
Runtime Verification and Enforcement
for Android Applications with RV-Droid?

Yliès Falcone, Sebastian Currea, and Mohamad Jaber

Laboratoire d’Informatique de Grenoble, UJF Université Grenoble 1, France
FirstName.LastName@ujf-grenoble.fr

Abstract. RV-Droid is an implemented framework dedicated to runtime verifi-
cation (RV) and runtime enforcement (RE) of Android applications. RV-Droid
consists of an Android application that interacts closely with a cloud. Running
RV-Droid on their devices, users can select targeted Android applications from
Google Play (or a dedicated repository) and a property. The cloud hosts third-
party RV tools that are used to synthesize AspectJ aspects from the property.
According to the chosen RV tool and the specification, some appropriate mon-
itoring code, the original application and the instrumentation aspect are woven
together. Weaving can occur either on the user’s device or in the dedicated cloud.
The woven application is then retrieved and executed on the user’s device and the
property is runtime verified. RV-Droid is generic and currently works with two
existing runtime verification frameworks for (pure) Java programs: with Java-
MOP and (partially) with RuleR. RV-Droid does not require any modification to
the Android kernel and targeted applications can be retrieved off-the-shelf. We
carried out several experiments that demonstrated the effectiveness of RV-Droid
on monitoring (security) properties.

1 Introduction

Android [1] has risen as one of the most popular mobile operating systems. As the
popularity of Android increases so is the need for validation techniques. A huge number
of applications is available and an exhaustive/satisfactory validation process is missing.
With this success has emerged bugged applications (because of complex life-cycle) and
malwares that could seriously hinder devices’ integrity and users’ privacy [2].

Monitoring the behavior of Android applications appear as a candidate solution to
circumvent these problems [3, 4]. Runtime verification (RV) and enforcement (RE) are
increasingly popular and effective dynamic validation techniques aiming at checking
and ensuring the correct behavior of systems, respectively. These techniques consist in
synthesizing a monitor from a high-level specification language, instrument the system
and then integrate the monitor at relevant locations. At runtime, the monitor observes
and possibly corrects the system’s execution. In most of the runtime verification frame-
works, instrumentation is automatic and relies on efficient and effective frameworks,
e.g., aspect-oriented programming [5] and AspectJ (www.eclipse.org/aspectj/) its im-
plementation for Java.

However, for the Android platform such an effective instrumentation technique did
not exist until quite recently [6]. Consequently, previously proposed approaches [3,

? This work was funded in part by the French-government Single Inter-Ministry Fund (FUI)
through the IO32 project.



User

RV-Droid

property
repository

application
repository

Java-MOP RuleR RV cloud
Java-MOP RuleR

select
application & property

result
monitored application

monitor request
property & application

app. repositoryproperty repository

upload & download
application & property

upload & download
(monitored) application & Property

embedded
monitor synthesis & integration

cloud
monitor synthesis & integration

Fig. 1: RV-Droid context

4] had to modify, to different extents, the Android system to be able to log security-
sensitive events. The downsides are limited portability between platforms and incom-
patibility with future releases of the operating system.
Contributions We propose a framework that gets closer to the principles of runtime
verification. Based on an in-house version of the AspectJ compiler [6] for the Android
platform, we propose RV-Droid, a framework for “traditional” and user-friendly RV
and RE that is compatible with state-of-the-art tools. RV-Droid is a stand alone An-
droid application that does not require any modification to any part of Android devices.
RV-Droid takes credit from Java-MOP [7] and RuleR [8] hence allowing efficient mon-
itoring of various expressive specification formalisms. Because Android applications
use a unified API where most of the sensitive operations go through a clearly identified
set of methods, it becomes easy to write properties and monitors that work with any
application. We propose several examples of such requirements. Finally, the architec-
ture behind RV-Droid can be seen as a basis that can be further extended into more
specialized implementations.

Paper Organization Due to space reason, we do not provide an overview of Android,
as literature abound on the subject and we believe that the architecture of RV-Droid
and monitored properties are self-intelligible. Section 2 presents RV-Droid and its ar-
chitecture. Experimentation and evaluation of monitoring properties with RV-Droid is
done in Section 3. Related work is discussed in Section 4, while Section 5 draws some
conclusions and present future developments.

2 An overview of RV-Droid

RV-Droid is an Android application that interacts closely with a dedicated cloud (see
Fig. 1). We provide a description of its features and some insights about its internal
architecture. It represents approximately 4,200 LLOC (libraries and third-party tools
excluded): 3,000 for the Android application and 1,200 for the cloud. RV-Droid allows

2



user-friendly runtime verification of Android applications. RV-Droid takes as input an
existing Android application with a property and then:

1. it synthesizes a monitor for the property, and
2. it integrates the monitor inside the application in a transparent way for the user.

RV-Droid works with Android Froyo 2.2 or higher, and does not require any modifi-
cation to neither the Android kernel nor any part of the targeted device. Applications
can be retrieved off-the-shelf from a personal (local or remote) repository or Google
Play. Properties are available in a repository and are selected by the user according to
an abstract description (informal requirement), the events involved in the property, and
the formalization of the requirement. Monitor synthesis and runtime monitoring rely on
third-party RV tools such as (for now) Java-MOP [7] and RuleR1 [8]. Mainly, two oper-
ations are performed by RV-Droid: monitor synthesis and monitor integration. Monitor
synthesis consists in taking as input a property and generate some monitoring code, i.e.,
a decision procedure for this property. Monitor integration consists in instrumenting the
target application to observe the relevant events that will trigger the monitoring code.
For this purpose, RV-Droid relies on the aspect technology and an in-house version of
the AspectJ compiler.

Monitor integration and aspect-oriented programming RV-Droid supports two mon-
itor integration (and aspect weaving) modes: embedded or in the cloud. Support of
Aspect-Oriented Programming (AOP) on Android is ensured by Weave Droid, an in-
house version of the AspectJ compiler [6]. One of the challenges faced by RV-Droid
is to circumvent the current limitations to use AOP on Android applications that seri-
ously hinder the mobility of the device and forbids “standard” runtime verification. For
a description of the previously existing issues in using AOP on Android, the reader is
referred to [6]. In a nutshell, the issues stem from the incompatibility of existing aspect-
compilers with the Android .apk files (Android target binary file format). From an
abstract point of view, our weaving process is achieved in several stages that mainly
are: de-compile the application, weave the classes, convert the classes again in a for-
mat that Android can execute, and sign the application. These steps rely partly on
third-party tools such as dex2jar (http://code.google.com/p/dex2jar/), Android dx tool
(http://developer.android.com), and Zipsigner (http://code.google.com/p/zip-signer/).

Some code is shared between Weave Droid and RV-Droid, but Weave Droid has
been re-implemented since then to make it more generic, and, to use indifferently as-
pects or specifications used by runtime verification tools.

Using third-party runtime verification tools Based on the previously described process,
monitor synthesis and monitor integration become possible using third-party runtime
verification tools. Java-MOP provides facilities for monitor synthesis by generating as-
pects that query monitoring code in a library. RuleR does not provide aspect synthesis
facilities and one has to provide a specification together with the suitable aspect that will
query the RuleR engine in a third-party library. We had to modify the third-party mon-
itoring libraries because of some initial incompatibility with the Android system. From

1 Courtesy of Howard Barringer and Klaus Havelund who offered a pre-release version.

3



Table 1: Benchmarks for properties over Java data structures – Galaxy Tab 10.1
Property B1 (3.134) (s) B2 (524.4) (ms) B3 (489.3) (ms)

mon (s) ovhd (%) mon (ms) ovhd (%) mon (ms) ovhd (%)

HasNext 3.439 9.732 552.1 5.282 547.8 11.956

UnsafeIterator 3.182 1.532 568.3 8.371 498.7 1.921

SafeEnum 3.189 1.755 591.3 12.757 512.3 4.701

SafeFileWriter 4.171 33.089 632.0 20.519 540.1 10.382

SafeSyncColl. 3.141 0.223 544.9 3.909 525.7 7.439

HashSet 3.142 0.255 574.8 9.611 549.8 12.365

UnsafeMapIterator 3.251 3.733 563.1 7.380 548 11.997

SafeSyncMap 3.152 0.574 540.4 3.051 553.7 13.162

Table 2: Benchmarks for properties over Java data structures – Galaxy Gio S5660
Property B1 (19.65) (s) B2 (1346) (ms) B3 (2092) (ms)

mon (s) ovhd (%) mon (ms) ovhd (%) mon (ms) ovhd (%)

HasNext 20.898 6.315 1567 16.359 3013 43.99

UnsafeIterator 21.115 7.419 2462 82.87 3121 49.15

SafeEnum 19.966 1.570 2476 83.894 2989 42.84

SafeFileWriter 20.532 4.454 2399 78.169 3569 70.56

SafeSyncColl. 20.623 4.939 2305 71.189 3035 45.04

HashSet 21.512 9.440 2292 70.2 2842 35.82

UnsafeMapIterator 20.775 5.689 2431 80.575 2895 38.35

SafeSyncMap 20.25 3.015 2416 79.46 3254 55.50

an abstract point of view, these libraries call some Java classes that are not provided by
the Android runtime. Thus, we had to redirect these calls to a customized version of the
Java runtime library. Note that the aforementioned modifications are transparent to the
user who, in all cases, has only to download and install an Android application.

The remote processes are implemented as a web service queried by RV-Droid using
the Simple Object Access Protocol (SOAP) and the web service client library kSoap
(http://ksoap2.sourceforge.net/). The web service is deployed in the Glassfish applica-
tion server. The two repositories execute on an SSH file transfer protocol server (SFTP).

3 Experimentation and Evaluation

Verifying correct usage of Java data structures To evaluate RV-Droid, and assess the
performance of state-of-the-art RV tools on recent Android devices, we carried out per-
formance evaluation of Java-MOP monitors on three benchmarks with usual properties
(available at Java-Mop’s website). The first device is a Samsung Galaxy Tab 10.1, a
tablet, with processor NVIDIA Tegra 2 dual core 1GHz and 1GB of RAM running on
Honeycomb 3.1. The second device is a Samsung Galaxy Gio S5660, a mobile phone,
with a 800 MHz processor and 278MB of RAM, running on Froyo 2.2.1. The consid-
ered benchmarks were Linpack (http://www.greenecomputing.com, B1), BenchmarkPi

4



Error

check internet

gps old := gps

transmit

[gps old == gps]
transmit

check internet

gps old := gps

[gps old 6= gps]
transmit

(a) Checking internet connection

create start resume

pause

resume

stop destroy

create

restart,
create

(b) Activity life-cycle

Fig. 2: Some properties inspired from the developer’s guide

(http://androidbenchmark.com, B2), and DaCapo-xalan (http://dacapobench.org, B3).
Linpack provides a general evaluation of the performance of the Dalvik virtual machine.
BenchmarkPi provides an evaluation of the processor power of the device. DaCapo is
the traditional benchmark used in RV that makes intensive use of Java data structures.
Linpack and BenchmarkPi were taken off-the-shelf. However, using DaCapo required
tweaking the original code, and, based on code analysis, we discovered that it is possible
for only 6 of the 14 applications inside the benchmark.

Performance results are shown in Tables 1 and 2 for the tablet and mobile phone,
respectively. On the first line, for each benchmark, the execution time without monitor
is indicated. For each property, the entries mon and ovhd indicate the average time for
10 executions of the monitored application and the induced overhead, respectively.

Verifying Android programming good practices. We monitored properties indicating
whether Android’s programming guidelines [1] are respected on some of the most pop-
ular games. Due to space reasons, an abstract monitor is given only for P1 and P2.

P1 Before transmitting any data, it must be ensured that the device is connected to
internet. And, it should be checked again each time the device is moved. An abstract
representation of the monitor used for this property is represented in Fig. 2a.

P2 All methods involved in the activity life-cycle should be overridden. To check whether
the developer has followed this requirement, we can write an aspect that instru-
ments those methods and tracks the (simplified) application life-cycle represented
in Fig. 2b. If the method has been overridden by the developer, an event (corre-
sponding to the method name) will be emitted by the monitored program. If, in a
state, an unexpected event is emitted, it means that there is at least one method not
overridden by the developer.

P3 The device rotation facility should not be disabled.
P4 Only one dialogue window should be poped-up.
P5 In the restricted-memory mode, an application should start at most one service and

end it, and not let the Dalvik virtual machine kill it.

Preventing security issues through runtime enforcement. Among the 27 security find-
ings discovered in [9], we wrote a monitor for 19 of them to either detect the vulnera-
bility or even prevent it by disabling malicious method calls. The 8 remaining findings
were related to too general concepts (e.g., “some developers toolkits probe for permis-
sions through customized methods”). Being able to write a monitor to prevent security
issues mostly depends on whether the referred sensitive data is retrieved through method
calls. Method calls are caught by monitors and the data (passed as parameter) is then
analyzed (e.g., an URI or string containing a premium-rate phone number).

5



4 Related Work

Both static and dynamic methods already exist to validate Android applications.

Static validation techniques Verification of Android applications has been mostly in-
vestigated in relation with Android permissions [10]. At installation time, the user is
asked whether the downloaded application is allowed to access security-relevant parts
of the API. Stonaway [10] is a static analysis tool that determine whether applications
disobey the principle of least privilege. Stonaway compares the permissions required by
the calls made to Android’s API to the permissions requested by the application. Com-
Droid [11] similarly analyses inter-application communication by examining emissions
and receptions of intents (i.e., more or less messages) between applications to prevent
information disclosure.

Dynamic analysis of Android applications TaintDroid [3] is a framework for information-
flow analysis of Android applications. It is based on information tainting and log col-
lecting to determine whether sensitive information flows between applications.

Even closer to our work is a framework where a monitor runs on an Android device
as a stand-alone application [4]. The “light” version of this approach modifies two files
of the Android system to get notifications about security-sensitive events. This mild
modification comes at the price of not being able to observe some low-level, potentially
security-sensitive, operations. To circumvent this problem and get information about
more events, the authors propose an in-house kernel module that has to load during
boot. It is thus an out-line monitoring approach based on permission requests seen as
events. Moreover, monitored properties are specified in an LTL variant and monitored
using progression (i.e., formula rewriting).

Comparison with our approach RV-Droid falls in the category of dynamic-analysis ap-
proaches. In contrast with existing approaches, RV-Droid is based on aspect-oriented
programming for instrumentation. RV-Droid performs in-line/on-line monitoring, and,
it features the following novelties and advantages. RV-Droid does not modify Android
architecture, which, in our opinion, greatly favors usability, portability, and compatibil-
ity with next releases of Android. Monitors can be expressed using any event observable
through AspectJ. RV-Droid is not restricted to security properties, and, more general
properties (e.g., correct implementation, debugging, statistics, etc) can be considered.
Moreover, RV-Droid takes credit from Java-MOP and RuleR which are complementary
in terms of expressiveness and efficiency and offer several input formalisms. While [4]
is based on progression that can cause the size of the monitored formula to augment
with the length of the trace, our monitors have been tested by running monitored ap-
plications for more than an hour without noticeable overhead. Also, RV-Droid permits
runtime enforcement by e.g., disabling dangerous method calls. Finally, with a reason-
able effort, RV-Droid can be extended to also support off-line monitoring.

5 Conclusion & Future Work and Developments

RV-Droid widens the interest of runtime verification to a large set of potential applica-
tions on mobile devices. Our framework is in the line of traditional of RV frameworks:

6



(i) applications are seen as black boxes, (ii) applications are taken off-the-shelf, and (iii)
the execution platform does not need to be instrumented. Our tool is still a prototype
but will be released soon on Google code and Google Play.

We plan several conceptual extensions. Enforcement on method calls as presented
in this paper can be extended to ensure the good usage of interfaces [12]. We also plan
to design more elaborated aspects to be able to prevent intent-based attack surfaces [11]
that requires to analyze the manifest data.

In the roadmap of RV-Droid, we plan to propose i) repositories of debugging and
security monitors (aspects synthesized from properties), ii) integration with comple-
mentary RV tools (e.g., LARVA [13]), iii) customized application installer and don-
wloader where applications are automatically augmented with monitors after download,
iv) repositories with sanitized (monitored) applications.

References

1. Google Inc.: Android developer site (2012) http://developer.android.com.
2. Nouveau, T.: The Rise of Android Malware (Nov 2011) TG Daily.
3. Enck, W., Gilbert, P., gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.: TaintDroid:

An information-flow tracking system for realtime privacy monitoring on smartphones. In
Arpaci-Dusseau, R.H., Chen, B., eds.: OSDI, USENIX Association (2010) 393–407

4. Bauer, A., Küster, J.C., Vegliach, G.: Runtime verification meets Android security. In Good-
loe, A., Person, S., eds.: NASA Formal Methods. Volume 7226 of LNCS., Springer (2012)
174–180

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: ECOOP. (1997) 220–242

6. Falcone, Y., Currea, S.: Weave Droid: Aspect-Oriented Programming on Android Devices –
Fully Embedded or in the Cloud. In: ASE’12: the 27th IEEE/ACM International Conference
on Automated Software Engineering. (2012) To appear. Preprint available online.

7. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. STTT 14 (2012) 249–289

8. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
Eagle to RuleR. J. Log. Comput. 20 (2010) 675–706

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: Proceedings of the 20th USENIX conference on Security. SEC’11, Berkeley, CA, USA,
USENIX Association (2011) 21–21

10. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In
Chen, Y., Danezis, G., Shmatikov, V., eds.: ACM CCS, ACM (2011) 627–638

11. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application communication
in Android. In: MobiSys’11, ACM (2011) 239–252

12. Hallé, S., Villemaire, R.: Browser-based enforcement of interface contracts in web appli-
cations with BeepBeep. In Bouajjani, A., Maler, O., eds.: CAV. Volume 5643 of LNCS.,
Springer (2009) 648–653

13. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time Java pro-
grams (tool paper). In Hung, D.V., Krishnan, P., eds.: SEFM, IEEE Computer Society (2009)
33–37

7


