choice was made to use a
Java interface to model the banking application one. The Device component in-
teracts with a Memory Abstraction component providing, as its name indicates,
some basic operations on the memory’s areas. The Memory is just the credit
card memory represented as a fixed size integer array.

The security policy. Our study allowed us to extract several security require-
ment specific to the credit card security domain. These requirements concerned
several specification formalisms: regular expressions, and temporal logics. Some
examples of properties that we were able to test can be expressed at an informal
level:

MemoryDevice

Memory Abstraction

Observations

Controls

Fig. 10. The credit card architecture

1. After three failed authentications, the card is blocked, i.e. no action is per-
mitted anymore.

2. If the card is suddenly removed the number of remaining authentications
tries is set to 0.

3. No action is permitted without an identification.

For example one could see the first property formalised in our logic as several
rules, one for each possible action:

try 3 authentications(all failed) =⇒ action(blocked)

The third one could be reasonably understood as:

action(blocked) U authentication(success)

With this formalisation, these properties were tested with test cases that use
elementary combinations of card interface actions. For example we wrote an ab-
stract test case leading to three failed authentications using actions provide pin
and init session.

6 Conclusion

In this work we have proposed a testing framework allowing to produce and exe-
cute test cases from a partial specification of the system under test. The approach
we follow consists in generating the test cases from some high-level requirements
on the expected system behaviour (expressed in a trace-based temporal logic),
assuming that a concrete elementary tester is provided for each abstract predi-
cate used in these requirements. This “partial specification” plays a similar role
to the instrumentation directives currently used in run-time verification tech-
niques, and we believe that they are easier to obtain in a realistic context than
a complete operational specification. Furthermore, we have illustrated how this
approach could be instantiated on a particular logic (an action-based variant
of LTL-X), while showing that it is general enough to be applied to other sim-
ilar trace-based logics. Finally, a prototype tool implementing this framework
is available and preliminary experiments have been performed on a small case
study.

Our main objective is now to extend this prototype in order to deal with
larger examples. A promising direction is to investigate how the so-called MOP

technology [6] could be used as an implementation platform. In particular, it
already offers useful facilities to translate high-level requirements (expressed in
various logics) into (passive) observers, and to monitor the behaviour of a pro-
gram under test using these monitors. A possible extension would then be to
replace these observers by our active basic testers (using the aspect program-
ming techniques supported by MOP).

Acknowledgement. The authors thank the referees for their helpful remarks.

References

1. Hartman, A.: Model based test generation tools survey. Technical report, AGEDIS
Consortium (2002)

2. van der Bijl, M., Rensink, A., Tretmans, J.: Action refinement in conformance test-
ing. In Khendek, F., Dssouli, R., eds.: Testing of Communicating Systems (TEST-
COM). Volume 3205 of Lecture Notes in Computer Science., Springer-Verlag (2005)
81–96

3. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test gen-
eration for network security rules. In: TestCom. (2006) 341–356

4. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A test calculus framework
applied to network security policies. In: FATES/RV. (2006) 55–69

5. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: TACAS
’02: Proceedings of the 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, London, UK, Springer-Verlag (2002)
342–356

6. Chen, F., D’Amorim, M., Roşu, G.: Checking and correcting behaviors of java pro-
grams at runtime with java-mop. In: Workshop on Runtime Verification (RV’05).
Volume 144(4) of ENTCS. (2005) 3–20

7. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.,
Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test
case generation and runtime verification. Theor. Comput. Sci. 336 (2005) 209–234

8. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer-
Verlag New York, Inc., New York, NY, USA (1995)

9. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A partial specification
driven compositional testing method and tool. Technical Report TR-2007-04,
Vérimag Research Report (2007)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In
Shannon, C.E., McCarthy, J., eds.: Automata Studies. Princeton University Press,
Princeton, New Jersey (1956) 3–41

11. Mantel, H., Stephan, W., Ullmann, M., Vogt, R.: Guideline for the development
and evaluation of formal security policy models in the scope of itsec and common
criteria. Technical report, BSI,DFKI (2004)

