
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

From High-Level Modeling Towards Efficient and Trustworthy
Circuits
Fadi A. Zaraket1, Mohamad Jaber1, Mohamad Noureddine2, Yliès Falcone3

1 American University of Beirut, Beirut, Lebanon
e-mail: {fz11,mj54}@aub.edu.lb

2 University of Illinois at Urbana-Champaign, Performability Engineering Research Group, Urbana, IL, USA
e-mail: nouredd2@illinois.edu

3 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France
e-mail: Ylies.Falcone@univ-grenoble-alpes.fr

The date of receipt and acceptance will be inserted by the editor

Abstract. Behavior-Interaction-Priority (BIP) is a layered
embedded-system design and verification framework that
provides separation of functionality, synchronization, and pri-
ority concerns to simplify system design and to establish cor-
rectness by construction. BIP framework comes with a run-
time engine and a suite of verification tools that use D-Finder
and NuSMV as model-checkers.

In this paper, we provide a method and a supporting tool
that take a BIP system and a set of invariants and compute
a reduced sequential circuit with a system-specific scheduler
and a designated output that is true when the invariants hold.
Our method uses ABC, a sequential circuit synthesis and ver-
ification framework, to (1) generate an efficient circuit im-
plementation of the system that can be readily translated into
FPGA or ASIC implementations, and to (2) verify the system
and debug it in case a counterexample is found. Moreover,
we generate a concurrent C implementation of the circuit that
can be directly used for runtime verification.

We evaluated our method with two benchmark systems,
and our results show that, compared to existing techniques,
our method is faster and scales to larger sizes.

1 Introduction

Embedded systems have witnessed a large expansion, espe-
cially with the emergence of automotive electronics, mobile
and control devices. An embedded system is a composition of
intellectual property (IP) components of heterogeneous com-
putational nature, i.e., some might be implemented as soft-
ware processor executables while some others as real-time
logic circuits. Field-programmable gate array (FPGA) logic
circuits are popular logic circuit implementations of embed-
ded system components because they are amenable for re-
configuration and can perform several computational tasks

simultaneously. Figure 1 shows a typical flow of the com-
position process where the components are specified as im-
perative programs, finite state machines (FSM), labeled tran-
sition systems (LTS), data flow networks, and discrete-event
based circuits [36]. Partitioning, often done manually, is used
to decide whether a component is to be implemented as a pro-
grammed process or as a real-time logic circuit. A plethora
of software, behavioral, and logic compilation and synthesis
techniques are used in the process [28]. The end result imple-
mentation is then subject to functional verification including
model-checking and runtime verification.

The design flow faces three important challenges of rele-
vance to this paper.

– Model-checking faces the state-space explosion problem
which often renders the results of model-checking incon-
clusive.

– The logical capacity of a reconfigurable FPGA board is
limited. Thus, the size of the logic circuit implemen-
tations corresponding to IP components decide 1) how
many components can be loaded simultaneously on the
board, and 2) whether IP swapping is needed or not at run-
time. Moreover, the critical depth of the logic circuit im-
plementation decides how fast the board can be clocked.

– Runtime verification of embedded systems with general-
purpose runtime verification engines exhibits expensive
runtime overhead.

Behavior-Interaction-Priority (BIP) is a framework for
the design of Component-Based Systems (CBSs). BIP uses
a dedicated language and tool-set to support a rigorous and
layered design flow for embedded systems. BIP is currently
being used in academy and in industry in projects such as AS-
CENS, COMBEST, PRO3D, SMECY, ACROSS, MARAE,
GOAC, MIND and CHAPI [1]. BIP allows to build com-
plex systems by coordinating the behavior of a set of atomic
components [8]. BIP makes use of (1) D-Finder [12], a
compositional and incremental verification tool-set, and (2)
NuSMV [26] to model-check the correctness of BIP systems.

2 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

finite state machine or

labeled transition system dataflow discrete events

software synthesis behavioral syntesis logic synthesiscompiler

processor executable

no

imperative

logic circuit

D O N Edebugging

model checking runtime verificationand

communication

and glue logic

yes
counterexample? no

implementation

specification

refinement

synthesis
realizable?

yes
partitioning

Fig. 1. Embedded system specification, refinement, and implementation stages

However, D-Finder [11] does not handle data transfer be-
tween components [56], and the available online version only
supports deadlock-freedom check. Additionally, for complex
systems, NuSMV often suffers from the state-explosion prob-
lem [59], and fails to perform its verification tasks.

ABC [21] is a transformation-based verification frame-
work [41] that operates on And-Inverter Graphs (AIG); semi-
canonical Boolean netlists with memory elements. It em-
ploys iteratively and synergistically: (1) powerful reduction,
(2) abstraction, and (3) decision algorithms; such as retim-
ing [41], redundancy removal [47,42,17,4], logic rewrit-
ing [15], interpolation [44], and localization [60], symbolic
model-checking, bounded model-checking, induction, inter-
polation, circuit SAT solving, and target enlargement [49,50,
37,10,43].

In this paper, we present a method and a supporting
tool (BipSV) for embedded system synthesis, runtime ver-
ification, and model-checking with a cycle-based execution
model. The method leverages transformation-based synthesis
and verification techniques as follows.

1. The method takes a BIP system and a set of invariants
and generates an intermediate C-like one loop program
(OLP). The translation toOLP is necessary to allow for
runtime verification and for the use of ABC verification
algorithms. We consider invariant properties which are
Boolean expressions over atomic propositions on compo-
nents (e.g., constraints on the current locations and values
of variables).

2. The method then translates the OLP program to an AIG
circuit with an output therein that holds iff the system

is deadlock free, and satisfies the system invariants. The
method passes the generated AIG circuit to ABC for re-
duction and verification. The method drives the ABC re-
duction and verification algorithms and either proves cor-
rectness or produces a counter example where the system
violates an invariant. This enabled us to find defects and
prove systems that were not possible using D-Finder and
NuSMV.

3. BipSV provides a debugging mechanism where the
counter example is mapped back to the original BIP sys-
tem. The debugging tool is integrated with a wave-form
visualization tool [24].

4. The method generates a field-programmable gate array
(FPGA) implementation of the BIP system with a system-
specific execution framework. An FPGA implementation
is a configuration of memory elements and lookup-up ta-
bles (LUT) provided with an FPGA board that imple-
ments a specific logical function and appropriately per-
forms the desired computation. FPGA implementations
are directly mapped to other integrated circuit repre-
sentations such as application-specific integrated circuits
(ASIC).
BipSV constructs the FPGA implementation from the re-
duced AIG circuit to benefit from the area and critical-
time reduction algorithms of the ABC framework. The
reduction algorithms remove redundant latches and logic
gates. To the best of our knowledge, we are the first to
directly synthesize an FPGA from a BIP system.

5. The method translates the OLP program into a concur-
rent C implementation of the BIP system. The implemen-

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 3

tation can be used for runtime verification as well as a di-
rect software implementation. Moreover, in case the de-
sign was to be partitioned into software and hardware,
parts of the implementation are readily available to exe-
cute on CPUs.

Our results show that BipSV successfully verifies large
systems that are not possible to verify with existing tech-
niques. The method also achieves significant reductions in
FPGA size and depth reported as the number of gates and
logic levels before and after the reductions.

BIP is based on the generation of modular code and a ded-
icated platform, the so-called BIP engine, which interprets
the BIP semantics and orchestrates the computation of atomic
components. This modularity favors the clarity of models but
implies a prohibitive inefficiency. The main loop of the BIP
engine consists of the following steps:

1. Each atomic component sends to the engine its current
location.

2. The engine enumerates the list of interactions in the sys-
tem, selects the enabled ones based on the current loca-
tion of the atomic components and eliminates the ones
with low priority.

3. The engine non-deterministically selects an interaction
out of the enabled interactions.

4. Finally, the engine notifies the corresponding components
and schedules their transitions for execution.

Compared to the BIP engine, our method differs in that it di-
rectly embeds a system-specific scheduler represented by a
bit vector of interactions in the implementation. The value
of the interaction bit vector directly depends on the loca-
tions and the values of the variables of the input system. The
system specific execution framework empirically reduces the
space and time requirements for the C simulation and the
FPGA execution.

Several frameworks for the design and verification of em-
bedded systems exist (see Section 8 for a detailed comparison
with related work). Metropolis [5,28] is a design framework
that takes a Metropolis Meta Model description of an embed-
ded system and generates a SystemC [54] based simulator
of the system. It uses the SIS toolset [58] for synthesis and
the SPIN model-checker for verification [38]. SystemC [54]
in turn is a design framework based on C++ that allows sys-
tem components to communicate through ports, interfaces,
and channels. Extensions to SystemC such as ForSyDe [57]
restrict the expressiveness to enable formal verification tools
to handle the system. In brief, our method supports the syn-
thesis, model-checking, and runtime verification concerns of
embedded systems using tool-independent semantics across
the three concerns by embedding the execution model of the
embedded system in the generated systems for each concern.
Our method simplifies debugging and design-flow cycle it-
erations. Furthermore, the use of AIG circuits for synthesis
and model-checking allows our method to leverage the ma-
ture and rich literature of logic synthesis techniques.

The rest of this paper is organized as follows. In Section 3,
we recall the necessary concepts of the BIP framework. Sec-

tion 4 defines one loop programs (OLP). Section 5 formal-
izes sequential circuits and shows how to translate a sequen-
tial circuit into an OLP . Section 6 shows how to translate
a BIP system into an OLP . Section 7 describes BipSV , a
full implementation of our framework and some benchmarks.
Section 8 discusses related work. Section 9 draws some con-
clusions and perspectives.

2 Preliminaries and notation

We introduce some preliminary concepts and notations.

Functions. For two functions v ∈ [X → Y] and v′ ∈ [X ′ →
Y ′], the substitution function, noted v/v′, with v/v′ ∈ [X ∪
X ′ → Y ∪ Y ′], is defined as: v/v′(x) = v′(x) if x ∈ X ′ and
v(x) otherwise.

Transition systems. Labeled Transition Systems (LTS) are
used to define the semantics of BIP systems. An LTS de-
fined over an alphabetΣ is a 3-tuple (Lab,Sta,Trans) where
Lab is a set of labels, Sta is a non-empty set of states and
Trans ⊆ Sta × Lab × Sta is the transition relation. A
transition (s, e, s′) ∈ Trans means that the LTS can move
from state s to state s′ by consuming label e. We abbre-
viate (s, e, s′) ∈ Trans by s

e→Trans s′ or by s
e→ s′

when clear from the context. Moreover, s e→ is a short for
∃s′ ∈ Sta : s

e→ s′.

3 BIP - Behavior interaction priority

We recall the necessary concepts of the BIP framework [8].
BIP allows to construct systems by superposing three layers
of design: Behavior, Interaction, and Priority. The behavior
layer consists of a set of atomic components represented by
transition systems. The interaction layer provides the collab-
oration between components. Interactions are described using
sets of ports. The priority layer is used to specify scheduling
policies applied to the interaction layer, given by a strict par-
tial order on interactions.

3.1 Component-based construction

BIP offers primitives and constructs for designing and com-
posing complex behaviors from atomic components. Atomic
components are Labeled Transition Systems (LTS) extended
with C functions and data. Transitions are labeled with sets
of communication ports. Composite components are obtained
from atomic components by specifying interactions and pri-
orities.

3.1.1 Atomic components

An atomic component is endowed with a finite set of lo-
cal variables X taking values in a domain Data. Atomic
components synchronize and exchange data with each others
through ports.

4 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

Definition 1 (Port). A port p[xp], where xp ⊆ X , is defined
by a port identifier p and some data variables in a set xp (re-
ferred to as the support set).

Definition 2 (Atomic component). An atomic component
B is defined as a tuple (P,L, T,X, {gτ}τ∈T , {fτ}τ∈T),
where:

– (P,L, T) is an LTS over a set of ports P . L is a set of
control locations and T ⊆ L×P×L is a set of transitions.

– X is a set of variables.
– For each transition τ ∈ T :

– gτ is a Boolean condition over X: the guard of τ ,
– fτ = {(x, fx(X)) | x ∈ X} where (x, fx(X)) ∈
fτ expresses the assignment statement x := fx(X)
updating x with the value of the expression fx(X).

For τ = (l, p, l′) ∈ T a transition of the internal LTS, l (resp.
l′) is referred to as the source (resp. destination) location and
p is a port through which an interaction with another compo-
nent can take place. Moreover, a transition τ = (l, p, l′) ∈ T
in the internal LTS involves a transition in the atomic compo-
nent of the form (l, p, gτ , fτ , l

′) which can be executed only
if the guard gτ evaluates to true, and fτ is a computation
step: a set of assignments to local variables in X .

In the sequel we use the dot notation. Given a transi-
tion τ = (l, p, gτ , fτ , l

′), τ.src, τ.port , τ.guard , τ.func, and
τ.dest denote l, p, gτ , fτ , and l′, respectively. Also, the set
of variables used in a transition is defined as ϕ(fτ) = {x ∈
X | (x, fx(X)) ∈ fτ}. Given an atomic component B, B.P
denotes the set of ports of the atomic component B, B.L de-
notes its set of locations, etc.

Given a set X of variables, we denote by X the set of
valuations defined on X . Formally, X ∈ [X → Data], where
Data is the set of all values possibly taken by variables in X .

Definition 3 (Semantics of atomic components).
The semantics of the atomic component B =
(P,L, T,X, {gτ}τ∈T , {fτ}τ∈T) is defined as the labeled
transition system SB = (QB , PB , TB), where:

– QB = L×X,
– PB = P ×X denotes the set of labels, that is, ports aug-

mented with valuations of variables,
– TB = {((l, v), p(vp), (l′, v′)) ∈ QB × PB ×QB | ∃τ =
(l, p[xp], l

′) ∈ T : gτ (v)∧ v′ = fτ (v/vp)}, where vp is a
valuation of the variables of p.

A state is a pair (l, v) ∈ QB where l ∈ L is a control location,
v ∈ X is a valuation of the variables in X . TB is the set of

transitions. The evolution of states (l, v)
p(vp)→ (l′, v′), where

vp is a valuation of the variables attached to port p, is pos-
sible if there exists a transition (l, p[xp], gτ , fτ , l

′), such that
gτ (v) = true. In this case, we say that p is enabled in state
(l, v). Execution of port p results in updating the valuation of
v to v′ = fτ (v/vp).

Note that the valuation of the variables attached to port
p are further instantiated when composing components with
respect to data transfer functions of interactions [40,33].

3.1.2 Composing atomic components

Assuming some available atomic components B1, . . . , Bn,
we show how to connect a subset {Bi}i∈I , I ⊆ [1, n], of the
components using an interaction. An interaction a is used to
specify the sets of ports that have to be jointly executed.

Definition 4 (Interaction). An interaction a is a tuple
(Pa, Ga, Fa), where:

– Pa ⊆ ∪ni=1Bi.P is a nonempty set of ports that contains
at most one port of every component, that is, ∀i : 1 ≤ i ≤
n : |Bi.P ∩ Pa| ≤ 1. We denote by Xa = ∪p∈Paxp the
set of variables available to interaction a,

– Ga : Xa → {true, false} is a guard,
– Fa : Xa → Xa is an update function.

Pa is the set of connected ports called the support set of a.
For each i ∈ I , xi is a set of variables associated with port pi.

Definition 5 (Composite component). A composite com-
ponent is defined from a set of available atomic components
{Bi}i∈I and a set of interactions γ = {aj}j∈J . The connec-
tion of the components in {Bi}i∈I using the set γ of interac-
tions is denoted by γ({Bi}i∈I).

Definition 6 (Semantics of composite components). A
state q of a composite component γ({B1, . . . , Bn}), where γ
connects theBi’s for i ∈ [1, n], is an n-tuple q = (q1, . . . , qn)
where qi = (li, vi) is a state of Bi. Thus, the semantics of
γ({B1, . . . , Bn}) is precisely defined as the labeled transi-
tion system S = (Q, γ,−→), where:

– Q = B1.Q× . . .×Bn.Q,
– −→ is the least set of transitions satisfying the rule de-

fined in Figure 2. In this rule, vpi denotes the valuation of
the variables attached to the port pi and F ia is the partial
function derived from Fa restricted to the variables asso-
ciated with pi. µi denotes the valuation of the variables
attached to port pi after executing function Fa of interac-
tion a.

The meaning of the rule defined in Figure 2 is the following:
if there exists an interaction a such that all its ports are en-
abled in the current state and its guard evaluates to true, then
the interaction can be fired. When a is fired, all involved com-
ponents evolve according to the interaction and uninvolved
components remain in the same state.

Notice that several distinct interactions can be enabled
at the same time, thus introducing non-determinism in the
product behavior. One can add priorities to reduce non-
determinism. In this case, one of the interactions with the
highest priority is chosen non-deterministically.1

Definition 7 (Priority). Let S = (Q, γ,−→) be the behav-
ior of the composite component γ({B1, . . . , Bn}). A prior-
ity model π is a strict partial order on the set of interactions

1 The BIP engine implementing this semantics chooses one interaction at
random, when faced with several enabled interactions.

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 5

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({vpi}i∈I) ∀i ∈ I : qi
pi(µi)−→ i q

′
i ∧ µi = F ia({vpi}i∈I) ∀i 6∈ I : qi = q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

Fig. 2. Semantics Rule of Composite Component

A. Given a priority model π, we abbreviate (a, a′) ∈ π by
a ≺π a′ or a ≺ a′ when clear from the context. Adding
the priority model π over γ({B1, . . . , Bn}) defines a new
composite component π

(
γ({B1, . . . , Bn})

)
noted π(S) and

whose behavior is defined by (Q, γ,−→π), where −→π is
the least set of transitions satisfying the following rule:

q
a−→ q′ ¬

(
∃a′ ∈ A,∃q′′ ∈ Q : a ≺ a′ ∧ q a′−→ q′′

)
q

a−→π q
′

An interaction a is enabled in π(S) whenever a is enabled in
S and a is maximal according to π among the active interac-
tions in S.

Finally, we consider systems defined as a parallel compo-
sition of components together with an initial state.

Definition 8 (System). A BIP system S is a tuple
(B, Init , v) where B is a composite component, Init ∈
B1.L × . . . × Bn.L is the initial state of B, and v ∈ XInit

where XInit ⊆ ∪ni=1Bi.X .

Given a port p from the system S, we denote by (1)
interaction(p) to be the set of interactions that are connected
to p; (2) component(p) to be the component to which the
port p belongs; (3) transitions(p) to be the set of transitions
labeled by p.

We define the function index that assigns for each inter-
action a ∈ γ a positive integer in

[
0, |γ| − 1

]
, i.e., index :

γ →
[
0, |γ| − 1

]
.

Definition 9 (Trace). A trace t of length ` of a system
(B, Init , v) is the sequence of global states q0 · q1 · · · q`−1
such that: q0 = (Init , v), and ∀i ∈ [0, l− 1] : qi ∈ Q ∧ ∃ai ∈
A : qi

ai−→π qi+1. That is, ai is an interaction enabled on qi
and its execution results in state qi+1. We denote by t[i] the
ith state in the trace, i.e., state qi.

Example 1. Figure 3 shows a traffic light controller system
modeled in BIP. It is composed of two atomic components,
timer and light. The timer counts the amount of time for
which the light must stay in a specific state (i.e. a specific

color of the light). The light component determines the
color of the traffic light. Additionally, it informs the timer
about the amount of time to spend in each location through a
data transfer on the interaction between the two components.

4 One loop programs (OLP) - syntax and semantics

This section introduces the syntax and semantics of one loop
programs.

t := 0

timer done

[true] done.n := done.m

done
[true] [true]

done
m := 5

done
m := 10

G

YR

m := 3
[true]

done

[t ≥ n]

t := t+ 1

s0

[t < n]
timer

done

Fig. 3. Traffic light in BIP

4.1 Syntax of one loop Programs

Figure 5 illustrates the syntax of a one loop program
(OLP). An OLP starts with a list of variable declarations
decl-list. OLP declarations allow Boolean, integer, ar-
ray of Boolean and array of integer types. The wiremodifier
keyword is used to denote that the variable is a wire. Other-
wise, the variable is a register variable. A register variable
represents a data storage/memory element. A wire represents
a functional macro, which is used to connect different ele-
ments (wires or registers).

Definition 10 (OLP variables). The set of variables V of
an OLP is defined to be the set of all non-wire, i.e., register
variables declared in decl-list. Function type : V 7→
{int, Boolean, int[1], Boolean[1], int[2], Boolean[2], . . .}
maps a variable v ∈ V to its declared type.

The wiredef-list follows decl-list and is a
list of assignment statements where the target term is a
wire variable. An assignment has a left-hand side term
and a right-hand side expression expr. The term is either
an identifier id or an array access expression id[expr]
where id is the name of the array and expr is an ex-
pression. OLP expressions are built with terms, expressions
with unary operators (-,!), expressions with binary op-
erators (+,-,*,/,<,>,<=,>=,==,&&,||), or expres-
sions with a ternary choice operator (? :). Let s be a
wiredef-list assignment with target t and expression e;
expression e must not refer to target t.

The init-list and the next-list are lists of as-
signment statements where the target terms are register vari-
ables. The init-list is embodied in a do-together

6 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

construct, which implies concurrent execution of all its state-
ments. Expressions in init-list assignments must not re-
fer to non-wire variables. The next-list is embodied in
a do-together construct which is in turn embodied in a
while(true) loop construct. The loop makes sure that the
design runs indefinitely.

Definition 11 (Well-formed OLP). An OLP is well-
formed when both the init-list and the next-list
contains one assignment per non-wire variable and the
wiredef-list contains at most one assignment per wire.

Hereafter, we consider only well-formed OLP .

Definition 12 (Non-deterministic wires). We define the set
of non-deterministic wires of an OLP to be the set of wire
variables that are not targets of assignment statements in
wiredef-list.

Definition 13 (init and next state functions). Consider v ∈
V and consider sinit and snext the assignment statements
where v is the target term in init-list and next-list,
respectively. We define functions init-state(v) and
next-state(v) to be the functions corresponding to the
right-hand side expressions of sinit and snext, respectively.

Example 2 (Well-formed OLP). Figure 4 shows an OLP
that corresponds to the BIP system for the traffic-light con-
troller shown in Figure 3.

4.2 Semantics of one loop programs

Recall that a variable can be either a register denoting a
memory element, or a wire denoting a functional macro.
Memory variables are initialized simultaneously using the
do-together construct. After initialization, an infinite
loop keeps updating the value of memory variables simul-
taneously. The listings in Figure 5 shows the syntax of an
OLP .

If a wire is not assigned, then it is said to be a non-
deterministic primary input. It takes a new non-deterministic
value at each iteration of the loop. The list of statements
init-list assigns initial values to the register variables.
Similarly, the next-list list of statements updates the val-
ues of the register variables. The semantics of OLP expres-
sions are defined by the typical valuation rules of the corre-
sponding unary and binary operators. The ternary choice (a?
b : c) returns b if a is true and c otherwise.

The formal semantics of OLP is given in terms of OLP
state and trace as follows. For this purpose, we consider
an OLP P ranging over a set of non-wire variables V =
{v1, v2 . . . , vn}.

Definition 14 (OLP state). The state of P is defined as the
valuation σ : V → D. The valuation σ maps variables in V
to D = B ∪ Data ∪ Bk ∪ Datak such that σ(vi) ∈ B (resp.
Data, Bk, Datak) when type(vi) is Boolean (resp. int,
Boolean[k], and int[k]), where 1 6 i 6 n and k > 0.

Definition 15 (do-together semantics). All the assign-
ment statements init-list and next-list can execute
simultaneously as indicated with the do-together con-
struct.

Definition 16 (OLP trace). A trace π of length ` of P is a
sequence ofOLP states σ0, σ1, . . . , σ`−1. State σ0 is defined
as the valuation given by the init-state(vi) functions,
with 1 6 i 6 n. State σk+1 corresponds to the valuations
given by functions next-state(vi) where references to
variables vj ∈ V are substituted by the corresponding valua-
tions from σk, 0 6 k 6 `.

In Section 6, we shall see how to automatically translate
a BIP system into OLP .

5 From OLP to sequential circuits

We define the translation of OLP to sequential circuits.

Definition 17 (Sequential circuit). A sequential circuit is a
tuple ((V,E), G,O). Pair (V,E) represents a directed graph
on vertices V and edgesE ⊆ V ×V , whereE is a total order.
Function G : V → Types maps vertices to Types . There are
three disjoint types: primary inputs, bit-registers (which we
often simply refer to as registers), and logical gates. Registers
have designated initial values, as well as next-state functions.
Gates describe logical functions such as the conjunction or
disjunction of other vertices. A subset O of V is specified as
the primary outputs of V . We denote the set of primary input
variables by I , and the set of bit-register variables by R.

Definition 18 (Fanins and fanouts). The direct fanins of a
gate u are defined as {v ∈ V | (v, u) ∈ E}, i.e., the set of
source vertices connected to u in E.

The direct fanouts of a gate u are defined as {v | (u, v) ∈
E}, i.e., the set of sink vertices connected to u in E. The sup-
port of u is Fanins(u) ∩ (I ∪ R), i.e., the set of all source
vertices that are either primary inputs or registers that are con-
nected to u.

For a sequential circuit to be syntactically well-formed, ver-
tices in I should have no fanins, vertices in R should have
2 fanins (the next-state function and the initial-value func-
tion of that register), and every cycle in the sequential circuit
should contain at least one vertex from R. The initial-value
functions of R shall have no register in their support. In the
following, we consider only well-formed sequential circuits
which can be verified by a structural check that is linear in
the size of the sequential circuit.

The ABC synthesis and model-checker framework rea-
sons about the And-Inverted-Graph (AIG) representation of
a sequential circuit which are sequential circuits with only
NAND gates and with exactly two fanins [21].

We describe useful reduction and verification ABC algo-
rithms in Appendix A.

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 7

/*** decl-List ***/
i n t timer.t;
i n t timer.n;
i n t light.m;
i n t timer.`;
i n t light.`;
bool cycle;

wire i n t selector;
wire bool timer.timer.e;
wire bool timer.timer.s;
wire bool timer.done.e;
wire bool timer.done.s;
wire bool light.done.e;
wire bool light.done.s;
wire bool ie[2];
wire bool ip[2];
wire bool is[2];

/*** wiredef-list ***/
timer.timer.e = (0 == timer.`) && (timer.t < timer.n);
timer.done.e = (0 == timer.`) && (timer.t == timer.n);
light.done.e = (0 == light.`) || (1 == light.`) || (2 == light.`);

ie[0] = timer.timer.e;
ie[1] = (light.done.e && timer.done.e);

ip[0] = ie[0];
ip[1] = ie[1];

is[0] = (ip[0] && (selector == 0 || (!ip[selector] && !ip[1]);
is[1] = (ip[1] && (selector == 1 || (!ip[selector]);

timer.timer.s = is[0];
timer.done.s = is[1];
light.done.s = is[1] ;

do−together {
/*** init-list ***/
timer.t = 0;
timer.n = 10;
timer.` = 0;

light.m = 5;
light.` = 0;

cycle = true;
}/* end do-together */

whi le(true) {
do−together {
/*** next-list ***/
timer.n = cycle? is[1]? light.m : timer.n : timer.n;

timer.` = (cycle)? (timer.`) : ((timer.timer.e && timer.` == 0)?
(0) : ((timer.timer.s && timer.` == 0)?

(0) : (timer.`)));

timer.t = (cycle)? (timer.t) : ((timer.` == 0 && timer.timer.s)?
(timer.t + 1) : ((timer.` == 0 && timer.done.s)?

(0) : (timer.t)));

light.` = (cycle)? (light.`) : ((light.` == 2 && light.done.s)?
(0) : ((light.` == 1 && light.done.s)?

(0) : ((light.` == 0 && light.done.s)?
(1) : (light.`))));

light.m = (cycle)? (light.m) : ((light.` == 0 && light.done.s)?
(3) : ((light.` == 1 && light.done.s)?

(10) : ((light.` == 2 && light.done.s)?
(5) : (light.m))));

cycle = !cycle;
} /*end do-together*/

} /*end while(true)*/

Fig. 4. Sample of OLP generated code of traffic light system

d e c l− l i s t

w i r e d e f− l i s t

do−together {
i n i t− l i s t

}

whi le(true) {
do−together {

n e x t− l i s t
}

}

type: bool | i n t | bool [NUM] | i n t [NUM];
declaration: wire type id; | type id;

expr: term | uop expr| expr bop expr | expr ? expr : expr;
term: id | id[expr];

d e c l− l i s t: declaration+
ass ignment: term = expr
w i r e d e f− l i s t: (ass ignment)*

i n i t− l i s t: (ass ignment)*
n e x t− l i s t: (ass ignment)*

Fig. 5. OLP Syntax

5.1 Semantics of sequential circuits

The semantics of a sequential circuit is defined in terms of its
states and traces.

Definition 19 (AIG state). An AIG state σ : R → B is a
Boolean valuation of vertices in R.

Definition 20 (AIG full trace). An AIG full trace is a map-
ping t : V ×N→ B that gives a value to vertices in V across

time steps denoted as indexes from N: The mapping must be
consistent with E and G in the following sense. The value of
gate v at time i in full trace t is denoted by t(v, i) as defined
in Figure 6.

The well-formedness constraint guarantees the absence of
combinational cycles in the AIG. Therefore, given a sequence
of input valuations and an initial state, Figure 6 defines the
resulting trace as a sequence of Boolean valuations to all ver-

8 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

t(v, i) =


siv if v ∈ I with sampled value siv
t(u1, 0) if v ∈ R, i = 0, u1 := initial-state of v
t(u2, i− 1) if v ∈ R, i > 0, u2 := next-state of v
Gv
(
t(u1, i), ..., t(un, i)

)
if v is a combinational gate with function Gv

Fig. 6. Semantics of sequential circuits given in terms of full traces. t(v, i) denotes the valuation of gate v at step i in trace t. Term uj denotes the source vertex
of the j-th incoming edge to v, that is, (uj , v) ∈ E.

tices in V which is consistent with the Boolean functions of
the gates.

Definition 21 (AIG trace). An AIG trace of length ` is a
sequence of AIG states ρ = s0, s1, . . . , s`−1. Given a full
AIG trace t, we can compute ρ = s0, s1, . . . , s`−1 where
si = {(r0, bi0), . . . , (r|R|−1, bi|R|−1)}, rj ∈ R, bij ∈ B, 0 6

i < ` and 0 6 j < |R| and ((rj , i), b
i
j) ∈ t.

We will refer to the transition from one valuation to the
next one as a step. A vertex in the circuit is said to be jus-
tifiable if there is an input sequence which, when applied to
an initial state, will result in that vertex taking value true. A
vertex in the circuit is valid if its negation is not justifiable.
We will refer to targets and invariants in the circuit; these are
simply vertices in the circuit whose justifiability and validity
is of interest, respectively. A sequential circuit can naturally
be associated with a finite-state machine (FSM), which is a
graph on the reachable states. However, the circuit is very
different from its FSM; among other differences, it is expo-
nentially more succinct in almost all cases of interest [22].

5.2 Translation from OLP to AIG circuits

Algorithm olp-to-aig shown in Figure 7 takes an OLP P as
input and constructs an equivalent AIG. An illustration ex-
ample is provided in Figure 10. The steps of the algorithm
are as follows.

1. It first instantiates AIG registers, wires, and primary in-
puts that correspond to OLP variables using the vari-
ables routine.

2. It then calls the recursive routine traverse to translate the
right-hand side expressions of the assignment statements
in wiredef-list, init-list, and next-list
into AIG combinational circuits.

3. It connects the resulting vertices of the combinational cir-
cuits of the right-hand side expressions to the fanins of the
registers corresponding to the left-hand side target vari-
ables.
(a) The vertices corresponding to the init-list right-

hand side expressions are connected to the initial
value fanins of the registers.

(b) Similarly, those of the next-list are connected to
the next state value fanins.

(c) Finally, it connects the vertices of the combinational
circuits built for the wiredef-list expressions to

// P is an OLP program
olp-to-aig(P)

// instantiate aig variables and construct
// vargates
variables(P.d e c l− l i s t);

// s is of the form term = expr
foreach ass ignment s ∈ i n i t− l i s t
next-state(s.term) = traverse(s.expr);

endfor

foreach ass ignment s ∈ w i r e d e f− l i s t
vargates(s.term) = traverse(s.expr);

endfor

foreach ass ignment s ∈ n e x t− l i s t
next-state(s.term) = traverse(s.expr);

endfor

Fig. 7. OLP to AIG transformation

the corresponding wires referring to the variables de-
clared as wire variables in decl-list.

Variables. We consider each variable not declared as a wire
in decl-list (see Figure 8). We instantiate a correspond-
ing vector of AIG registers with an adequate bit width. The
width of the bit vector can be selected by the user, or can be
set to match the default width of the declared type. Typically,
the default values for the bit width are 32 bits for an inte-
ger, one bit for a Boolean, and a finite two dimensional bit
vector for an array. In our case, and for OLP programs gen-
erated from BIP systems, we will not have arrays of register
variables butl only have fixed-size arrays of Boolean wires as
discussed in Section 6. We say that a variable declared as wire
in decl-list is non-deterministic when it does not have
a corresponding assignment statement in wiredef-list.
For each non-deterministic variable, we instantiate a corre-
sponding vector of primary inputs with an adequate bit-width.
We consider variables declared as wires in decl-list with
a corresponding assignment statement in wiredef-list
as functional macros. For each functional macro we instan-
tiate a vector of identity gates (a sequence of two negation
gates) where the fanouts correspond to the wire variable and
the fanins correspond to the expression defining the wire vari-
able in wiredef-list. We denote the gates corresponding
to each variable v by the function vargates(v).

Assignment statements. We consider each assignment state-
ment in wiredef-list, init-list, and next-list
and traverse the right-hand side expressions of each assign-

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 9

variables(d e c l− l i s t)
foreach variable v in d e c l− l i s t

i f (v is not a wire)
vargates(v) = instantiate-registers(v,type(v))

e l s e i f (v is not assigned in w i r e d e f− l i s t)
// non-deterministic input
vargates(v) = instantiate-primary-inputs(

v,type(v))
e n d i f

endfor

Fig. 8. Routine variables

traverse(exp)
i f (exp is a variable)

re turn vargates(exp)
e n d i f

foreach i[1 .. exp.operands.size()]
wirevec[i] = traverse(exp.operands[i])

endfor

re turn library(exp.operation, wirevec)

Fig. 9. Routine traverse

ment with the recursive traverse routine (see Figure 9).
If the expression refers to a variable v (base case), then the
traversal returns vargates(v). If the expression is a logi-
cal, conditional, or arithmetic expression, then the library
routine finds an equivalent circuit for it with the adequate
bit width in a complete table of circuits. For example, if
the expression is a ternary conditional statement of the form
b? e1 : e2, then routine library instantiates a multiplexer,
connects its two data fanins to the vertices corresponding to
e1 and e2, connects its control fanins to the vertices corre-
sponding to b, and returns its fanouts.

Invariants. A special variable in the OLP program denotes
the conjunction of all the invariants of the system in addition
to the deadlock-freedom property. This variable is the desig-
nated output of the resulting AIG circuit. ABC verifies that
the designated output is always true.

Definition 22 (AIG OLP state equivalence). An OLP
state σ = {(v0, d0), . . . , (v|V |−1, d|V |−1} and an AIG state
s = {(r0, b0), . . . , (r|R|−1, b|R|−1)}, are said to be equiva-
lent iff s(vargates(vi)) is equal to the binary representation
of σ(vi), for each 0 6 i < |V |.

We are now ready to state the (trace) equivalence between
AIG and OLP .

Theorem 1 (AIG OLP trace equivalence). Let P be an
OLP and A be the AIG circuit generated from it (i.e., A
= olp-to-aig(P)). Let I be the set of non-deterministic
wires of P . Set I also corresponds to the set of correspond-
ing primary inputs of A. Given a sequence ρ of length `
of input valuations of I , traces πp = σp0 , σ

p
1 , . . . , σ

p
`−1 and

πa = σa0 , σ
a
1 , . . . , σ

a
`−1 produced by P and A, respectively,

are equivalent, i.e., σpi and σai are equivalent for all 0 6 i <
`.

1 0

1 0

1 0

0

0

0

: initial value of timer.`

timer.timer.e
wire

next state of timer.`

= <

0

timer.`cycle timer.t timer.n

Fig. 10. Sample circuit for the timer.` registers; the <, =, and multiplexer
gates can be easily implemented using NAND gates.

Proof. The proof is by induction on the length of traces.

Base case: The initial states σp0 and σa0 are equivalent
since the initial state functions of registers R in A and the
right-hand side expressions of the corresponding assignments
in init-list of P are equivalent by construction.

Inductive step: Similarly, the next state functions of the
registers R in A and the right hand side expressions of the
corresponding assignments in next-list of P are equiva-
lent by construction. It follows from the induction hypothesis
that states σpi and σai are equivalent for a given 0 6 i < `−1.
Since all the next state functions of A evaluate simultane-
ously in one step, and similarly all the assignment statements
in the next-list execute simultaneously in one iteration
of the sole loop in P , the resulting states σpi+1 and σai+1 are
equivalent. Thus, πp and πa are equivalent and therefore P
and A are trace equivalent.

Example 3 (Generated AIG circuit). Figure 10 shows a cir-
cuit generated by traversing the right-hand side expressions
of the initial value and next state function assignment corre-
sponding to variable timer.`. The sample circuit shows only
the AND, =, < and multiplexer gates for simplicity; all those
gates can be readily implemented using NAND gates. A mul-
tiplexer takes a Boolean control input, and uses its value to
choose one of its two data inputs.

The next state function depends on variables
cycle, timer.t, and timer.n and on the wire variable
timer.timer.e. The registers of the variables are connected
directly to the circuit. The circuit for the wire variable
timer.timer.e is constructed by traversing the right-hand
side expression of its assignment in the wire definition list.
Then, the constructed circuit is connected to the input of the
corresponding AND gate.

Note that (1) the initial value of timer.` registers is 0,
and (2) the next state fanins of timer.` are connected to a
multiplexer whose data inputs are equal to 0 or timer.`. Thus,
the constant propagation algorithm replaces timer.` with 0
and propagates that effect.

10 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

BIP-to-OLP(B, Init, v)
generateDeclarationList()
generateWireDefList()
generateInitList()
generateNextList()

Fig. 11. Translation of BIP system into an OLP program.

6 BIP to OLP

Given a BIP system S = (B, Init, v), BipSV calls func-
tion BIP-to-OLP (see Figure 11) to translate S into an
OLP including an encoding of the semantics of interactions
and priorities. It calls four functions that fill decl-list,
wiredef-list, init-list, next-list. All these
functions use the append call to add code fragments to lists.

1. Function generateDeclarationList() (see Fig-
ure 12) fills decl-list as follows. It creates three ar-
rays of wires to denote interaction semantics. The ele-
ments of array ie denote whether all logical constraints
except priority rules are met for a given interaction. The
elements of array ip denote whether a given interaction is
enabled after applying priority rules. The elements of ar-
ray is denote whether an enabled interaction is selected
for execution. Currently, one interaction is selected to
avoid executing conflicting interactions. Two interactions
are conflicting if they involve the same components. In
order to avoid concurrently-executing conflicting inter-
actions, BIP provides centralized, multithreaded and dis-
tributed implementations. In the centralized implementa-
tion, the engine executes only one interaction at a time. In
the multi-threaded implementation [9], the involved com-
ponents in the non-conflicting interactions execute simul-
taneously with no overhead except the classical thread
synchronization overhead. However, while each compo-
nent executes in a separate thread, the engine executes
in a single-engine thread. The single-engine thread is re-
sponsible for sequentially (1) selecting an interaction for
execution, (2) executing the corresponding action, and (3)
signaling the static threads associated with the involved
components for execution.
Alternatively, BIP allows the generation of distributed im-
plementations [18] where non-conflicting interactions can
be simultaneously executed. However, an additional layer
is added to resolve conflicts. This may introduce signifi-
cant overhead due to communication between the layers.
The overhead may drastically increase when interactions
do not involve heavy computations, which is the case in
general since most interactions involve data transfer.
In our case, it is possible to add a circuit that identifies
and enables all non-conflicting interactions with a simple
modification that merges the consecutive execution cy-
cles of non-conflicting interactions into one cycle. Such
transformation is available for free with the retiming al-

generateDeclarationList()
// interaction enablement wires
append wire bool ie[|J|] to d e c l− l i s t
// interaction priority wires
append wire bool ip[|J|] to d e c l− l i s t
// interaction selected wires
append wire bool is[|J|] to d e c l− l i s t
append bool b[|J|] to d e c l− l i s t
// non-deterministic priority selector wire
append wire int selector to d e c l− l i s t
// cycle denotes transition or interaction mode
append bool cycle to d e c l− l i s t

foreach i ∈ [1..|I|]
foreach j ∈ [1..|Bi.P |]
// port enablement
append wire bool Bi.pj .e to d e c l− l i s t
// port selected
append wire bool Bi.pj .s to d e c l− l i s t

endfor

// location registers
append int Bi.` to d e c l− l i s t

foreach j ∈ [1..|Bi.X|]
// variable registers
append int Bi.xj to d e c l− l i s t

endfor
endfor

Fig. 12. generateDeclarationList() function.

gorithm in ABC [39] and allows us to compare well with
the distributed implementation in [18].
Furthermore, the selection of non-conflicting interactions
can happen simultaneously with BipSV As opposed
to sequential as in the multi-threaded BIP implemen-
tation [9]. The multi-threaded implementation does not
have to wait for all non-conflicting interactions to com-
plete before executing new interactions. BipSV is cur-
rently restricted to a cycle implementation since this is a
necessary constraint for generating code that can be syn-
thesized into FPGAs. This constraint can be relaxed by
allowing longer interactions to span multiple cycles and
introducing a busy state in the involved components. As
for software execution, in the current model of execution,
the one loop in BipSV iterates once all the assignments
inside it are done. We can relax that to have the loop iter-
ate when the first interaction is done and guard the assign-
ments involved in the busy interactions with the necessary
conditional logic.
Wire selector is a non-deterministic primary input used
to select one of the enabled interactions. Boolean register
cycle is used to denote whether the system is executing
actions corresponding to either interaction or transitions.
Function generateDeclarationList() also de-
clares two wires (Bi.pj .e and Bi.pj .s) for each port pj .
For a port pj , wire Bi.pj .e indicates whether the port is
enabled and wire Bi.pj .s indicates whether the port is
selected by the interaction for execution. Moreover, for
each component Bi the function declares a register vari-
able Bi.` denoting the current location of Bi. Similarly,
the function declares a variable register Bi.xj for each
variable xj in component Bi.

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 11

generateWireDefList()
// iterate over components
foreach i ∈ [1..|I|]
// iterate over component ports
foreach j ∈ [1..|Bi.P |]

append Bi.pj .e :=
∨
τ∈transitions(Bi.pj)

τ.guard ∧ Bi.` = τ.src to w i r e d e f− l i s t
endfor

endfor

// iterate over interactions
foreach j ∈ [1..|J|]

append ie[j] := aj .guard ∧
∧
p∈ai.P

component(p).p.e to
w i r e d e f− l i s t

append ip[j] := ie[j] ∧ (∀k 6= j : ie[k]⇒ ak < aj) to
w i r e d e f− l i s t

append is[j] := ip[j] ∧
(
selector = j ∨

(¬ip[selector] ∧ ∀k > j : ¬ip[k])
)

to w i r e d e f− l i s t
endfor

// iterate over components
foreach i ∈ [1..|I|]
// iterate over component ports
foreach j ∈ [1..|Bi.P |]

append Bi.pj .s :=
∨
ak∈interactions(Bi.pj)

is[k] to
w i r e d e f− l i s t

endfor
endfor

Fig. 13. generateWireDefList() function.

2. Function generateWireDefList() (see Figure 13)
fills wiredef-list with functional macro definitions
as follows. The enable wire Bi.pj .e is true when there
exists a transition τ labeled with port p, its source (τ.src)
is the current location (Bi.`), and its guard holds.
Array element ie[j], corresponding to interaction aj ,
evaluates to true when the guard of aj holds and all
its ports are enabled. Array element ip[j] is evaluated to
true when ie[j] is true and aj has higher priority than
other enabled interactions. Array element is[j] is evalu-
ated to truewhen ip[j] is true and either (1) aj is selected
(selector equals to j), or (2) the selected interaction is not
enabled and all interactions with index greater than j are
not enabled.
The Boolean bit-vector b is redundant with wire is and
is declared to simplify the proof of Theorem 2. The use
of a non-deterministic selector is added for fairness. The
selected wireBi.pj .s is true when there exists a selected
interaction ak (i.e., is[k] is true) involving Bi.pj .

3. Function generateInitList() (see Figure 14) fills
init-list with initial value definitions taken from
Init for location variables (Bi.`) and v for component
variables (Bi.xj). Register variable cycle is initialized to
false to denote an interaction execution mode.

4. Function generateNextList() (see Figure 15) fills
next-list with the next state value definitions of reg-
ister variables. Each component variable can be modified
either in an interaction action or in a transition action. The
value of variable cycle makes this distinction.
In the interaction mode (when cycle is equal to false),
the function considers each assignment statement σ from
the action of interaction aj . The function appends a con-
ditional clause requiring ak to be selected for execu-

generateInitList()
// initialize to interaction mode
append cycle := 0 to i n i t− l i s t
foreach i ∈ [1..|I|]

append Bi.` := Init.Bi to i n i t− l i s t
foreach j ∈ [1..|Bi.X|]
// v is the initial valuation
append Bi.xj := v(Bi.xj) to i n i t− l i s t

endfor
endfor
// iterate over interactions
foreach j ∈ [1..|J|]

append b[j] = is[j] to i n i t− l i s t
endfor

Fig. 14. generateInitList() function.

tion so that the target variable Bi.xj of σ is assigned
to the expression of σ (σ.expr). The sequence of condi-
tional clauses forms a nested ternary conditional expres-
sion where the last expression retains the previous value
of the variable.
Similarly, in the transition execution mode (cycle equals
to true), the function considers each assignment σ from
the action of transition τ . The function appends a condi-
tional clause requiring the port of the transition τ to be se-
lected for execution and the location of the component to
be equal to the source of the transition. The target variable
Bi.xj of σ is assigned to the expression of σ (σ.expr).
In the transition mode, the function considers the current
location of each component Bi.` and appends a condi-
tional clause requiring the transition source to be equal
to the current location and the port of the transition to be
selected. The expression corresponding to the conditional
clause updates the current location to be the destination
of the transition (τ.dest). In the interaction mode, the lo-
cation retains its value. Finally, variable cycle is toggled.

6.1 Correctness

Given a BIP system S and its corresponding OLP program
P = BIP-to-OLP(S). Let Trs be the set of traces of S
and let Trp be the set of traces of P . Consider T ′ the projec-
tion of Trp constrained by omitting the states where cycle
is equal to false. Formally, T ′ = {t′ | t′[i] = t[2× i]∧ t ∈
TrP ∧ i ∈ N}. Intuitively, T ′ represents the semantics of the
original BIP model regardless of the built-in scheduler details
(i.e., the enable exchange, interaction selection, data transfer
details).

Theorem 2 (BIP OLP equivalence). The BIP system S is
semantically equivalent to P : Trs = T ′.

Proof. The proof is done by induction on the length of traces
and on the structure of S and P .

Left case: Trs ⊆ T ′. Consider t ∈ Trs, there exists
t′ ∈ T ′ and t = t′.

– Induction basis. Consider the initial state: t[0] and t′[0].
generateInitList() sets cycle to true and as-
signs each location to Init and each variable to its initial
value. Thus, t[0] is equal to t′[0].

12 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

generateNextList()
// iterate over interactions
foreach j ∈ [1..|J|]

append b[j] = is[j] to n e x t− l i s t
endfor

// iterate over components - interaction-mode
foreach i ∈ [1..|I|]
// iterate over variables, where
// Bi.X = {x1, . . . , l|Bi.X|}
foreach j ∈ [1..|Bi.X|]
// interaction mode
append Bi.xj := cycle = 0? to var−st
// iterate over interactions
foreach k ∈ [1..|J|]
// iterate over interaction assignments
foreach σ ∈ ak.action

i f (Bi.xj = σ.term)
append is[k]?σ.expr : to var−st

e n d i f
endfor

endfor
// interaction mode and no data transfer for Bi.xj
append Bi.xj: to var−st

// iterate over component transitions -
// transition-mode
append Bi.` := cycle = 0?Bi.` : to loc−s t
foreach τ ∈ Bi.T
// iterate over transition assignments
foreach σ ∈ τ.action

i f (Bi.xj = σ.term)
append (Bi.port(τ).s ∧ τ.src = Bi.`)?σ.expr : to

var−st
e n d i f

endfor
append (Bi.port(τ).s ∧ τ.src = Bi.`)? τ.dest : to loc−s t

endfor

append Bi.xj to var−st
append var−st to n e x t− l i s t

append Bi.` to loc−s t
append loc−s t to n e x t− l i s t

endfor
// switch cycle
append cycle := ¬cycle to n e x t− l i s t

endfor

Fig. 15. generateNextList() function.

– Let t[0..k] be the prefix of t of length k+ 1 where k > 0,
using the induction hypothesis, there exists at least one
trace t′[0..k] ∈ T ′ and t[0..k] = t′[0..k].
Consider valuations t[k] and t′[k] that correspond to the
firing interactions. Since they are equal, the next state of
locations and data variables will be the same at t[k + 1]
and t[k + 1] as enforced by generateNextList().
In case no interactions are enabled at step k + 1, both
P and S will preserve the same state at step k + 1 and
thus t[0..k + 1] = t′[0..k + 1]. Otherwise, let aj be an
interaction that is enabled according to state t[k+1], then
according to BIP semantics, interaction aj must be also
enabled and of the highest priority. This means that aj is
also enabled and of the highest priority under t′[k]. The
primary input selectorwire variable is a nondetermin-
istic variable and can assume all indexes on interactions
including the value j, thus setting the enabled interac-
tion aj in t′[k + 1]. Therefore, there exists a setting for
selector at step k + 1 such that P executes aj .

Without loss of generality, let that nondeterministic set-
ting be the one in t′[k+1]. Therefore, t[k+1] = t′[k+1].

Right case: T ′ ⊆ Trs. Consider t′ ∈ T ′ there exists
t ∈ Trs and t = t′.

– Base case. The base case is as before and t[0] is equal to
t′[0].

– Induction case. Let t′[0..k] be the prefix of t′ of length
k + 1 where k > 0, using the induction hypothesis, there
exists a trace t[0..k] ∈ Trs and t[0..k] = t′[0..k]. As
for the previous proof, generateNextList() guar-
antees that the state of the locations and the data variables
are equal in the next states t[k+1] and t′[k+1] of S and
P , respectively.
Furthermore, the two states are equivalent if no interac-
tion was enabled in t′[k + 1].
In case an interaction aj is selected to execute in P at step
k+ 1 as set in state t′[k+ 1], then it must be enabled and
of high priority. Thus, it must also be enabled and of high
priority in S according to state t[k + 1] as guaranteed by
generateNextList(). The semantics of BIP allows
the nondeterministic selection of one of the enabled and
high priority interactions, and without loss of generality
let that selection be aj in t[k + 1]. Therefore t[k + 1] =
t′[k + 1].

Consequently, the claim holds as expected.

6.2 Embedding the built-in scheduler

The logic for the builtin scheduler is coupled with the port
enable, port select, interaction enable, and interaction se-
lect circuits. It involves the priority settings of the interac-
tions which translate to constant wires in the AIG. It also
involves a selector primary input that assumes a non-
deterministic value. The logic of the scheduler computes the
enabled ports, then computes the enabled interactions. In case
priority was not enough to select one interaction to execute,
the logic of the scheduler uses the non-deterministic value of
the selector to give higher priority to the interaction with
the nearest index to the selector.

6.3 One-cycle optimization

Recall that an interaction specifies a strong synchronization
among its involved components. Data transfer can take place
during such synchronization. The operational semantics of
BIP requires to (1) first execute the data transfer of the se-
lected interaction, and then to (2) execute the functions of
the corresponding transitions of atomic components. For this
purpose, in the above translation, we used the cycle Boolean
register to indicate whether the system is executing actions
corresponding to either interaction or transition. However, in
some cases, data transfers of all interactions modify some
variables that are not assigned in the corresponding transi-
tions of those interactions. This can be detected by doing
a static data-dependency analysis between interactions and

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 13

their transitions. This may drastically improve the perfor-
mance of the system since data transfers as well as functions
of transitions may be executed in one cycle. Note that, our im-
plementation supports this optimization. Moreover, it is pos-
sible to do source-to-source transformations to compose the
effect of data transfer, and hence one cycle-based implemen-
tations could be always generated.

7 Implementation and evaluation

7.1 BipSV

BipSV (BIP Synthesis Verification) is an imple-
mentation of our method with several modules.
The implementation is available at http://research-
fadi.aub.edu.lb/dkwk/doku.php?id=biptoabc.

– The first module is a Java implementation of the transla-
tion from BIP to OLP described in Section 6. It takes as
input a BIP system and a set of invariants, and generates
the correspondingOLP with a system-specific execution
framework.

– The second module generates a concurrent runtime veri-
fication executable from the OLP program that uses the
OpenMP API to perform runtime verification (simula-
tion) of the BIP system. The module sets the primary
inputs to random values at each iteration, and replaces
the do-together constructs with OpenMP directives
to have the resulting binary running concurrently.

– The third module is a C++ implementation that trans-
forms the OLP to an AIG circuit after preforming word-
level constant propagation and cone of influence reduc-
tions. The module also passes the generated AIG circuit
to the ABC framework, and drives the synthesis reduction
algorithms, and then the verification algorithms. BipSV
automatically selects the ABC algorithms to run based on
structural AIG metrics. Alternatively, the user can inter-
actively guide the reduction and verification processes.

– Finally, in case a counterexample is found by either the
concurrent runtime verification module or by the ABC
verification algorithms, a C++ module takes the coun-
terexample, translates it back to BIP, and provides a user-
friendly interface to visualize the counterexample and de-
bug the system with an integrated open source wave form
viewer tool [24].

BipSV uses ABC synthesis and reduction algorithms to
reduce the area and the critical time of the AIG circuit
by removing redundant latches and logic gates. Examples
of reduction algorithms are retiming [41], redundancy re-
moval [47,42,17,4], logic rewriting [15], interpolation [44],
and localization [60]. The reduced AIG circuit is equivalent
to the original circuit and BipSV can readily translate it into
an FPGA implementation.

For verification, ABC uses the sequential synthesis tech-
niques above to reduce the AIG circuit and render it amenable
for decision algorithms. Then, ABC uses decision algorithms

such as symbolic model-checking, bounded model-checking,
induction, interpolation, circuit SAT solving, and target en-
largement [49,50,37,10,43] to verify the correctness of the
circuit with respect to the BIP system invariants. It either
proves correctness or produces a counter example where the
system violates the property.
BipSV is equipped with a command-line interface that

accepts a set of configuration options. It takes the name of
the input BIP file and optional flags (e.g., debugging).

> java -jar bip-to-abc.jar [options] input.bip \
> output.abc [property.txt]

Moreover, BipSV takes as input a property to be veri-
fied expressed by pre and post conditions over atomic propo-
sitions. Atomic propositions are conditions on components
(e.g., a condition on the lastly-executed port, current loca-
tions of atomic components, values of variables). The pre and
post conditions are stored in a file to be parsed by BipSV .
For instance, the following snippet defines a property where:
(1) the precondition is the condition that always holds (i.e.,
true); and (2) the post condition requires that when com-
ponent comp1 is at location s0 and component comp2 is at
location s1, then the variable x of comp1 should be equal to
the variable y of comp2.

@pre inv { t rue; }
@post inv {((comp1_currentState == comp1_state_s0) && (

comp2_currentState == comp2_state_s1)) -> (
comp1_var_x == comp2_var_decidedValue);}

Additionally, we have built some predefined patterns such
as deadlock expressed as an invariant denoting the set of the
states from which all interactions are disabled.

We evaluated BipSV against two benchmarks used to
evaluate BIP verification techniques, an Automatic Teller Ma-
chine (ATM) [25] and the Quorum consensus protocol [35].
We report on the size of the generated AIGs before and after
reduction, and on the time taken by the ABC solver to reduce
and verify the benchmarks. We compare the results for the
verification of the ATM benchmark against another solution
that uses a bisimulation-based abstraction for reduction [53]
and NuSMV [26] as a model-checker.

7.2 The ATM benchmark

Automatic Teller Machine (ATM) is a computerized system
that provides financial services for users in a public space.
Figure 16 shows a structured BIP model of an ATM system
adapted from the description provided in [25]. The system
is composed of four atomic components: (1) the User (2)
the ATM (3) the Bank Validation and (4) the Bank Transac-
tion. The ATM component handles all interactions between
the users and the bank. No communication between the users
and the bank is allowed.

The ATM starts from an idle location and waits for the
user to insert the card and enter the confidential code. The
user has 5 time units to enter the code before the counter ex-
pires and the card is ejected by the ATM. Once the code is
entered, the ATM checks with the bank validation unit for

http://research-fadi.aub.edu.lb/dkwk/doku.php?id=biptoabc
http://research-fadi.aub.edu.lb/dkwk/doku.php?id=biptoabc

14 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

l0 l1 l2

l3

l4

l5

l6l7

insert enter

validated
invalid

amount

eject

accept

cancel

success

withdraw

fail fiat

veto transaction

non−authorized validate

authorized

transaction

au
th
o
rized

n
o
n
−
au
th
o
rized

fiat
v
eto

validate

insert

eject fail cancel

enter validated amount

accep
t

su
ccess

w
ith

d
raw

insertentervalidatedamount

cancel fail eject

w
it
h
d
ra
w

su
cc
es
s

ac
ce
p
t

l0 l1
validate

x=0

x=x+1

x<2
tick

authorized
x>=1

l0 l1

tick

y<4
y=y+1

fiat
y>=2

y>=2

l0

l1

l2 l3 l4

l5

l6

l7 l8

l9

l10

l11l12

l13

insert

enter

t1=0

t1>1

validate

accept

veto

fiat

successwithdraweject

invalid

fail

non−authorized
t2>=3

amountvalidatedauthorized

t2>=3

tick

t2=0

t1=t1+1

t1<5

tick

cancel

User

ATM
veto

transaction

Bank_Transaction

transaction

t2=t2+1
t2<6

x>=1
non−authorized

Bank_Validation

y=0

Fig. 16. Modeling of ATM system in BIP

the correctness of the code. If the code is invalid, the card
is ejected and no transaction occurs. If the code is valid, the
ATM waits for the user to enter the desired amount of money
for the transaction. The time-out for entering the amount of
money is of 6 time units.

Once the user enters the desired transaction amount, the
ATM checks with the bank whether the transaction is allowed
or not by communicating with the bank transaction unit. If
the transaction is approved, the money is transferred to the
user and the card is ejected. If the transaction is rejected, the
user is notified and the card is ejected. In all cases, the ATM
goes back to the idle location waiting for another users. In
our model, we consider a single bank and multiple ATMs and
users.

Table 1 shows the improvement obtained by using BipSV
to verify the deadlock-freedom of the ATM system, as com-
pared to using the NuSMV model-checker [26]. The first col-
umn shows the number of clients and ATMs in the system.
The table contains the number of latches, NAND gates and
logic levels in the AIG generated by BipSV before and after
applying reduction techniques, respectively. We report on the
total time taken to perform synthesis (reduction) and verifi-
cation by BipSV , in addition to the time taken by NuSMV to
perform verification. Note that the time to perform synthesis
was negligible.

With the increase in the number of users and ATMs in the
system, BipSV outperforms NuSMV in terms of total verifi-
cation time, reaching a speedup of 5.6 for 4 users and ATMs.
Additionally, BipSV allows developers to make use of sev-
eral reduction techniques that are able to reach an average of
50% reduction in the size of the AIG. Note that for 2 ATMs
and users, NuSMV outperforms BipSV . This is due to the
fact that when performing verification, ABC tries multiple
verification and reduction algorithms before reaching a con-
clusive result. However, the advantage of BipSV is clearly
that it scales with the number of ATMs and users.

7.3 The Quorum protocol

The Quorum protocol is a consensus protocol proposed
in [35] complementary to the Paxos consensus protocol [34]
under perfect channel conditions. Consensus allows a set of
communicating processes (clients and servers in our case) to
agree on a common value. Each client proposes a value and
receives a common decision value. The authors in [35] pro-
pose to use Quorum when no failure occurs (perfect channel
conditions) and Paxos when less than half of the servers may
fail.

The Quorum protocol operates as follows.

1. Upon proposal, a client c broadcasts its proposed value v
to all servers. It also saves v in its local memory and starts
a local timer tc.

2. When a server receives a value v from a client c, it per-
forms the following check.
– If it has not sent any accept messages, it sends an ac-

cept message accept(v) to the client c.
– If it has already accepted value v′, it sends an accept

message accept(v′) to the client c.
3. If a client c receives two different accept

messages, it switches to the backup phase
switch − backup(proposalc).

4. If a client c receives the same accept messages accept(v)
from all the servers, it decides on the value v.

5. If a client’s timer tc expires, it waits for at least one accept
message accept(v′) from a server, or chooses a value v′

from an already-received accept(v′) message, and then
switches to the backup phase with the value v′.

6. The backup phase is an implementation of the Paxos al-
gorithm. Quorum in this case has decided that the channel
is not perfect.

We implemented the Quorum protocol in BIP, and we used
BipSV to verify two invariants as defined in [35].

1. Invariant1 : If a client c decides on a value v, then all
clients c′ 6= c that have switched, either before or after c,
switch to value v.

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 15

Original After reduction Time(s)
ATMs latches NAND-gates levels latches NAND-gates levels BipSV NuSMV

2 78 2308 125 37 552 25 26.1 1.4
3 102 3689 197 50 804 29 32.65 142.6
4 146 5669 234 63 1036 29 597 3361

Table 1. ATM results

2. Invariant2 : If a client c decides on a value v, then all
clients c′ 6= c who decide, do so with the same value v.

Table 2 shows the verification time and the size of the
circuit when using BipSV to verify the Quorum proto-
col for 2 and 4 clients with 2 servers. The designs are
indexed as num clients-num servers-status where
num clients is the number of clients, num servers is
the number of servers and status is either valid (v) or er-
roneous (e). A valid design contains no design bugs, while
an erroneous design is injected with a bug. We report on the
size of the AIG in terms of number of latches, number of
NAND gates and logic levels before and after applying re-
duction algorithms. The FPGA corresponding to the reduced
circuit uses the same number of latches, and a proportional
number of LUT connections to the NAND gates.

Using ABC’s synthesis and reduction algorithms, we re-
duced the size of the generated AIGs (from BipSV) for all
designs by a factor larger than 50%. Furthermore,BipSV was
able to give conclusive results about all four designs, unlike
NuSMV which failed to give any decision about the designs
having 4 clients and 2 servers. For example, BipSV found a
counter example for the erroneous design having 4 clients and
2 servers in 0.24 sec while NuSMV failed to do so. Figure 17
shows a snippet of the generated counter example for the er-
roneous design, visualized using the Gtkwave [24] waveform
viewer. The variables presented in the counterexample are the
current control locations and the value of the variables of the
different components in the design. Red arrows points to the
values that implies a violation of the invariant.

8 Related Work

The overlap between software and hardware design in em-
bedded systems creates more challenges for verification and
code generation.

SystemC [54] is a modeling platform based on C++ that
provides design abstractions at the Register Transfer Level
(RTL), behavior, and system levels. It aims at providing a
common design environment for embedded system design
and hardware-software co-design. SystemC designers write
their systems in C++ using SystemC class libraries that pro-
vide implementations for hardware-specific objects such as
concurrent modules, synchronization constructs, and clocks.
Therefore, the input systems can be compiled using standard
C++ compilers to generate binaries for simulation. SystemC
allows for the communication between different components

of a system through the usage of ports, interfaces and chan-
nels.

The BIP framework differs from SystemC in that it
presents a dedicated language and supporting tool-set that
describes the behavior of individual system components as
symbolic LTS. Communication between components in BIP
is ensured through ports and interactions. BIP operates at a
higher level than SystemC and does not provide support for
circuit level constructs.

Metropolis [5,28] is an embedded system design plat-
form based on formal modeling and separation of concerns
for an effective design process. A Metropolis process is a
sequence of events representing functionality, and different
processes communicate via ports of interfaces. An interface
includes methods that processes can use to communicate.
Metropolis uses SIS for synthesis, SystemC and Ptolemey
for runtime verification, and SPIN for model-checking. While
BIP separates behavior from interaction (synchronization and
communication) to simplify correctness by construction and
compositional verification, Metropolis separates communica-
tion from behavior (computation) and leaves synchronization
highly coupled within each of them.

Verification techniques for SystemC and BIP make use
of symbolic model-checking tools. NuSMV [26] is a sym-
bolic model-checker that employs both SAT and BDD based
model-checking techniques. It processes an input describing
the logical system design as a finite-state machine, and a
set of specifications expressed in LTL, Computational Tree
Logic (CTL) and Property Specification Language (PSL).
Given a system S and a set of specifications P , NuSMV
first flattens S and P by resolving all module instantiations
and creating modules and processes, thus generating one syn-
chronous design. It then performs a Boolean encoding step to
eliminate all scalar variables, arithmetic and set operations
and thus encodes them as Boolean functions. In Section 7,
we benchmark BipSV verification tasks against verification
tasks using the NuSMV model-checker. TheOLP translation
differs from the NuSMV translation as follows.

– Only BIP variables and locations are encoded into reg-
isters in OLP and all other elements such as interac-
tion and port enablement are encoded using wires. The
NuSMV translation uses registers for all BIP elements;
thus, implying a larger state space. Performing the same
encoding in NuSMV requires the use of redundant ex-
pressions, which may cause redundant logic.

– OLP programs generated from BIP systems can be
straightforwardly translated into concurrent C implemen-
tations with a minor modification (e.g. replacing the

16 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

Original After reduction Time (s)
Design latches NAND-gates levels latches NAND-gates levels BipSV NuSMV
2-2-e 264 3508 101 65 923 51 0.78 526
2-2-v 264 3614 105 66 641 29 240.6 526
4-2-e 390 6305 145 117 1129 50 0.24 memory-out
4-2-v 390 6453 151 117 1170 30 58 hours memory-out

Table 2. Quorum results

Fig. 17. Visualization of a counter example using Gtkwave

do-together directives with OpenMP API directives.
The implementation can be used for runtime verifica-
tion (c.f. [32]) as well as a direct software implementa-
tion. Moreover, in case the design was to be partitioned
into software and hardware, parts of the implementation
are readily available to execute on CPUs. Performing the
same with the NuSMV implementation would require de-
veloping a new source-to-source translator.

The work in [53] uses bisimulation-based abstraction to
reduce the state-space and then uses NuSMV for model-
checking. Our technique can directly benefit from the ab-
straction of [53]. However, our experiments show that coun-
terpart bit-level transformations were more effective. More-
over, our OLP to AIG transformation uses compact timing
since it implements the built-in scheduler in the AIG circuit;
while in [53], the transformation from the abstracted model
to the NuSMV model enumerates all symbolic states. That
is, with BipSV bounded model-checking can use lower time
bound than [53]. Moreover, our method enables the use of a
plethora of reduction and abstraction algorithms readily avail-
able at bit-level [21]. Since our transformation is time-exact
the OLP program and the AIG circuit we generate can be
used for runtime verification as well as real implementations.

The work in [55] takes a design specified in Esterel and
translates it to a sequential circuit specified in Verilog or
BLIF. Esterel and BIP differ in several ways. For exam-
ple, Esterel is less expressive as it does not allow for mul-

tiparty interactions with non-deterministic behaviors while
BIP does. In addition, our translation transforms a high level
BIP model directly into a bit-level circuit by embedding built-
in scheduling into the design. Moreover, it embeds the given
properties into the generated circuits as designated outputs.
This avoids the use of compilers to interpret models in Ver-
ilog.

The work in [52] uses constraint-based programming
to compute an executable MPI-based parallel simulator
of an embedded and cyber-physical systems written in
ForSyDe [57]. ForSyDe is a library of SystemC based
parametrized system components with strict constraint spec-
ifications and a blocking write FIFO queue modeling a Kahn
network. The instances of the ForSyDe components are pro-
cesses that communicate only through signals.

The work in [6] introduces a model-checking methodol-
ogy for LTL specifications of embedded systems written in
DIVINE [7] over a total store order (TSO) of memory el-
ements. Our method assumes a similarly relaxed memory
model since it adopts a cycle based execution model where
updated memory values are observable at the next cycle.

In order to avoid the state-space explosion problem,
NuSMV performs a cone of influence reduction [13] step in
order to eliminate non-needed parts of the flattened model
and specifications. The cone of influence reduction technique
aims at simplifying the model at hand by only referring to

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 17

variables that are of interest to the verification procedure, i.e.
variables that influence the specifications to check [27].

D-Finder [12] is an automated verification tool for check-
ing invariants on systems described in the BIP language.
Given a BIP system S and an invariant I, D-Finder operates
compositionally and iteratively to compute invariants X of
the interactions and the atomic components of S. It then uses
the Yices Satisfiability Modulo Theory (SMT) solver [29] to
check for the validity of the formula X ∧ ¬I = false. Ad-
ditionally, D-Finder checks the deadlock-freedom of S by
building an invariant Id that represents the states of S in
which no interactions are enabled, i.e., a deadlock occurs. It
then checks for the formula X ∧ Id = false, i.e., none of
the deadlock states are reachable in S.

Techniques based on symbolic model-checking for the
verification of BIP designs suffer from the state space explo-
sion problem, and often fail to scale with the size and the
complexity of the systems.

On the other hand, the compositional and incremental
methods provided by D-Finder are limited to systems without
data transfer over interactions. In [51], the authors proposed
a method that transforms a system with data transfer into
equivalent system without data transfer on which the com-
positional method can be applied. Nonetheless, the proposed
method remains theoretical and not integrated into D-Finder.
This limitation hampers the practical application of D-Finder
and of the BIP framework, since data transfer is necessary
and common in the design of practical applications.

Our technique handles data transfers and uses the wide
range of synthesis and reduction algorithms provided by ABC
to effectively reduce the size and the complexity of the verifi-
cation problem. Most of these algorithms have no counterpart
in symbolic model-checking.

Unlike all the methods described above, our method
leverages the same semantics for FPGA synthesis, model-
checking, and runtime verification (simulation).

9 Conclusion and future work

We present a method for embedded system synthesis, runtime
verification, and model-checking with supporting tools for
the BIP framework. The method takes a BIP system and gen-
erates a concurrent C program with a system specific sched-
uler embedded therein. The concurrent C program serves as
a software runtime verification simulator for the BIP system.
The method then takes the concurrent C program and gen-
erates an AIG circuit which is an FPGA implementation of
the BIP system. The method applies synthesis reduction tech-
niques using the ABC framework to simplify and reduce the
AIG circuit into a smaller and a less complex circuit that can
be readily implemented with an FPGA. The method passes
the reduced AIG circuit with a designated output that is true
when the BIP system invariants are true to ABC proof and
model-checking algorithms. In case ABC finds a counterex-
ample, the methods maps the values from the counterexam-
ple to the original ABC system and provides the user with a

debug visualization tool. We successfully used the system to
verify and debug several case studies.

For future work, we consider several research directions.
Currently, the system-specific scheduler makes conservative
decisions to avoid interaction conflicts. Two interactions con-
flict if they share a port or they use conflicting ports of the
same component. An important extension is to allow for the
parallel execution of non-conflicting interactions using tech-
niques presented in [18]. Another interesting direction is to
generate correct and efficient sequential circuit given real-
time software (i.e., with real-time constraints) modeled using
the real-time version of BIP [2]. Finally, we will study the
efficiency and the effectiveness of the generated OLP pro-
grams aligned with automated test case generation techniques
such as [23].

References

1. BIP Website. Available at http://www-verimag.imag.
fr/Rigorous-Design-of-Component-Based.
html.

2. Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Rig-
orous implementation of real-time systems - from theory to
application. Mathematical Structures in Computer Science,
23(4):882–914, 2013.

3. Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P Kur-
shan, and Kenneth L McMillan. An analysis of sat-based model
checking techniques in an industrial environment. In Cor-
rect hardware design and verification methods, pages 254–268.
Springer, 2005.

4. A. Aziz, T. Shiple, V. Singhal, R. Brayton, and A. Sangiovanni-
Vincentelli. Formula Dependent Equivalence for Composi-
tional CTL Model Checking. Journal of Formal Methods in
System Design, 21(2):193–224, 2002.

5. Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano
Lavagno, Claudio Passerone, and Alberto L. Sangiovanni-
Vincentelli. Metropolis: An integrated electronic system design
environment. IEEE Computer, 36(4):45–52, 2003.

6. J. Barnat, L. Brim, and V. Havel. LTL model checking of par-
allel programs with under-approximated TSO memory model.
In International Conference on Application of Concurrency to
System Design (ACSD), pages 51–59, July 2013.

7. Jiri Barnat, Lubos Brim, and David Safránek. High-
performance analysis of biological systems dynamics with the
DiVinE model checker. Briefings in Bioinformatics, 11(3):301–
312, 2010.

8. Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Com-
baz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis.
Rigorous Component-Based System Design Using the BIP
Framework. IEEE Software, 28(3):41–48, 2011.

9. Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph
Sifakis. Distributed semantics and implementation for systems
with interaction and priority. In Formal Techniques for Net-
worked and Distributed Systems - FORTE 2008, 28th IFIP WG
6.1 International Conference, Tokyo, Japan, June 10-13, 2008,
Proceedings, pages 116–133, 2008.

10. Jason Baumgartner, Andreas Kuehlmann, and Jacob Abraham.
Property checking via structural analysis. In Computer-Aided
Verification, July 2002.

http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html

18 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

11. Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung
Nguyen, Joseph Sifakis, and Rongjie Yan. Component-based
verification using incremental design and invariants. Software
& Systems Modeling, April 2014.

12. Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and
Joseph Sifakis. D-Finder: A tool for compositional deadlock
detection and verification. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, volume 5643 of
Lecture Notes in Computer Science, pages 614–619. Springer
Berlin Heidelberg, 2009.

13. Sergey Berezin, Sérgio Campos, and Edmund M Clarke. Com-
positional reasoning in model checking. Springer, 1998.

14. Armin Biere. Handbook of satisfiability, volume 185. IOS
Press, 2009.

15. Per Bjesse and Arne Boralv. DAG-aware circuit compression
for formal verification. In Int’l Conference on Computer-Aided
Design, Nov. 2004.

16. Per Bjesse and Arne Boralv. Dag-aware circuit compression
for formal verification. In Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, pages 42–
49. IEEE Computer Society, 2004.

17. Per Bjesse and Koen Claessen. SAT-based verification without
state space traversal. In Formal Methods in Computer-Aided
Design, November 2000.

18. Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean
Quilbeuf, and Joseph Sifakis. A framework for automated
distributed implementation of component-based models. Dis-
tributed Computing, 25(5):383–409, 2012.

19. Aaron R Bradley. Sat-based model checking without unrolling.
In Verification, Model Checking, and Abstract Interpretation,
pages 70–87. Springer, 2011.

20. Aaron R Bradley and Zohar Manna. Checking safety by induc-
tive generalization of counterexamples to induction. In Formal
Methods in Computer Aided Design, 2007. FMCAD’07, pages
173–180. IEEE, 2007.

21. R. Brayton and A. Mishchenko. ABC: An academic industrial-
strength verification tool. In Computer Aided Verification,
pages 24–40. Springer, 2010.

22. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2), 1992.

23. Jacob Burnim and Koushik Sen. Heuristics for Scalable Dy-
namic Test Generation. In 23rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2008), 15-19
September 2008, L’Aquila, Italy, pages 443–446. IEEE, 2008.

24. Tony Bybell. Gtkwave electronic waveform viewer, 2010.
25. M.R.V Chaudron, E.M. Eskenazi, A.V. Fioukov, and D.K.

Hammer. A framework for formal component-based software
architecting. In OOPSLA, pages 73–80, 2001.

26. Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and
Marco Roveri. NUSMV: a new symbolic model checker. In-
ternational Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

27. Edmund M Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT press, 1999.

28. Abhijit Davare, Douglas Densmore, Liangpeng Guo, Roberto
Passerone, Alberto L. Sangiovanni-Vincentelli, Alena Simalat-
sar, and Qi Zhu. metroII: A design environment for cyber-
physical systems. ACM Trans. Embedded Comput. Syst.,
12(1s):49, 2013.

29. Bruno Dutertre and Leonardo De Moura. A fast linear-
arithmetic solver for dpll (t). In Computer Aided Verification,
pages 81–94. Springer, 2006.

30. Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient
implementation of property directed reachability. In Formal
Methods in Computer-Aided Design (FMCAD), 2011, pages
125–134. IEEE, 2011.

31. Niklas Eén and Niklas Sörensson. Temporal induction by incre-
mental sat solving. Electronic Notes in Theoretical Computer
Science, 89(4):543–560, 2003.

32. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on
runtime verification. In Manfred Broy, Doron A. Peled, and
Georg Kalus, editors, Engineering Dependable Software Sys-
tems, volume 34 of NATO Science for Peace and Security Se-
ries, D: Information and Communication Security, pages 141–
175. IOS Press, 2013.

33. Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Mar-
ius Bozga, and Saddek Bensalem. Runtime verification of
component-based systems in the BIP framework with formally-
proved sound and complete instrumentation. Software and Sys-
tem Modeling, 14(1):173–199, 2015.

34. Eli Gafni and Leslie Lamport. Disk paxos. Distributed Com-
puting, 16(1):1–20, 2003.

35. Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. Specu-
lative linearizability. Acm Sigplan Notices, 47(6):55–66, 2012.

36. Thomas A Henzinger and Joseph Sifakis. The embedded sys-
tems design challenge. In FM 2006: Formal Methods, pages
1–15. Springer, 2006.

37. Pei-Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula,
Robert Damiano, Valeria Bertacco, Jerry Taylor, and Jiang
Long. Smart simulation using collaborative formal and simula-
tion engines. In Int’l Conference on Computer-Aided Design,
Nov. 2000.

38. G. Holzmann. The model checker SPIN. In IEEE Transactions
on Software Engineering, May 1997.

39. Aaron P Hurst, Alan Mishchenko, and Robert K Brayton. Fast
minimum-register retiming via binary maximum-flow. In For-
mal Methods in Computer Aided Design, 2007. FMCAD’07,
pages 181–187. IEEE, 2007.

40. Mohamad Jaber. Centralized and Distributed Implementations
of Correct-by-construction Component-based Systems by us-
ing Source-to-source Transformations in BIP. (Implémentations
Centralisée et Répartie de Systèmes Corrects par construction
à base des Composants par Transformations Source-à-source
dans BIP). PhD thesis, Joseph Fourier University, Grenoble,
France, 2010.

41. Andreas Kuehlmann and Jason Baumgartner. Transformation-
based verification using generalized retiming. In Computer-
Aided Verification, July 2001.

42. Andreas Kuehlmann, Malay Ganai, and Viresh Paruthi. Circuit-
based Boolean reasoning. In Design Automation Conference,
pages 232–237, June 2001.

43. H. Mony et al. Scalable automated verification via expert-
system guided transformations. In Formal Methods in
Computer-Aided Design, November 04.

44. Kenneth L. McMillan. Interpolation and sat-based model
checking. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
CAV, volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

45. Alan Mishchenko, Michael Case, Robert Brayton, and Stephen
Jang. Scalable and scalably-verifiable sequential synthesis. In
Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM Inter-
national Conference on, pages 234–241. IEEE, 2008.

46. Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton.
Dag-aware aig rewriting a fresh look at combinational logic

Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits 19

synthesis. In Proceedings of the 43rd annual Design Automa-
tion Conference, pages 532–535. ACM, 2006.

47. Hari Mony, Jason Baumgartner, Viresh Paruthi, and Robert
Kanzelman. Exploiting suspected redundancy without proving
it. In Design Automation Conference. ACM Press, 2005.

48. Hari Mony, Jason Baumgartner, Viresh Paruthi, and Robert
Kanzelman. Exploiting suspected redundancy without proving
it. In Proceedings of the 42nd annual Design Automation Con-
ference, pages 463–466. ACM, 2005.

49. In-Ho Moon, Gary D. Hachtel, and Fabio Somenzi. Border-
block triangular form and conjunction schedule in image com-
putation. In Formal Methods in Computer-Aided Design, Nov.
2000.

50. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Linto
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In ACM Design Automation Conference, June 2001.

51. Thanh-Hung Nguyen. Constructive Verification for
Component-based Systems. University of Grenoble, 2010.

52. Seyed Hosein Attarzadeh Niaki and Ingo Sander. An automated
parallel simulation flow for heterogeneous embedded systems.
In Design, Automation and Test in Europe (DATE), pages 27–
30, 2013.

53. Mohamad Noureddine, Mohamad Jaber, Simon Bliudze, and
Fadi A. Zaraket. Reduction and abstraction techniques for bip.
In Formal Aspects of Component Software (FACS), 2014.

54. Preeti Ranjan Panda. Systemc: A modeling platform support-
ing multiple design abstractions. In Proceedings of the 14th In-
ternational Symposium on Systems Synthesis, ISSS ’01, pages
75–80, New York, NY, USA, 2001. ACM.

55. Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard
Berry. Compiling Esterel. Springer, 2007.

56. Wang Qiang and Simon Bliudze. Verification of component-
based systems via predicate abstraction and simultaneous set re-
duction. In Trustworthy Global Computing - 10th International
Symposium, TGC 2015, Madrid, Spain, August 31 - September
1, 2015 Revised Selected Papers, pages 147–162, 2015.

57. Ingo Sander and Axel Jantsch. System modeling and transfor-
mational design refinement in forsyde. IEEE Trans. on CAD
(TCAD) of Integrated Circuits and Systems, 23(1):17–32, 2004.

58. Ellen Sentovich, Kanwar Jit Singh, Cho W. Moon, Hamid
Savoj, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Sequential circuit design using synthesis and op-
timization. In ICCD, pages 328–333. IEEE Computer Society,
1992.

59. M. Sipser. Introduction to the Theory of Computation, vol-
ume 27. Thomson Course Technology Boston, MA, 2006.

60. Dong Wang. SAT based Abstraction Refinement for Hardware
Verification. PhD thesis, Carnegie Mellon University, May
2003.

A ABC reduction and verification techniques

The ABC framework provides a set of algorithms that can be
applied iteratively to (1) reduce the AIG into an equivalent
AIG and (2) verify that a designated output of an AIG is al-
ways true. In what follows we provide brief descriptions of
several reduction and verification ABC algorithms.

A.1 Structural register sweep (SRS)

SRS detects registers that are stuck-at-constant and elimi-
nates them from a given sequential AIG circuit. The tech-
nique starts by zeroing up all initial values of registers in the
circuit. It then uses the ternary simulation algorithm in or-
der to detect stuck-at-constant registers. The algorithm starts
from the initial values of the registers and simulates the cir-
cuit using x values for the circuit’s primary inputs. The sim-
ulation algorithm stops when a new ternary state is equal to
a previously computed ternary state. In this case, any register
having the same constant value at each reachable ternary state
will be declared to be stuck-at-constant and thus eliminated.
The structural sweeping algorithm stop when no further re-
duction in the number of registers is possible [45].

A.2 Signal correspondence (Scorr)

Scorr uses k-step induction in order to detect and merge sets
of classes of sequentially-equivalent nodes [45]. The base
case for this algorithm is that the equivalence between the
classes holds for the first k frames, and the inductive case is
that given the base case, starting from any state, the equiva-
lence holds in the (k+1)st state. Key to the signal correspon-
dence algorithm is the way the candidate equivalences are as-
sumed for the base case. Abc implements speculative reduc-
tion, originally presented in [48], which merges, but does not
remove, any node of an equivalence class onto its represen-
tative, in each of the first k time frames. Instead of removing
the merged node, a constraint is added to assert that the node
and its representative are equal. This technique is claimed to
decrease the number of constraints added to the SAT solved
for induction.

A.3 Rewriting

Rewriting aims at finding nodes in a Directed Acyclic Graph
(DAG) where by replacing subgraphs rooted at these nodes
by pre-computed subgraphs can introduce important reduc-
tions in the DAG size, while keeping the functionality of these
nodes intact. The algorithm traverses the DAG in depth-first
post-order and gives a score for each root node. The score
represents the number of nodes that would result from per-
forming a rewrite at this node. If a rewrite exists such that
the size of the DAG is decreased, such a rewrite is performed
and scores are recomputed accordingly. Rewriting has been
proposed initially in [16], targeted for Reduced Boolean Cir-
cuits (RBC); it was later implemented and improved for ABC
in [46].

A.4 Retiming

Retiming a sequential circuit is a standard technique used in
sequential synthesis, aiming at the relocation of the registers
in the circuit in order to optimize some of the circuit char-
acteristics. Retiming can either targets the minimization of

20 Fadi A. Zaraket et al.: From High-Level Modeling Towards Efficient and Trustworthy Circuits

the delay in the circuit, or the minimization of the number of
registers given a delay constraint, or the unconstrained min-
imization of the number of registers in the circuit. It does
so while keeping the output functionality of the circuit in-
tact [39]

A.5 Property directed reachability (Pdr)

The Pdr algorithm aims at proving that no violating state is
reachable from the initial state of a given AIG network. It
maintains a trace representing a list of over-approximations
of the states reachable from the initial state, along with a
set of proof-obligations, which can be a set of bad states or
a set of states from which a bad state is reachable. Given
the trace and the set of obligations, the Pdr algorithm ma-
nipulates them and keeps on adding facts to the trace until
either an inductive invariant is reached and the property is
proved, or a counter example is found (a bad state is proven
to be reachable). The algorithm was originally developed by
Aaron Bradley in [19,20] and was later improved by Een et.
al in [30].

A.6 Temporal induction

Temporal induction carries an inductive proof of the prop-
erty over the time steps of a sequential circuit. Similar to a
standard inductive proof, it consists of a base case and an
inductive hypothesis. These steps are typically expressed as
SAT problems to be solved by traditional SAT solvers. k-
step induction strengthens simple temporal inductive proofs
by assuming that the property holds for the first k time steps
(states), i.e. a longer base case needs to be proven [31]. Since
the target is to prove unsatisfiability (proving that the nega-
tion of the property is unsatisfiable), if the base case is satisfi-
able, a counter-example is returned. Otherwise, the induction
step is checked by assuming that the property holds for all the
states except the last one (the (k + 1)’th state) [14].

A.7 Interpolation

Given an unsatisfiable formula A ∧ B, an interpolant I is a
formula such thatA =⇒ I , I∧B is unsatisfiable and I con-
tains only common variables to A and B. Given a system M ,
a property p and a bound k, interpolation based verification
starts by attempting bounded model-checking (BMC) with
the bound k. If a counter-example is found, the algorithm re-
turns. Otherwise, it partitions the problem into a prefix pre
and a suffix suf , such that the problem is the conjunction of
the two. Then the interpolant I of pre and suf is computed,
it represents an over-approximation of the set of states reach-
able in one step from the initial state of the algorithm. If I
contains no new states, a fixpoint is reached and the property
is proved. Otherwise, the algorithm reiterates and replaces the
initial states with new states added by I [3].

	Introduction
	Preliminaries and notation
	BIP - Behavior interaction priority
	One loop programs (OLP) - syntax and semantics
	From OLP to sequential circuits
	BIP to OLP
	Implementation and evaluation
	Related Work
	Conclusion and future work
	ABC reduction and verification techniques

