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Abstract. Policy enforcers are sophisticated runtime components that
can prevent failures by enforcing the correct behavior of the software.
While a single enforcer can be easily designed focusing only on the be-
havior of the application that must be monitored, the effect of multiple
enforcers that enforce different policies might be hard to predict. So far,
mechanisms to resolve interferences between enforcers have been based
on priority mechanisms and heuristics. Although these methods provide
a mechanism to take decisions when multiple enforcers try to affect the
execution at a same time, they do not guarantee the lack of interference
on the global behavior of the system.
In this paper we present a verification strategy that can be exploited to
discover interferences between sets of enforcers and thus safely identify
a-priori the enforcers that can co-exist at run-time. In our evaluation,
we experimented our verification method with several policy enforcers
for Android and discovered some incompatibilities.

Keywords: proactive library, self-healing, Android, resource usage, API,
policy enforcement, runtime enforcement

1 Introduction

Software ecosystems provide new challenges to verification and validation tech-
niques. An ecosystem is typically composed of a marketplace, where software
applications are published and made available to the public, application devel-
opers, who implement and share their applications through the marketplace,
and customers, who search, download, and use the applications in the market-
place [22]. Notable examples of marketplaces are Android’s Google Play, and
Apple’s App Store.

Marketplaces represent useful channels that enable direct communication
between developers and customers. However, marketplaces also expose customers
to several threats. In fact, it is extremely hard to control the quality of every
application published on a marketplace, and thus marketplaces end up containing
a number of unreliable, unsafe, and unstable applications [5, 7, 36, 34, 37].

In addition to enriching marketplaces with advanced mechanisms to check the
quality of the published applications [25], customers can exploit richer execution
environments to protect themselves from the execution of untrusted software
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applications. In this context, the policy enforcement technology provides mech-
anisms to automatically detect the violations of correctness policies and enforce
the correct behavior at runtime. These solutions have been already experienced
in several contexts, including the Android environment [8, 16, 32, 24, 12].

While activating a single enforcer that can guarantee that a given policy is
satisfied is not problematic, there might be issues when multiple policies should
be guaranteed simultaneously. In fact, the policy enforcers might interfere one
with the other, introducing unexpected behaviors whose effect might be even
worse than the result produced by the monitored application without the en-
forcers.

So far, the problem of interfering enforcers has been addressed using priority
mechanisms that can disambiguate at runtime which enforcer to execute when
multiple enforcers need to react to a same event in different ways [9]. While these
mechanisms can be effective in some cases, they suffer from three limitations:

– Direct Interference: Priority mechanisms are not adequate when enforcers
have to modify a same execution at multiple points to guarantee a sound
behavior of the application. For instance, an enforcer may automatically
release the microphone acquired by an app when the app is paused, but may
also need to acquire and assign the microphone back to the same app when
the execution of the app is resumed. If the conflict resolution policy let the
enforcer modify the execution only once, for instance because a second higher
priority (interfering) enforcer prevents the acquisition of the microphone by
the first enforcer, the resulting execution may produce highly undesirable
results. For instance, the app may fail once the execution is resumed because
the formerly acquired microphone is not available anymore.

– Indirect Interference: Enforcers might interfere even if not impacting on ex-
actly the same events. For instance, two enforcers may independently act
on two dependent resources (e.g., the Android media recorder and the mi-
crophone) producing an interference. In fact, releasing the Android media
recorder also releases the microphone which cannot be used anymore un-
less it is acquired again. Thus an enforcer monitoring the usage of the media
recorder while enforcing certain policies may interfere with an enforcer doing
the same for the microphone.

– Late Detection of Interferences: Even when interferences are on the same
events, priority mechanisms are heuristic solutions that operate at runtime
to guarantee that at least one policy is correctly enforced. On the contrary, an
a-priori analysis of possible interferences allows to detect the interferences in
advance. This information is useful both to users, who might be prohibited to
activate incompatible sets of enforcers, and to developers, who could redesign
the enforcers in such a way that all the policies are correctly enforced.

In this paper, we present an interference detection strategy that overcomes
the aforementioned problems for enforcers defined as edit automata, which is the
most used formalism to define the behavior of enforcers that can manipulate
executions [27]. The analysis is designed for enforcers that prevent applications
from misusing the resources available in their execution environment. In order
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to apply the analysis, the lifecyle of the applications, which is the same for every
application, and the usage protocol of the resources, which does not depend on
the specific app that uses the resources, must be known.

Note that if a set of enforcers that monitor interactions with some resources
does not interfere according to our analysis, they can be activated together
regardless of the specific applications that are executed, because the application
lifecycle and the usage policies are always the same.

We applied the analysis to 25 enforcers designed to guarantee that Android
apps use resources appropriately, and we have been able to verify the compati-
bility of the enforcers, also discovering some interferences.

The paper is organized as follows. Section 2 provides background definitions.
Section 3 introduces a motivating case that is used to illustrate the analysis.
Section 4 presents the analysis for interference detection. Section 5 presents our
experience with Android. Finally, Sections 6 and 7 discuss related work and
provide final remarks, respectively.

2 Background

This section defines three concepts that are exploited in the paper to define the
interference analysis: policies, edit automata, and I/O automata.

2.1 Policy

Let Σ denote a finite set of observable program actions a. An execution σ is
a finite or infinite non-empty sequence of actions a1; a2; . . . ; an. The notation
σ[i] denotes the i-th action in the sequence. The notation σ[. . . i] represents the
prefix of σ until the i-th actions, and |σ| represents the length of the sequence.
The symbol ε denotes the empty sequence, that is, an execution with no actions.

Σ∗ is the set of all finite sequences, while Σω is the of infinite sequences.
Finally Σ∞ is the set of all the sequences (both finite and infinite).

Given a set of executions χ ⊆ Σ∞, a policy is a predicate P on χ. A policy
P is satisfied by a set of executions χ if and only if P (χ) evaluates to true.

Policy Example. The Android framework includes the MediaPlayer API for
the playback of audio/video files and streams. To use the media player in their
applications, developers must obtain an instance of a MediaPlayer by invoking
the class method create(). The acquired media player instance can be released
by invoking the instance method release().

According to the Android documentation, to make the media player available
to other applications and to avoid resource leaks, the usage of the MediaPlayer

should be governed by the following policy:

Policy 1: “if you are using a MediaPlayer and your activity receives a
call to onStop, you must release the MediaPlayer.” [2]
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For the purpose of the analysis presented in this paper, we represent policies
as CTL formulas [6]. We use CTL because it is the language supported by UP-
AAL [10], which is the verification tool that we used in the empirical evaluation.
However, our properties express linear-time behaviour, thus they could also be
expressed with LTL. For example, Policy 1 can be defined as

AG(MediaPlayer.create⇒
AXA[¬Activity.onStop W (MediaPlayer.release)])

which states that “once the MediaPlayer is created, the Activity can be stopped
only after the MediaPlayer’ has been released”.

2.2 Edit Automata

Edit automata can be used to describe how policies can be enforced at run-
time [26]. An edit automaton is an abstract machine that specifies how an ex-
ecution is transformed by inserting and suppressing actions. More formally, an
edit automaton AE is a tuple < Σ,Q, q0, δ > where:

– Σ is a finite or countably infinite set of actions;
– Q is a finite or countably infinite set of states;
– q0 is the initial state;
– δ : Q × Σ → Q × Σ∗ is the transition function that maps a state and an

action to the new state reached by the automaton and the finite or empty
sequence of actions emitted by the automaton that is indicated by the second
component in the returned pair. When the emitted action is the same as
the accepted action, the automaton does not affect the execution. In the
other cases, the actions that are actually executed are influenced by the edit
automaton. Action suppression is represented with the empty sequence.

0

1
onCreate

2

create

release

onCreate

onStop

onStop

create

release

onStop

release;onStop

Fig. 1. Edit Automaton EAp1 enforcing Policy 1
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Example of edit automata. Figure 1 shows the EAp1 edit automaton, which can
enforce policy Policy 1 at runtime. The symbol above a transition indicates the
input symbol accepted by the automaton, while the sequence below a transi-
tion indicates the output sequence emitted by the automaton when the input
sequence is accepted.

In the initial state (state 0), EAp1 accepts a call to the onCreate callback
method, which represents the creation of an activity3. The creation of an activity
causes a transition from state 0 to state 1 in the model. When the activity is
destroyed, the onStop callback is emitted and the model moves back to state
0. In these cases, the execution is never modified, that is, the transition always
emits the accepted action.

State 1 also accepts a call to the create method, which returns an in-
stance of the MediaPlayer. This case corresponds to the app starting to use
the MediaPlayer. It causes a transition to state 2 in the model, while the execu-
tion is left unaltered by the edit automaton. State 2 is the state that can detect
the violation of the resource usage policy, if any. In fact, if the onStop callback
method is detected, the application is paused without releasing the MediaPlayer.
The automaton fixes the execution by intercepting the call to onStop and emit-
ting the sequence release;onStop (transition from state 2 to state 0), which
forces the release of the MediaPlayer. On the contrary, if release is emitted,
Policy 1 is satisfied and the model does not change the execution.

2.3 I/O Automata

An input/output automaton is a labeled state machine typically used for mod-
elling the behavior of reactive and distributed systems [28]. Formally, an I/O
automaton A is a tuple 〈states, start , sig , trans〉, where:

– states is a finite or infinite set of states;

– start ⊆ states is a set of initial states;

– sig is the set of actions of A partitioned into input actions in, internal actions
int and output actions out .

– trans ⊆ states × sig × states is a set of transitions such that for every state
s ∈ states and every input action π ∈ in, there is a transition (s, π, s′) ∈
trans.

Input and output actions enable the communication between the automaton and
the environment: the environment controls input actions, while the automaton
controls the output (and internal) actions. For any state s and action π, if I/O
automaton A has some transitions of the form (s, π, s′), then π is said to be
enabled in s. Since an I/O automaton is unable to block any input, input actions
in set in should be enabled in every state.

3 Android apps are composed of multiple components called activities
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3 Motivating Example

This section presents a motivating example that is also a case of interference that
we discovered in our evaluation. It consists of two enforcers that work correctly
when used individually, but that interfere when activated simultaneously. The
two enforcers implement different usage policies for the Android MediaPlayer

API.

0 1

onCreate

onStop
0 1

create

release
2

start

stop

release

(a) Activity automaton (b) MediaPlayer automaton

¬onCreate

Fig. 2. System Automata for the MediaPlayer Example.

In order to describe the two enforcers, we also need to specify the behavior
of a generic Android application, in terms of the lifecycle events, and the usage
protocol of the MediaPlayer API. Note that these two elements are invariant
for every application, that is, regardless of the application that is executed at
runtime, the lifecycle events and the usage protocol of a MediaPlayer are always
the same.

To keep the example small and simple, we only represent the actions that are
relevant to the policies that we want to enforce. Figure 2 (a) shows the model of
the Android activity lifecycle [4] limited to the creation and the stopping of an
activity. Figure 2 (b) shows the usage protocol for the MediaPlayer API derived
from the Android specifications [2].

In this example, we consider the enforcement of two policies extracted from
technical and scientific documentation about the MediaPlayer API. The first
policy is Policy 1 introduced in Section 2, while the second policy about stopping
the execution of the player is the following one:

Policy 2: “if you started a MediaPlayer and your activity receives a call
to onStop, you must stop the MediaPlayer.” [37]

The edit automaton EAp1 that can enforce Policy 1 is shown in Figure 1
and has been discussed in Section 2.

Figure 3 shows EAp2, the edit automaton that can enforce Policy 2. As long
as the MediaPlayer is started after the activity has been created and is stopped
before the activity is stopped, the enforcer does not change the execution. How-
ever, if the activity is stopped without first stopping the MediaPlayer (transition
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from state 2 to state 0), the enforcer changes the execution inserting the stop

action, before the execution of onStop.

0

1
onCreate

2

start

stop

onCreate

onStop

onStop

start

stop

onStop

stop;onStop

Fig. 3. Edit Automaton EAp2 enforcing Policy 2

The enforcers in Figures 1 and 3 can interfere if they are both in their re-
spective states 2 and the Android framework produces the onStop callback. In
this case, both enforcers capture the onStop callback and attempt to change the
execution. The interference occurs when the enforcer for Policy 1 changes the
execution before the enforcer for Policy 2.

In particular, if the automaton enforcing Policy 1 outputs the release of
the MediaPlayer instance before the other enforcer outputs the stop action,
the MediaPlayer instance will be released, and the system will reach a deadlock
state. In fact, the enforcer for Policy 2 is no longer able to invoke the stop

operation of the MediaPlayer instance because this call is not accepted by the
MediaPlayer API protocol as shown in Figure 2 (b). Since the model of the
resource forbids to call method stop from state 0, the interference results in a
deadlock at the level of the models. In practice, the call to stop is issued by the
enforcer and the execution fails due to an exception produced by the resource.

In the next section, we show how this conflict can be detected in advance
and then eliminated by the developers.

4 Interference Analysis

The goal of the interference analysis is to check whether a set of policy enforcers
can jointly operate without causing any interference. An interference occurs
when two or more enforcers are no longer able to enforce the policies that they
can enforce individually. More formally, let us assume that Enf 1 and Enf 2 are
two enforcers that can operate in environment Env to enforce policies Policy1

and Policy2, respectively. We write Env ||Enf 1 |= Policy1 and Env ||Enf 2 |=
Policy2. The two enforcers Enf 1 and Enf 2 interfere if Env ||(Enf 1||Enf 2) 6|=
Policy1 or Env ||(Enf 1||Enf 2) 6|= Policy2 or Env ||(Enf 1||Enf 2) includes dead-
locks. This is exactly the case of the motivating example where the enforcer for
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EnforcementModelsPolicies

Android Libraries
Android Libraries
Android Libraries
Framework	Models

stop;onStop

onStop

release;onStop

onStop

C C

onStop!

onStop? release!

C C

onStop!

onStop? stop!

<<Enforces>>

C C

onStop!

onStop? stop!

C C

release!

release!

stop!

I/O	Automaton
Transformation

(1)

Enforcements
Composition

(2)
<<Enforces>>

Interference
Detection

(3)

I/O Automata

Composite Enforcer

Fig. 4. Interference Analysis.

Policy 1 can release the MediaPlayer instance before the enforcer for Policy 2
stops the player causing a deadlock.

In our setting, the environment consists of an Android app that uses multiple
resources. We represent the generic behavior of an app and the resources using
one model for the app and one model for each resource, as done for the example
in Figure 2. We call these models the framework models. Note that although we
first experienced this solution in the Android environment, it is indeed valid in
any environment where applications must obey to a pre-defined lifecycle and re-
sources must be used according to a protocol, as it happens in many frameworks
for the development of Web and server-side applications.

Figure 4 shows the overall structure of the interference analysis that starting
from a set of enforcement models, the corresponding policies, and a set of frame-
work models verifies whether the enforcers can coexist to enforce the policies
without causing interferences. Since the enforcers, the apps, and the resources
are communicating components, we run our analysis representing the behavior of
each component as an I/O automaton. Since I/O automata provide good expres-
sive power and a flexible framework for modeling the behavior of communicating
components, they are also able to precisely capture the behavior of the compo-
nents involved in real-world enforcement tasks. We thus first map the enforcers,
specified as edit automata, into their corresponding I/O automata (see the I/O
automaton transformation step in Figure 4). We then compose the enforcers to
derive the composite enforcer, which is a single model that encapsulates the col-
lective behavior of all the enforcers considered in the analysis (see the enforcers
composition step in Figure 4). To check for interferences, the analysis composes
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the composite enforcer with the framework models and checks for the satisfac-
tion of the policies and for the absence of deadlocks on the resulting model (see
the interference detection step in Figure 4).

In the rest of this section, we describe these three steps in details.

4.1 I/O Automaton Transformation

1

2

onCreate?

onStop!

onStop?

start?

stop!

onStop?
stop!

0

C

onCreate!

C

onStop!

C start!

C

stop?

C C

1

2

onCreate?

onStop!

onStop?

create?

release!

onStop?
release!

0

C

onCreate!

C

onStop!

C create!

C

C C

release?

(a) Enforcer of Policy 1 (b) Enforcer of Policy 2

Fig. 5. I/O Automaton Transformation of the Running Example: a) I/O automaton
IOAp1 for Policy 1, b) I/O automaton IOAp2 for Policy 2.

In this step, each model of enforcer encoded as an edit automaton AE =
〈Σ,Q, q0, δ〉 is transformed into the corresponding I/O automaton A = 〈states,
start , sig , trans〉 according to the strategy defined below.

Since each transition in an edit automata can accept an action and produce
multiple actions in response, this same behavior requires multiple transitions,
and thus multiple states, to be represented in an I/O automaton. To this end,
we define states as the union of the origStates, which are the same states than the
states in the edit automaton, and the newStates, which are the additional states
introduced in the I/O automaton to produce sequences of actions consistently
with the transitions in the edit automaton. Since the need of these intermediate
states depends on the length of the sequences that are emitted by each transition
of the edit automaton, we directly exploit these sequences in the representation
of the states. More formally, states = origStates ∪ newStates, where:

– origStates = {〈q, ε〉 | q ∈ Q},
– newStates = {〈q, s〉 | q ∈ Q, s = a;σ[...i], a ∈ in, δ(q, a) = 〈q′, σ〉, i < |σ|},

To preserve the intuition that these sequences of actions should be emitted
quickly in response to an input, we define all the states in newStates as commit-
ted states. The initial state is the same as the one of the edit automaton, thus
start = {〈q0, ε〉}.

The operations that can be performed by the edit automaton are duplicated
into input and output operations. Actually, whether an operation is an input or
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an output depends on whether it is accepted or emitted by a transition in the
edit automaton. More formally, sig = in ∪ int ∪ out, where: in = {a? | a ∈ Σ},
int = {}, out = {a! | a ∈ Σ}.

We distinguish two main cases for the transitions. When the transition in
the edit automaton suppresses the action, that is, no action is emitted, there
is no need of introducing additional states in the I/O automaton to map the
transition. Otherwise, extra states and transitions are needed. Formally, trans =
suppression ∪ insertion, with suppression = {〈〈q, ε〉, a, 〈q′, ε〉〉 | q, q′ ∈ Q, a ∈
in, δ(q, a) = 〈q′, ε〉}. In the case of insertion, the transitions in the edit automa-
ton requires multiple transitions in the I/O automaton to be represented cor-
rectly. We thus distinguish three kinds of transitions that may occur in insertion:
the first transition of a sequence, that is a transition that starts from a state
in origStates and reaches a state in newStates, an intermediate transition of a
sequence, that is a transition that starts from a state in newStates and reaches a
state in newStates, and finally the last transition of a sequence, that is a transi-
tion that starts from newStates and reaches a state in origStates. More formally,
insertion = startInsertion ∪ ongoingInsertion ∪ endInsertion, where:

– startInsertion = {〈〈q, ε〉, a, 〈q, a;σ[i]〉〉 | q ∈ Q, a ∈ in, δ(q, a) = 〈q′, σ〉}
– ongoingInsertion = {〈〈q, a;σ[...i]〉, σ[i], 〈q, a;σ[...i+ 1]〉〉 | q ∈ Q, a ∈ in,
δ(q, a) = 〈q′, σ〉, σ[i] ∈ out, 0 < i < |σ|}

– endInsertion(A) = {〈〈q, a;σ[...|σ|]〉, σ[|σ|], 〈q′, ε〉〉 | q, q′ ∈ Q, a ∈ in, δ(q, a) =
〈q′, σ〉, σ[|σ|] ∈ out}.

Figure 5 shows the output of the I/O automaton transformation step applied
to the running example. Figures 5 (a) and 5 (b) show the I/O automata derived
from the enforcement models for Policy 1 and Policy 2, respectively. The num-
bered states are in origStates and the numbering is consistent with the states in
the original edit automaton. States marked with c are the committed states in
newStates.

The equivalence between the languages accepted by original edit automaton
and the corresponding I/O automaton is pretty straightforward. By construction,
every transition t in the edit automaton has a corresponding linear sequence of
transitions that starts by accepting an input action and continue producing the
output actions consistently with t, and viceversa. These sequences are also linked
to origStates consistently with the edit automaton and the initial state is also
preserved.

The only difference that the I/O automaton introduces with respect to the
corresponding edit automaton is in the composition of multiple models. In fact,
an output sequence emitted by the edit automaton in response to an event is
atomic, while the corresponding sequence emitted through multiple states and
transitions in the I/O automaton could be interrupted, although the presence of
the committed states guarantee that this may happen only from another com-
mitted state. This difference is desirable in our context since the atomicity of the
sequence could not be guaranteed in practice and the behavior of the enforcers
should be verified without considering this property, as we do by running our
analysis on the I/O automaton derived from the edit automaton.
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onStop!onStop?
stop!

C
CC release!

C
stop! release!

0,02,2

Fig. 6. Excerpt of Composite Automaton

4.2 Enforcers Composition

This step derives a composite enforcer which represents the collective behavior
of all the enforcers. Since the behavior of the enforcers must be synchronized,
the interference analysis derives the composite automaton using CSP (Commu-
nicating Sequential Processes)-like synchronization [21]. Thus the states of the
composite automaton are the cartesian product of the states of the composed
automata and its behavior is the interleaving of the behaviors of the composed
I/O automata.

Considering the I/O automata derived in the motivating example (Figure 5),
the state space of the resulting composite I/O automaton CAp1,p2 is represented
by pairs 〈s1, s2〉, where s1 is a state of I/O automaton IOAp1, and s2 is a state
of I/O automaton IOAp2. Figure 6 shows the portion of the CAp1,p2 responsible
for the interference. When the onStop? action is executed and CAp1,p2 is in
state 〈2, 2〉 the model can produce both the sequences stop!;release! and
release!stop!. If release!stop! is produced, the policies are not enforced
correctly.

4.3 Interference Detection

This step verifies that all the policies are correctly enforced by the composite
enforcer without introducing any deadlock in the system. To this end, the anal-
ysis reconstructs the global behavior of the system by composing the composite
enforcer with both the framework models (i.e., the generic model of an app life-
cycle and the models of the used resources) and an environment model which
is simply used to generate every possible combination of actions that the app
and the resources can produce (i.e., this model is used to consider every possible
execution scenario in the analysis).

In this case, the composed models are I/O automata that communicate us-
ing binary synchronization channels which let pairs of automata synchronize
on shared input-output actions (e.g., the output action a! with the input ac-
tion a?). Since every action emitted by the environment must be first inter-
cepted by the composite enforcer, which reacts by generating the actions for
the app and the resources, the analysis automatically renames actions to re-
flect the way components communicate in practice. In particular, the action
produced by the environment and the corresponding actions in the framework
models are renamed adding different suffixes (e.g., the onCreate() method is
changed into onCreate-env()! when emitted from the environment, and into
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onCreate-app()? when received by the app). This simple strategy prevents di-
rect communication between the environment and the framework models. The
actions in the composite enforcer are renamed to receive actions from the envi-
ronment and emit actions for the app and the resources. For instance, if a tran-
sition of the enforcer receives onCreate()? and the following transition emits
onCreate()!, the actions are renamed into onCreate-env()?, to receive the ac-
tion from the environment, and onCreate-app()! to propagate the action to the
app. This simple renaming strategy is sufficient to fully model a communication
mediated by the enforcers.

To check if the enforcers can interfere, the interference analysis checks all the
enforced policies specified as Computation Tree Logic (CTL)-like formulas [13]
on the model resulting from the composition of the framework models, the com-
posite enforcer, and the environment model after renaming (of course the name
of the actions in the CTL formulas are renamed consistently with the model).
An interference is detected if the model checker, in our case UPAAL [10], reports
a counterexample that violates any policy, or the system may reach a deadlock
state.

In the running example, an interference is detected because the system may
reach a deadlock state. Indeed, the resulting automaton cannot proceed with the
execution because the stop action cannot be executed on the MediaPlayer once
it has been released. The analysis identifies the problem as a deadlock because
the model of the resource does not allow the execution of stop after release.
In practice, the enforcer anyway tries to invoke the stop method on the resource
and the execution fails due to an exception returned by the resource.

5 Analysis of Resource Usage Policies in Android

To evaluate the effectiveness of the interference analysis, we focus on misuses of
the APIs that provide access to critical system resources, such as camera and
the media player. Misuses of these APIs are frequent in Android [20, 37] and
often cause resource leaks which lead to performance degradation and crashes.

To identify the correctness policies that can be enforced on Android apps
that interact with system resources, we exploited the recommendations about
API usage derived from the Android documentation [1, 3] by Wu et al. [37]. We
identified ten different resources that must satisfy multiple policies, for a total of
twenty-five policies. We encoded each policy as a CTL formula and defined the
corresponding enforcer. We finally used the interference analysis presented in
this paper to detect interferences between enforcers, that is, enforcers that work
well in isolation but fail to enforce the policies when used jointly with other
enforcers.

Table 1 shows the obtained results. Column API indicates the API that
provides access to a specific resource. Below the name of the API we report
the name of its package. Column Resource Usage Policy lists the set of policies
that each API must satisfy. We have written the policies in the form ”<acquire
method>/<release method>: <callback>” which should be interpreted as:
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Table 1. Interference Analysis of Resource Usage Policies

API Resource Usage Policy Interference

BluetoothAdapter
(android.bluetooth)

enable/disable: onDestroy
NostartDiscovery/cancelDiscovery: onDestroy

getProfielProxy/closeProfileProxy: onDestroy

Camera
(android.hardware)

lock/unlock: onPause

Yes
open/release: onPause

startFaceDetection/stopFaceDetection: onPause
startPreview/stopPreview:onPause

AudioManager
(android.media)

requestAudioFocus/abandonAudioFocus: onPause
NostartBluetoothSco/stopBluetoothSco: onPause

loadSoundEffects/unloadSoundEffects: onPause

MediaCodec
(android.media)

createDecoderByType/release: onPause
Yes

start/stop: onPause

MediaPlayer
(android.media)

<init>/release: onStop
Yescreate/release: onStop

start/stop: onStop

MediaRecorder
(android.media)

<init>/release: onStop
Yes

start/stop: onStop

NfcAdapter
(android.nfc)

enableForegroundDispatch/
disableForegroundDispatch: onPause No
enableForegroundNdefPush/
disableForegroundNdefPush: onPause

RemoteCallbackList
(android.os)

beginBroadcast/finishBroadcast: onDestroy
No

register/unregister: onDestroy

Surface
(android.view)

<init>/release: onDestroy
Yes

lockCanvas/unlockCanvasAndPost: onDestroy

SurfaceHolder
(android.view)

addCallback/removeCallback: onDestroy
No

LockCanvas/unlockCanvasAndPost: onDestroy

if the app invokes<acquire method>, it should also invoke<release method>
when a call to <callback> is received, unless <release method> has been al-
ready invoked before. Column Interference indicates the result of the interference
analysis of the enforcers that enforce the specified policies: No indicates that the
enforcers combined together are still able to successfully enforce all the policies,
while Yes indicates that an interference among the enforcers has been detected.

In order to observe the impact that interferences have on the actual execution
of an app, we have implemented and deployed the analyzed enforcers on a real
device as described in [32]. After activating the interfering enforcers and opening
an app that violates the policy, we execute a test case that reproduces the
scenario with the misuse and we observed that in all the cases interference caused
the crash of the app.



14 O. Riganelli et al.

Interestingly, we reported an interference for 5 out of 10 analyzed APIs. This
result shows that interference among policy enforcers can be a major obstacle
to the successful deployment of the policy enforcers technology. The mechanism
presented in this paper can be a useful tool to avoid these situations. It can be
used to decide which enforcers to activate and which enforcers to not activate. For
instance, it is not possible to activate the four enforcers specified for the Camera

API, but our analysis reveals that the first and third enforcers of the camera are
compatible and thus can be activated together. Moreover, the developers can
exploit this result to redesign some of the enforcers.

This result also suggests that sets of enforcers cannot be designed in a com-
pletely independent way, but their co-existence must be planned in advance and
reflected in their definition. In this paper we do not discuss how to evolve enforces
in this direction, we left this research direction for future work.

6 Related Work

Runtime solutions for avoiding and mitigating the impact of failures have been
studied in many different contexts, including Web applications [29], mobile ap-
plications [31, 32, 16, 15], operative systems [35], and Cloud environments [14].

In the context of the Android environment, runtime enforcement mechanisms
have been focused on the enforcement of privacy [16] and resource usage poli-
cies [32], obtained respectively by applying mechanisms for detecting and dis-
abling suspicious method calls, and by augmenting classic Android libraries with
proactive mechanisms able to automatically suppress and insert API calls. Both
approaches are not intrinsically limited to security and resource usage policies,
but could be potentially exploited to generally enforce correctness policies.

So far, these approaches focused on the definition of the enforcement mech-
anisms and paid little attention to the interference between mechanisms, which
might be an issue when multiple policies must be enforced. The work presented in
this paper is complementary to these approaches because it provides an analysis
framework for checking the compatibility between enforcers.

The problem of handling interferences has been considered in the work by
Bauer et al. [9]. In their work, Bauer et al. present a framework that can be used
by the developers to specify how the enforcement mechanism should behave
when multiple enforcers directly interfere, that is, multiple enforcers try to alter
an execution as a reaction to a same action. To address these situations, Bauer et
al. [9] define several composition operators that can be used to obtain a strategy
to solve these situations. General composition operators for enforcers, which
might be potentially used to reason on interferences, have been also defined
by Falcone et al. [19]. Compared to these strategies, the analysis presented in
this paper can address a broader set of situations, not only the direct inference.
Moreover, it can also be exploited to know a-priori if a set of enforcers are
compatible, instead of lately discovering it at run-time, once their interference
or the lack of application of some enforcers may have serious consequences for
the health of the system.
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A body of work formally studied the classes of properties that can be enforced
using different models and languages, with an emphasis on security policies [33,
26, 27, 17, 23]. Interestingly these approaches should be complemented with ap-
propriate analysis routines to check that the result of the enforcement is in line
with what the enforcers are expected to achieve. The gap between the policies
to be enforced and the enforced behaviors has been highlighted by Bielova et
al [11] who show that often there is little guarantee that enforcers fix the bad
sequences in the desired way. This result further stresses the need of analysis
strategies similar to the one presented in this paper.

7 Conclusions and Future Work

Conclusions. The reliability of software applications can be improved by ex-
ploiting advanced execution environments equipped with mechanisms to enforce
correctness policies, such as security [16, 27] and resource usage policies [32, 16].
Although enforcers can be effective when used in isolation, their effect on the
application and the execution environment when executed jointly might be hard
to predict and potentially harmful. In particular, a set of enforcers may fail to
enforce the policies that they are designed to enforce individually.

To address this problem, we presented an analysis framework that can be used
to detect interferences among enforcers. The analysis can be exploited by both
the developers, to improve the enforcement strategies and implement enforcers
that can safely co-exist, and the users, to identify sets of policies that can be
enforced without introducing side-effects.

Our initial evaluation with several enforcers designed to guarantee the correct
usage of multiple Android resources revealed that enforcers may easily interfere.
This result suggests that defining techniques to design interference-free enforcers,
as well as defining efficient and effective verification mechanisms, are important
challenges for the future.

Future work. In this work we present a possible analysis, but there are several
complementary aspects worth to be analyzed. For instance, timing aspects in
runtime enforcement [30, 18] have not been considered, but timing could be an-
other source of interferences. For instance, the joint activation of two enforcers
may successfully cause the enforcement of some security policies, but may cause
serious slow downs that dramatically annoy users.

Finally, while in this work we focused on revealing interferences, we plan to
investigate mechanisms to semi-automatically or automatically fix interferences.
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