MONITORING DECENTRALIZED SPECIFICATIONS

Antoine El-Hokayem Yliès Falcone

Univ. Grenoble Alpes, Inria, CNRS Grenoble, France

(DECENTRALIZED) MONITORING

(Decent.) Monitoring		
0 00 000		

MONITORING (AKA RUNTIME VERIFICATION) \hookrightarrow Overview

- Lightweight verification technique
- Checks whether a run of a program conforms to a specification (As opposed to model checking which verifies all runs)
- Monitors are synthesized and integrated to observe the system
- Monitors determine a verdict: $\mathbb{B}_3 = \{\top, \bot, ?\}$
 - \top (true): run complies with specification
 - \perp (false): run does not comply with specification
 - ?: verdict cannot be determined (yet)

(Decent.) Monitoring		
000000		

$\textsf{MONITORING} \hookrightarrow \textsf{System Abstraction}$

1. Components (\mathcal{C})

Example

1. $\{c_0, c_1\}$ (Temp sensor + Fan)

(Decent.) Monitoring		
000000		

$\textsf{MONITORING} \hookrightarrow \textsf{System Abstraction}$

- 1. Components (\mathcal{C})
- 2. Atomic propositions (AP)

Example

- 1. $\{c_0, c_1\}$ (Temp sensor + Fan)
- 2. $\{t_{\rm low}, t_{\rm med}, t_{\rm high}, t_{\rm crit}, fan\}$ (e.g., $t_{\rm crit}$ "temperature critical")

$\textbf{MONITORING} \hookrightarrow \textbf{System Abstraction}$

- 1. Components (\mathcal{C})
- 2. Atomic propositions (AP)
- 3. Observations/Events ($AP \rightarrow \mathbb{B}_2$, possibly partial)

Example

- 1. $\{c_0, c_1\}$ (Temp sensor + Fan)
- 2. $\{t_{\rm low}, t_{\rm med}, t_{\rm high}, t_{\rm crit}, fan\}$ (e.g., $t_{\rm crit}$ "temperature critical")
- 3. $\{\langle t_{low}, \top \rangle, \langle fan, \bot \rangle\}$ "temperature is low and fan is not on"

$\textbf{MONITORING} \hookrightarrow \textbf{System Abstraction}$

- 1. Components (\mathcal{C})
- 2. Atomic propositions (AP)
- 3. Observations/Events ($AP \rightarrow \mathbb{B}_2$, possibly partial)
- 4. Trace: a sequence of events for each component (partial function)

Example

- 1. $\{c_0, c_1\}$ (Temp sensor + Fan)
- 2. $\{t_{\rm low}, t_{\rm med}, t_{\rm high}, t_{\rm crit}, {\rm fan}\}$ (e.g., $t_{\rm crit}$ "temperature critical")
- 3. { $\langle t_{\text{low}}, \top \rangle, \langle \text{fan}, \bot \rangle$ } "temperature is low and fan is not on" 4. $\begin{bmatrix} 0 \mapsto c_0 & \mapsto \{ \langle t_{\text{low}}, \top \rangle, \langle t_{\text{med}}, \bot \rangle, \ldots \} & 0 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \bot \rangle \} \\ 1 \mapsto c_0 & \mapsto \{ \langle t_{\text{med}}, \top \rangle, \ldots \} & 1 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \bot \rangle \} \\ 2 \mapsto c_0 & \mapsto \{ \langle t_{\text{high}}, \top \rangle, \ldots \} & 2 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \top \rangle \} \end{bmatrix}$

$\textbf{MONITORING} \hookrightarrow \textbf{System Abstraction}$

- 1. Components (\mathcal{C})
- 2. Atomic propositions (AP)
- 3. Observations/Events ($AP \rightarrow \mathbb{B}_2$, possibly partial)
- 4. Trace: a sequence of events for each component (partial function)

Example

- 1. $\{c_0, c_1\}$ (Temp sensor + Fan)
- 2. $\{t_{\rm low}, t_{\rm med}, t_{\rm high}, t_{\rm crit}, fan\}$ (e.g., $t_{\rm crit}$ "temperature critical")
- 3. { $\langle t_{\text{low}}, \top \rangle, \langle \text{fan}, \bot \rangle$ } "temperature is low and fan is not on" 4. $\begin{bmatrix} 0 \mapsto c_0 & \mapsto \{ \langle t_{\text{low}}, \top \rangle, \langle t_{\text{med}}, \bot \rangle, \ldots \} & 0 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \bot \rangle \} \\ 1 \mapsto c_0 & \mapsto \{ \langle t_{\text{med}}, \top \rangle, \ldots \} & 1 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \bot \rangle \} \\ 2 \mapsto c_0 & \mapsto \{ \langle t_{\text{high}}, \top \rangle, \ldots \} & 2 \mapsto c_1 & \mapsto \{ \langle \text{fan}, \top \rangle \} \end{bmatrix}$

 $\{\langle t_{\mathrm{low}},\top\rangle,\langle \mathrm{fan},\bot\rangle,\ldots\}\cdot\{\langle t_{\mathrm{med}},\top\rangle,\langle \mathrm{fan},\bot\rangle,\ldots\}\cdot\{\langle t_{\mathrm{high}},\top\rangle,\langle \mathrm{fan},\top\rangle,\ldots\}$

(Decent.) Monitoring		
000000		

$\textsf{MONITORING} \text{ USING AUTOMATA} \hookrightarrow \textsf{Example}$

"Fan must always be turned on when temperature is high"

1. At
$$t = 1$$
, from q_0 :

(Decent.) Monitoring		
000000		

MONITORING USING AUTOMATA \hookrightarrow Example

"Fan must always be turned on when temperature is high"

1. At
$$t = 1$$
, from q_0 :
11 Observe thigh

fan

(Decent.) Monitoring		
000000		

1.

MONITORING USING AUTOMATA \hookrightarrow Example

"Fan must always be turned on when temperature is high"

At
$$t = 1$$
, from q_0 :
1.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
1.2 Eval $\begin{array}{c|c} \neg t_{\text{high}} & \bot \\ \hline t_{\text{high}} & \top \end{array}$

(Decent.) Monitoring		
000000		

1.

MONITORING USING AUTOMATA \hookrightarrow Example

"Fan must always be turned on when temperature is high"

At
$$t = 1$$
, from q_0 :
1.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
1.2 Eval $\begin{array}{c|c} \neg t_{\text{high}} & \bot \\ \hline t_{\text{high}} & \top \end{array}$

2. At
$$t = 2$$
, from q_1 :

(Decent.) Monitoring		
000000		

MONITORING USING AUTOMATA \hookrightarrow Example

"Fan must always be turned on when temperature is high"

1.1 Observe
$$\begin{array}{c|c} t_{\text{high}} & \top \\ \hline t_{\text{high}} & \top \\ \hline fan & \bot \\ \hline t_{\text{high}} & \top \\ \hline t_{\text{high}} & \top \\ \end{array}$$

 $1 \quad \Lambda + + \quad 1 \quad \text{fmann} \quad \alpha$

2. At
$$t = 2$$
, from q_1 :
2.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$

(Decent.) Monitoring		
000000		

2.

"Fan must always be turned on when temperature is high"

1. At
$$t = 1$$
, from q_0 :
1.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
1.2 Eval $\begin{array}{c|c} \neg t_{\text{high}} & \bot \\ \hline t_{\text{high}} & \top \end{array}$
2. At $t = 2$, from q_1 :
2.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
2.2 Eval $\begin{array}{c|c} fan \land \neg t_{\text{high}} & \bot \\ \hline fan \land t_{\text{high}} & \bot \end{array}$

(Decent.) Monitoring	EHE	Decentralized Specifications	THEMIS	
0000000				

2.

"Fan must always be turned on when temperature is high"

1. At
$$t = 1$$
, from q_0 :
1.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
1.2 Eval $\begin{array}{c|c} \neg t_{\text{high}} & \bot \\ \hline t_{\text{high}} & \top \end{array}$
2. At $t = 2$, from q_1 :
2.1 Observe $\begin{array}{c|c} t_{\text{high}} & \top \\ \hline fan & \bot \end{array}$
2.2 Eval $\begin{array}{c|c} fan \land \neg t_{\text{high}} & \bot \\ \hline fan \land t_{\text{high}} & \bot \end{array}$

 $\neg fan$

(Decent.) Monitoring ○OO●○○○				
MONITORING USI	NG AUTOMA	$TA \hookrightarrow Example$		
"Fan must always b	e turned on w	when 1. At $t = 1$, f	from q_0 :	
temperature is high	"	1.1 Obser	$\frac{t_{high}}{fan} \stackrel{\top}{\perp}$	
$\rightarrow^{\text{thigh}}$ t_{high}	fan \wedge thigh	1.2 Eval	$\begin{array}{c c} \neg t_{high} & \bot \\ \hline t_{high} & \top \end{array}$	
$fan \wedge -$	Thigh Tfan	2. At $t = 2$, f	from q_1 :	
		2.1 Obser	$\frac{t_{high}}{fan} \top$	
$G(t_{\rm think})$	$\Rightarrow X$ fan)	[$\mathrm{fan} \wedge \neg t_{\mathrm{high}}$	
G (Unigh -	, 211000	2.2 Eval	$\mathrm{fan}\wedge\mathrm{t_{high}}$	\perp
			¬fan	Т

Monitoring this property requires a central observation point!

(Decent.) Monitoring		
000000		

 \cdot General setting

(Decent.) Monitoring		
0000000		

- $\cdot\,$ General setting
 - $C = \{c_0, \ldots, c_n\}$: components

(Decent.) Monitoring		
0000000		

- $\cdot\,$ General setting
 - $C = \{c_0, \ldots, c_n\}$: components
 - $AP = AP_0 \cup \ldots \cup AP_n$: atomic propositions, partitioned by C

(Decent.) Monitoring		
000000		

- $\cdot\,$ General setting
 - $C = \{c_0, \ldots, c_n\}$: components
 - $AP = AP_0 \cup \ldots \cup AP_n$: atomic propositions, partitioned by C
 - no central observation point

(Decent.) Monitoring		
0000000		

- $\cdot\,$ General setting
 - $C = \{c_0, \ldots, c_n\}$: components
 - $AP = AP_0 \cup \ldots \cup AP_n$: atomic propositions, partitioned by C
 - no central observation point
 - but monitors attached to components

(Decent.) Monitoring		
000000		

 \cdot General setting

(Decent.) Monitoring		
0000000		

- + General setting
- Issues in decentralized monitoring

(Decent.) Monitoring		
0000 00		

- + General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state

(Decent.) Monitoring		
000000		

- + General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)

(Decent.) Monitoring		
000000		

- + General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors

(Decent.) Monitoring		
000000		

- + General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- $\cdot\,$ Existing approaches:

(Decent.) Monitoring		
000000		

- + General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Existing approaches:
 - + based on LTL rewriting unpredictability of monitor performance

- $\cdot\,$ General setting
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Existing approaches:
 - based on LTL rewriting unpredictability of monitor performance
 - all monitors check the same specification inefficiency

(Decent.) Monitoring ○○○○○●○		
GOALS		

(Decent.) Monitoring ○○○○○●○		
GOALS		

1. Aim for predictable behavior

(Decent.) Monitoring ○○○○○●○		
GOALS		

- 1. Aim for predictable behavior
 - Move from LTL \rightarrow Automata

(Decent.) Monitoring ○○○○○●○		
GOALS		

- 1. Aim for predictable behavior
 - Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies

(Decent.) Monitoring ○○○○○●○		
GOALS		

- 1. Aim for predictable behavior
 - * Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies

(Decent.) Monitoring ○○○○○●○		
GOALS		

- 1. Aim for predictable behavior
 - + Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies
 - Centralized specification \rightarrow Decentralized specification

(Decent.) Monitoring ○○○○○●○		
GOALS		

- 1. Aim for predictable behavior
 - + Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies
 - Centralized specification \rightarrow Decentralized specification
 - Monitorability of a decentralized specification
| (Decent.) Monitoring
○○○○○●○ | | |
|---------------------------------|--|--|
| GOALS | | |

Define a methodology of design and evaluation of decentralized monitoring

- 1. Aim for predictable behavior
 - + Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies
 - Centralized specification \rightarrow Decentralized specification
 - Monitorability of a decentralized specification
 - · Define a general decentralized monitoring algorithm

(Decent.) Monitoring ○○○○○●○		
GOALS		

Define a methodology of design and evaluation of decentralized monitoring

- 1. Aim for predictable behavior
 - Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies
 - Centralized specification \rightarrow Decentralized specification
 - Monitorability of a decentralized specification
 - Define a general decentralized monitoring algorithm
- $\star\,$ Extend tooling support for the design methodology

(Decent.) Monitoring ○○○○○●○		
GOALS		

Define a methodology of design and evaluation of decentralized monitoring

- 1. Aim for predictable behavior
 - Move from LTL \rightarrow Automata
 - Common ground to compare existing (and future) strategies
- 2. Separate monitor synthesis from monitoring strategies
 - Centralized specification \rightarrow Decentralized specification
 - Monitorability of a decentralized specification
 - Define a general decentralized monitoring algorithm
- $\star\,$ Extend tooling support for the design methodology
- \star Ensure reproducibility

(Decent.) Monitoring		
000000		

(Decentralized) Monitoring

Monitoring with EHEs

Monitoring Decentralized Specifications

The THEMIS Approach

Conclusions

MONITORING WITH EHES

EHE		
00000		

 \star Encode the execution as a data structure that

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions \rightarrow Atoms
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions \rightarrow Atoms
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)
- Monitors store Atoms in their Memory

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)
- Monitors store Atoms in their ${\sf Memory}$
- Monitors need to evaluate $\mathit{Expr}_{\mathit{Atoms}}$

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)
- Monitors store Atoms in their ${\sf Memory}$
- Monitors need to evaluate $Expr_{Atoms}$
 - rewrite using Memory

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)
- Monitors store Atoms in their Memory
- Monitors need to evaluate $Expr_{Atoms}$
 - rewrite using Memory
 - simplify using Boolean logics (much easier than simplification for LTL)

EHE		
00000		

- $\star\,$ Encode the execution as a data structure that
 - supports flexibility when receiving partial information
 - is insensitive to the reception order of information
 - has predictable size and operations
- Atomic propositions $\rightarrow \mathsf{Atoms}$
 - Allow algorithms to add data to observations (enc : $AP \rightarrow Atoms$)
 - Ordering information (timestamp, round number, vector clock etc.)
- Monitors store Atoms in their Memory
- Monitors need to evaluate $Expr_{Atoms}$
 - rewrite using Memory
 - simplify using Boolean logics (much easier than simplification for LTL)

 $\begin{aligned} Expr_{Atoms} \times Mem \to \mathbb{B}_3 \\ eval(expr, \mathcal{M}) &= simplify(rw(expr, \mathcal{M})) \\ eval(\langle 1, t_{high} \rangle \land \langle 2, fan \rangle, [\langle 1, t_{high} \rangle \mapsto \bot]) &= \bot \land \langle 2, fan \rangle = \bot \end{aligned}$

EHE		
00000		

- EHE is a partial function:

 $\mathcal{I}: \\ \mathcal{I}($

EHE		
00000		

 $\cdot\,$ EHE is a partial function:

$\begin{aligned} \mathcal{I}:\mathbb{N}\\ \mathcal{I}(t \end{aligned}$

• For a given timestamp t

EHE		
00000		

- EHE is a partial function:

$$\mathcal{I}: \mathbb{N} \times Q_{\mathcal{A}}$$
$$\mathcal{I}(t, q)$$

- For a given timestamp t
- The automaton is in state q iff

EHE		
00000		

- EHE is a partial function:

$$\begin{aligned} \mathcal{I}: \mathbb{N} \times Q_{\mathcal{A}} \to Expr_{Atoms} \\ \mathcal{I}(t,q) = expr \end{aligned}$$

- For a given timestamp t
- The automaton is in state q iff
- $\cdot \ \operatorname{eval}(\mathit{expr},\mathcal{M}) = \top$

EHE		
00000		

 $\cdot\,$ EHE is a partial function:

$$\mathcal{I}: \mathbb{N} \times Q_{\mathcal{A}} \to Expr_{Atoms}$$
$$\mathcal{I}(t, q) = expr$$

- For a given timestamp t
- The automaton is in state q iff
- $\boldsymbol{\cdot} \ \operatorname{eval}(\mathit{expr},\mathcal{M}) = \top$

$$\begin{split} \mathcal{I}(2, q_0) &= [\neg \langle 1, \mathrm{t_{high}} \rangle \land \neg \langle 2, \mathrm{t_{high}} \rangle] \\ &\vee [\langle 1, \mathrm{t_{high}} \rangle \land (\langle 2, \mathrm{fan} \rangle \land \neg \langle 2, \mathrm{t_{high}} \rangle)] \end{split}$$

EHE		
00000		

 $\cdot\,$ EHE is a partial function:

$$\mathcal{I}: \mathbb{N} \times Q_{\mathcal{A}} \to Expr_{Atoms}$$
$$\mathcal{I}(t, q) = expr$$

- For a given timestamp t
- The automaton is in state q iff
- $\boldsymbol{\cdot} \ \operatorname{eval}(\mathit{expr},\mathcal{M}) = \top$

$$\begin{aligned} \mathcal{I}(2, q_0) &= [\neg \langle 1, \mathbf{t}_{\text{high}} \rangle \land \neg \langle 2, \mathbf{t}_{\text{high}} \rangle] \\ & \vee [\langle 1, \mathbf{t}_{\text{high}} \rangle \land (\langle 2, \text{fan} \rangle \land \neg \langle 2, \mathbf{t}_{\text{high}} \rangle) \\ & \text{eval}(\mathcal{I}(2, q_0), [\langle 1, \mathbf{t}_{\text{high}} \rangle \mapsto \bot]) \end{aligned}$$

$$= eval(\neg \langle 2, t_{high} \rangle, \ldots) = 2$$

EHE		
00000		

 $\cdot\,$ EHE is a partial function:

$$\mathcal{I}: \mathbb{N} \times Q_{\mathcal{A}} \to Expr_{Atoms}$$
$$\mathcal{I}(t, q) = expr$$

- For a given timestamp t
- The automaton is in state q iff
- $\boldsymbol{\cdot} \ \operatorname{eval}(\mathit{expr},\mathcal{M}) = \top$

$$\mathcal{I}(2, q_0) = [\neg \langle 1, \mathbf{t}_{\text{high}} \rangle \land \neg \langle 2, \mathbf{t}_{\text{high}} \rangle]$$

 $\lor [\langle 1, \mathbf{t}_{\text{high}} \rangle \land (\langle 2, \text{fan} \rangle \land \neg \langle 2, \mathbf{t}_{\text{high}} \rangle)]$
 $l(\mathcal{I}(2, q_0), [\langle 1, \mathbf{t}_{\text{high}} \rangle \mapsto \bot])$

- $eval(\mathcal{I}(2, q_0), [\langle 1, t_{high} \rangle \mapsto \bot])$ = eval($\neg \langle 2, t_{high} \rangle \dots$) = ?
 - EHE is constructed recursively and lazily (as needed and on-the-fly) using \mathcal{A}

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	
1	q_1	

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$ op \wedge \neg \langle 1, a angle \wedge \neg \langle 1, b angle$
1	q_1	

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1,a angle ee \langle 1,b angle$

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1, a \rangle \lor \langle 1, b \rangle$
2	q_0	
2	q_1	

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1, a \rangle \lor \langle 1, b \rangle$
2	q_0	$(\neg \langle 1, a angle \land \neg \langle 1, b angle)$
2	q_1	

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1, a \rangle \lor \langle 1, b \rangle$
2	q_0	$(\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle) \land (\neg \langle 2, a \rangle \land \neg \langle 2, b \rangle)$
2	q_1	

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1, a \rangle \lor \langle 1, b \rangle$
2	q_0	$(\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle) \land (\neg \langle 2, a \rangle \land \neg \langle 2, b \rangle)$
2	q_1	$[(\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle) \qquad] \lor [(\langle 1, a \rangle \lor \langle 1, b \rangle)]$

EHE		
000000		

$$\mathcal{I}^2 = \max([0 \mapsto q_0 \mapsto \top], 0, 2)$$

t	q	expr
0	q_0	Т
1	q_0	$\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle$
1	q_1	$\langle 1, a \rangle \lor \langle 1, b \rangle$
2	q_0	$(\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle) \land (\neg \langle 2, a \rangle \land \neg \langle 2, b \rangle)$
2	q_1	$[(\neg \langle 1, a \rangle \land \neg \langle 1, b \rangle) \land (\langle 2, a \rangle \lor \langle 2, b \rangle)] \lor [(\langle 1, a \rangle \lor \langle 1, b \rangle) \land \top]$

EHE		
000000		

EXECUTION HISTORY ENCODING \hookrightarrow Properties

1. Soundness (provided that observations can be totally ordered)

EHE		
000000		

EXECUTION HISTORY ENCODING \hookrightarrow Properties

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
| EHE | | |
|--------|--|--|
| 000000 | | |

$\textbf{EXECUTION HISTORY ENCODING} \hookrightarrow \textsf{Properties}$

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - \rightarrow They find the same verdict

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - + \vee is commutative, associative and idempotent

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - + $\,\vee\,$ is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)

EHE		
000000		

EXECUTION HISTORY ENCODING PROPERTIES

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - + $\,\vee\,$ is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - $\rightarrow\,$ Monitors that exchange their EHE find the same verdict

EHE		
000000		

EXECUTION HISTORY ENCODING PROPERTIES

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - + \lor is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - \rightarrow Monitors that exchange their EHE find the same verdict
 - \rightarrow Can monitor centralized specification shared with multiple monitors

EHE		
000000		

EXECUTION HISTORY ENCODING Properties

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - \lor is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - \rightarrow Monitors that exchange their EHE find the same verdict
 - \rightarrow Can monitor centralized specification shared with multiple monitors
- 3. Predictable size

EHE		
000000		

EXECUTION HISTORY ENCODING Properties

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - \lor is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - $\rightarrow\,$ Monitors that exchange their EHE find the same verdict
 - \rightarrow Can monitor centralized specification shared with multiple monitors
- 3. Predictable size
 - The EHE encodes all potential and past states, as needed

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - We can merge EHEs by disjoining (\lor) each entry $\langle t, q \rangle$
 - \lor is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - \rightarrow Monitors that exchange their EHE find the same verdict
 - \rightarrow Can monitor centralized specification shared with multiple monitors
- 3. Predictable size
 - The EHE encodes all potential and past states, as needed
 - The more we keep track of **potential** states, the bigger the size

EHE		
000000		

- 1. Soundness (provided that observations can be totally ordered)
 - For the same trace, EHE and $\mathcal A$ report the same state
 - $\rightarrow~$ They find the same verdict
- 2. Strong Eventual Consistency (SEC)
 - + We can merge EHEs by disjoining (\lor) each entry $\langle t,q\rangle$
 - \lor is commutative, associative and idempotent
 - \rightarrow EHE is a state-based replicated data-type (CvRDT)
 - $\rightarrow\,$ Monitors that exchange their EHE find the same verdict
 - \rightarrow Can monitor centralized specification shared with multiple monitors
- 3. Predictable size
 - The EHE encodes all potential and past states, as needed
 - The more we keep track of potential states, the bigger the size
 - $\rightarrow\,$ We can assess algorithms by how they manipulate the EHE

EHE		
000000		

EXECUTION HISTORY ENCODING \hookrightarrow Analysis

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

EHE		
000000		

EXECUTION HISTORY ENCODING \hookrightarrow Analysis

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

	EHE 0000 0 ●				
EXECUTION HIST	ORY ENCODI	$NG \hookrightarrow Analy$	SIS		
• Information Dela	ay (δ)	t +	$\rightarrow q$	\mapsto T	
Timestamps need expand before determining a st Potential states track of	ded to sate to keep δ	$\begin{cases} t+1 & \vdash \\ t+2 & \vdash \\ \vdots & \end{cases}$	$\begin{array}{c} q_{0} \\ q_{1} \\ \end{array}$ $\begin{array}{c} \qquad \qquad$	$ \mapsto e_{10} \\ \mapsto e_{11} \\ \vdots \\ \mapsto e_{1(Q -1)} \\ \mapsto e_{20} \\ \vdots \\ \mapsto e_{2(Q -1)} $	$\left.\begin{array}{c} & Q \\ \\ & Q \\ \end{array}\right\} Q $
		$t+\delta$	$\begin{array}{c} q_0 \\ q_1 \\ \end{array}$	$ \mapsto e_{\delta 0} \mapsto e_{\delta 1} \vdots \mapsto e_{\delta(Q -1)} $	$\left. \right\} Q $

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

Decent.) Monitoring 0000000	EHE 0000 0 ●					
EXECUTION HIS	TORY ENCODI	$NG \hookrightarrow Anz$	ALYSIS			
Information De	lay (δ)	t	\mapsto	q	$\mapsto \top$	
Timestamps ne expand before determining a Potential states track of Size of expressi with each move	eded to state s to keep on grows beyond $t = \delta$	$\begin{cases} t+1 \\ t+2 \\ \vdots \end{cases}$	\mapsto	$\begin{array}{c} q_0\\ q_1\\ \\ q_{ Q -1}\\ q_0\\ \\ q_{ Q -1} \end{array}$	$ \mapsto e_{10} \\ \mapsto e_{11} \\ \vdots \\ \mapsto e_{1(Q -1)} \\ \mapsto e_{20} \\ \vdots \\ \mapsto e_{2(Q -1)} $	$\left. \begin{array}{c} & Q \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		\vdots $t+\delta$	\mapsto	$\begin{array}{c} q_0\\ q_1\\ \end{array}$	$ \mapsto e_{\delta 0} \\ \mapsto e_{\delta 1} \\ \vdots \\ \mapsto e_{\delta (Q -1)} $	$\left. \right Q $

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

(Decent.) Monitoring 0000000	EHE 0000 0 ●					
EXECUTION HIST	ORY ENCODI	$NG \hookrightarrow Ana$	LYSIS			
• Information De	lay (δ)	t	\mapsto	q	\mapsto \top	
Timestamps nee expand before determining a s Potential states track of	eded to state to keep	$\left(\begin{array}{c}t+1\end{array}\right)$	\mapsto	$\begin{array}{c} q_0 \\ q_1 \\ \\ q_{ Q -1} \end{array}$	$ \mapsto e_{10} \\ \mapsto e_{11} \\ \vdots \\ \mapsto e_{1(Q -1)} $	$\left. \right\} Q $
 Size of expression with each move Size of EHE: 	be grows beyond $t = \delta$	$\begin{cases} t+2\\ \vdots \end{cases}$	\mapsto	q_0 $q_{ Q -1}$	$ \mapsto e_{20} \\ \vdots \\ \mapsto e_{2(Q -1)} $	$\left. \right\} Q $
$ \mathcal{I}^{\delta} = \mathcal{O}(\delta Q $ = $\mathcal{O}(\delta^2 Q)$	$\sum_{1}^{\delta} LP)$ $ LP)$	$t+\delta$	\mapsto	q_0 q_1 $q_{ Q -1}$	$ \mapsto e_{\delta 0} \\ \mapsto e_{\delta 1} \\ \vdots \\ \mapsto e_{\delta(Q -1)} $	$\left. \right\} \left Q \right $

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

MONITORING DECENTRALIZED SPECIFICATIONS

			Decentralized Specifications		
--	--	--	------------------------------	--	--

+ Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$

		Decentralized Specifications ○●○○		
--	--	--------------------------------------	--	--

- + Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - + ${\mathcal A}$ is its specification automaton

		Decentralized Specifications		
--	--	------------------------------	--	--

- + Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - \mathcal{A} is its specification automaton
 - + c is the component the monitor is attached to

		Decentralized Specifications ○●○○		
--	--	--------------------------------------	--	--

- Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - + \mathcal{A} is its specification automaton
 - c is the component the monitor is attached to
- The transition labels of an automaton ${\mathcal A}$ are restricted to:

	Decentralized Specifications		
--	------------------------------	--	--

- Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - + \mathcal{A} is its specification automaton
 - c is the component the monitor is attached to
- The transition labels of an automaton ${\mathcal A}$ are restricted to:
 - Atomic propositions local to the attached component

	Decentralized Specifications		
--	------------------------------	--	--

- Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - + \mathcal{A} is its specification automaton
 - c is the component the monitor is attached to
- The transition labels of an automaton ${\mathcal A}$ are restricted to:
 - Atomic propositions ${\sf local}$ to the attached component
 - References to other monitors

		Decentralized Specifications ○●○○		
--	--	--------------------------------------	--	--

- Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - \mathcal{A} is its specification automaton
 - c is the component the monitor is attached to
- The transition labels of an automaton ${\mathcal A}$ are restricted to:
 - Atomic propositions local to the attached component
 - References to other monitors

	Decentralized Specifications	
	000	

- Each monitor is associated with a tuple $\langle \mathcal{A}, c \rangle$
 - \mathcal{A} is its specification automaton
 - c is the component the monitor is attached to
- The transition labels of an automaton ${\mathcal A}$ are restricted to:
 - Atomic propositions local to the attached component
 - References to other monitors

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

	Decentralized Specifications	
	0000	

• For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_i at t

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_j never reaches a final verdict we will **not** be able to monitor \mathcal{A}_k

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_i at t
- (!) If \mathcal{A}_i never reaches a final verdict we will not be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_j never reaches a final verdict we will **not** be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_i never reaches a final verdict we will not be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$
 - 1. Path can be taken: e_f is satisfiable;

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_i never reaches a final verdict we will not be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$
 - 1. Path can be taken: e_f is satisfiable;
 - 2. Path leads to a verdict: $\operatorname{ver}_k(q_f) \in \{\bot, \top\};$

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_j never reaches a final verdict we will **not** be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$
 - 1. Path can be taken: e_f is satisfiable;
 - 2. Path leads to a verdict: $\operatorname{ver}_k(q_f) \in \{\bot, \top\};$
 - 3. All its dependencies are monitorable:

 $\forall \mathbf{m}_j \in \operatorname{dep}(e_f)$: monitorable(\mathcal{A}_j).

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_i never reaches a final verdict we will **not** be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$
 - 1. Path can be taken: e_f is satisfiable;
 - 2. Path leads to a verdict: $\operatorname{ver}_k(q_f) \in \{\bot, \top\};$
 - 3. All its dependencies are monitorable:

 $\forall \mathbf{m}_j \in \operatorname{dep}(e_f)$: monitorable(\mathcal{A}_j).

• Expressions that determine paths between states (n = path length)

	Decentralized Specifications	
	0000	

- For an automaton \mathcal{A}_k , to evaluate a label m_j at t with a trace tr
 - Run tr starting with t on \mathcal{A}_j starting from q_{j_0}
 - Consider the verdict of the run to be the observation m_j at t
- (!) If \mathcal{A}_i never reaches a final verdict we will **not** be able to monitor \mathcal{A}_k
- (?) Monitorability: "From any state in \mathcal{A}_k , we can reach a final verdict"
 - monitorable(\mathcal{A}_k) iff $\forall q \in Q_{\mathcal{A}_k}, \exists q_f \in Q_{\mathcal{A}_k}, \exists e_f \in \text{paths}(q, q_f), \text{ s.t.}$
 - 1. Path can be taken: e_f is satisfiable;
 - 2. Path leads to a verdict: $\operatorname{ver}_k(q_f) \in \{\bot, \top\};$
 - 3. All its dependencies are monitorable:

 $\forall \mathbf{m}_j \in \operatorname{dep}(e_f)$: monitorable(\mathcal{A}_j).

• Expressions that determine paths between states (n = path length)

• paths
$$(q_s, q_e) = \left\{ \exp \left| \begin{array}{c} \exists n \in \mathbb{N} : \mathcal{I}^n(n, q_e) = \exp r \\ \land \mathcal{I}^n = \operatorname{mov}([0 \mapsto q_s \mapsto \top], 0, n) \end{array} \right. \right\}$$
	Decentralized Specifications	
	0000	

$\mathsf{GENERALIZED}\ \mathsf{MONITORING}\ \mathsf{ALGORITHM} \hookrightarrow \mathsf{Overview}$

1. Setup (Deploy)

- 1.1 Analyze and convert the specification as necessary
- 1.2 Create monitors, and assign them a specification
 - (!) The monitor handles encoding of AP and Memory
- 1.3 Attach monitors to components

	Decentralized Specifications	
	0000	

$\mathsf{GENERALIZED}\ \mathsf{MONITORING}\ \mathsf{ALGORITHM} \hookrightarrow \mathsf{Overview}$

$1. \ {\rm Setup} \ ({\rm Deploy})$

- 1.1 Analyze and convert the specification as necessary
- 1.2 Create monitors, and assign them a specification
 - (!) The monitor handles encoding of AP and Memory
- 1.3 Attach monitors to components
- 2. Monitoring
 - 2.1 Wait to receive observations from attached component
 - 2.2 Receive messages (EHE) from monitors
 - 2.3 Process observations and messages (update the local EHE)
 - 2.4 Communicate with other monitors

THE THEMIS APPROACH

	THEMIS	
	00000	

$\textbf{THEMIS} \hookrightarrow \textbf{OVERVIEW}$

(Decent.) MonitoringEHEDe0000000000000000000		centra 000	lized Specifications	THEMIS ○○● ○ ○○	
	Setup		Ν	Ionitor	
1	Map <integer, ?="" extends="" monitor=""></integer,>	1	void monitor(int t,	Memory <atom> of</atom>	oservations)
	\hookrightarrow setup() {	2	throws ReportVerdic	t, ExceptionStop	Monitoring {
2	<pre>config.getSpec().put("root",</pre>	3	m.merge(observa	tions);	
3	Convert.makeAutomataSpec(4	if(receive()) i	sMonitoring = ti	rue;
4	<pre>config.getSpec().get("root")));</pre>	5	if(isMonitoring) {	
5	Map <integer, monitor=""> mons = new</integer,>	6	if(!observati	ons.isEmpty())	
	→ HashMap <integer, monitor="">();</integer,>	7	<pre>ehe.tick();</pre>		
6	Integer i = 0;	8	boolean b = e	he.update(m, -1));
7	<pre>for(Component comp :</pre>	9	if(b) {		
	→ config.getComponents()) {	10	VerdictTime	d v = ehe.scanVe	erdict();
8	MonMigrate mon = new	11	if(v.isFina	l())	
	→ MonMigrate(i);	12	throw new		
9	<pre>attachMonitor(comp, mon);</pre>		→ Repor	→ ReportVerdict(v.getVerdict(), t);	
10	<pre>mons.put(i, mon);</pre>	13	ehe.dropRes	olved();	
11	i++;	14	}		
12	}	15	int next = g	etNext();	
13	return mons;	16	if(next != ge	tID()) {	
14	}	17	Representat	ion toSend = ehe	e.sliceLive();
		18	send(next,	new	
			→ Represe	ntationPacket(to	Send));
		19	isMonitorin	g = false;	
		20	}		
		21	}		
		00	1		

(Decent.) Monitoring	EHE	Decentralized Specifications	THEMIS	Conclusions
0000000	000000	0000	○○ ○ ●○○	oo

$\textbf{EXAMPLES} \hookrightarrow \textbf{Metrics}$

```
1 void setupRun(MonitoringAlgorithm alg) {
2 addMeasure(new Measure("msg_num","Msgs",0L,Measures.addLong));
3 }
4 after(Integer to, Message m) : Commons.sendMessage(to, m) {
5 update("msg_num", 1L);
6 }
```

```
SELECT alg, comps, avg(msg_num), avg(msg_data), count(*)
FROM bench WHERE alg in ('Migration', 'MigrationRR')
GROUP BY alg, comps
```

alg		comps	avg(msg_num)	avg(msg_data)	count(*)	
1	Migration	3	2.04226336011177	267.8458714635	572600	
2	Migration	4	2.16402472527473	668.129401098901	364000	
3	Migration	5	3.33806822465134	3954.09705050886	530600	
4	MigrationRR	3	32.7222301781348	482.572275585051	572600	
5	MigrationRR	4	31.8533351648352	932.708425824176	364000	
6	MigrationRR	5	19.2345269506219	4361.30746324915	530600	

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

4

			THEMIS ○○○○● ○	
EXISTING ALGORIT	THMS			
		GraphStream 🚳		
		HEADIS		
	-			
	LIG	Constanting UNIVERSITÉ		

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

- #Msgs is linear in components
- components#Msgs is constant

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications $^{\#}\mathrm{Msgs}$ and $|\mathrm{Msg}|$ are predicted on a per round basis.

network depth

 #Msgs is linear in network edges

(algorithm)

(Decent.) Monitoring	EHE	Decentralized Specifications	THEMIS	Conclusions
0000000	000000		○○○○○●	oo

STUDYING EXISTING ALGORITHMS \hookrightarrow Expected Behavior

- + δ is constant
- #Msgs is linear in components
- |Msg| constant: observations per component

• δ is linear in components

- #Msgs is constant
- |Msg| is size of EHE: $\mathcal{O}(\delta^2)$, quadratic in components

Choreography

- δ is linear in network depth (algorithm)
- #Msgs is linear in network edges
- $\cdot ~|{\rm Msg}| ~{\rm is}$ constant

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications $^{\#}\mathrm{Msgs}\,$ and $|\mathrm{Msg}|$ are predicted on a per round basis

CONCLUSIONS

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure

 \star Future Work

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications

 \star Future Work

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
- $\star\,$ Future Work

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- $\star\,$ Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- $\star\,$ Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system
 - 2. Extend THEMIS

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system
 - 2. Extend THEMIS
 - New metrics

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system
 - 2. Extend THEMIS
 - New metrics
 - Support a fully-asynchronous monitoring approach

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system
 - 2. Extend THEMIS
 - New metrics
 - Support a fully-asynchronous monitoring approach
 - Better visualization of (the behavior of) algorithms

		Conclusions
		00

- \star Decentralized Monitoring of (De)Centralized Specifications
 - 1. Aim for predictable behavior \rightarrow Automata + EHE data structure
 - 2. Separate synthesis from monitoring: decentralized specifications
 - 3. Methodology + tool support for designing, measuring, comparing and extending decentralized RV algorithms
 - 4. Adapted and compared existing algorithms
- \star Future Work
 - 1. Centralised specification \rightarrow equivalent decentralized specifications
 - Optimize existing methods
 - Take into account topology of the monitored system
 - 2. Extend THEMIS
 - New metrics
 - Support a fully-asynchronous monitoring approach
 - Better visualization of (the behavior of) algorithms
 - 3. Runtime enforcement of centralized and decentralized specifications

RELATED WORK AND GOALS

 $\cdot\,$ General setting

- \cdot General setting
 - + \mathcal{C} : a set of components

- $\cdot\,$ General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$

- $\cdot\,$ General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring

- $\cdot\,$ General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

$\textbf{RELATED WORK} \hookrightarrow \textbf{Decentralized RV}$

 $\cdot\,$ General setting

RW + Goals ○●○

- + $\mathcal{C}:$ a set of components
- AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)

- + General setting
 - + $\mathcal{C}:$ a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors

- + General setting
 - + $\mathcal{C}:$ a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques

- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]

- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]

- + General setting
 - + $\mathcal{C}:$ a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - $\cdot\,$ Common assumptions

- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - $\cdot\,$ Common assumptions
 - Reliable network with fully-connected components
- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - + Common assumptions
 - Reliable network with fully-connected components
 - Global clock

- + General setting
 - + $\mathcal{C}:$ a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone
12,ColomboFalcone 16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - $\cdot\,$ Common assumptions
 - Reliable network with fully-connected components
 - Global clock
 - Oblivious to order of messages

- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone12,ColomboFalcone16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - + Common assumptions
 - Reliable network with fully-connected components
 - Global clock
 - Oblivious to order of messages
 - (!) Unpredictable runtime behavior of rewriting

- + General setting
 - + \mathcal{C} : a set of components
 - AP: a set of atomic propositions, partitioned by ${\mathcal C}$
- Issues in decentralized monitoring
 - partial views of AP unknown global state
 - partial execution of the automaton (evaluation)
 - $\cdot\,$ communication between monitors
- Rewriting-based techniques
 - (safety) LTL [Rosu et al 05], (full) LTL [BauerFalcone12,ColomboFalcone16]
 - (safety) MTTL (real-time systems) [ThatiRosu05,Basin et al 15]
 - $\cdot\,$ Common assumptions
 - Reliable network with fully-connected components
 - Global clock
 - Oblivious to order of messages
 - (!) Unpredictable runtime behavior of rewriting
 - \rightarrow Hard to compare various strategies

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

• Automata-based techniques for regular languages [Falcone et al 14]

$\textbf{RELATED WORK} \hookrightarrow \texttt{Decentralized RV} (\texttt{Cont'd})$

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting

$\textbf{RELATED WORK} \hookrightarrow \texttt{Decentralized RV} (\texttt{Cont'd})$

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL

$\textbf{RELATED WORK} \hookrightarrow \texttt{Decentralized RV} (\texttt{Cont'd})$

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - + Fully-connected components

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - $\cdot\,$ Fully-connected components
 - Asynchronous Systems (Alternating Numbers)

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - $\cdot\,$ Fully-connected components
 - Asynchronous Systems (Alternating Numbers)
 - + Unreliable links (Monitors + System)

RW + Goals ○○●

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - $\cdot\,$ Fully-connected components
 - Asynchronous Systems (Alternating Numbers)
 - + Unreliable links (Monitors + System)
 - -2k+2 verdicts when resilience up to k failures

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - $\cdot\,$ Fully-connected components
 - Asynchronous Systems (Alternating Numbers)
 - + Unreliable links (Monitors + System)
 - -2k+2 verdicts when resilience up to k failures
 - $\rightarrow\,$ Determine consensus on a verdict in case of failures

- Automata-based techniques for regular languages [Falcone et al 14]
 - Same assumptions as rewriting
 - + More expressive than LTL
 - + Predictable behavior
 - Tightly linked to specification (synthesis)
 - No monitor topology nor communication strategy
- Monitor Consensus [MostafaBonakdarpour16]
 - monitors deciding the same verdict
 - Assumptions
 - $\cdot\,$ Fully-connected components
 - Asynchronous Systems (Alternating Numbers)
 - + Unreliable links (Monitors + System)
 - -2k+2 verdicts when resilience up to k failures

$\rightarrow\,$ Determine consensus on a verdict in case of failures

(!) All monitors check the same specification

EXPERIMENTS

Experiments 00000 More Formal Details 000

STUDYING EXISTING ALGORITHMS \hookrightarrow Verifying Behavior

• Experiment Setup (5,868,800 runs)

- Experiment Setup (5,868,800 runs)
 - 200 synthetic random traces of 100 events (2 observations/component)

- Experiment Setup (5,868,800 runs)
 - 200 synthetic random traces of 100 events (2 observations/component)
 - + Vary $|\mathcal{C}|$ from 3 to 5

- Experiment Setup (5,868,800 runs)
 - 200 synthetic random traces of 100 events (2 observations/component)
 - + Vary $|\mathcal{C}|$ from 3 to 5
 - At least 1,000 random specifications per scenario

- Experiment Setup (5,868,800 runs)
 - 200 synthetic random traces of 100 events (2 observations/component)
 - + Vary $|\mathcal{C}|$ from 3 to 5
 - At least 1,000 random specifications per scenario
 - Monitoring is done by rounds

Experiment:

$\textbf{RESULTS} \hookrightarrow \mathsf{Delay}$

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications - Migration - Migration - Orchestration

Experiments 000000

$\textbf{RESULTS} \hookrightarrow \textsf{Number of Messages}$

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications - Migration - MigrationRR - Orchestration

RW + Goals 000 Experiments

$\textbf{RESULTS} \hookrightarrow \textbf{Data Transfered}$

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications - Migration - Migration - Orchestration

Experiments	
000000	

Alg.	$ \mathcal{C} $	δ	#Msgs	Data	#S	#S/Mon	Conv
	3	2.37	2.02	18.05	15.27	6.63	0.18
Chor	4	2.49	2.54	22.62	18.22	6.79	0.20
	5	2.37	3.08	27.18	21.29	6.95	0.22
	3	1.02	0.36	49.46	4.80	4.80	1.00
Migr	4	1.38	0.41	128.26	5.67	5.67	1.00
	5	2.28	0.57	646.86	9.40	9.40	1.00
	3	1.09	0.86	58.02	5.00	5.00	1.00
Migrr	4	1.49	0.85	144.62	5.91	5.91	1.00
	5	2.32	0.83	684.81	9.60	9.60	1.00
	3	0.63	1.68	21.01	4.13	4.13	1.00
Orch	4	0.65	2.43	30.42	4.11	4.11	1.00
	5	0.81	3.04	38.51	5.55	5.55	1.00

Experiments	
000000	

Alg.	$ \mathcal{C} $	δ	#Msgs	Data	#S	#S/Mon	Conv
	3	2.37	2.02	18.05	15.27	6.63	0.18
Chor	4	2.49	2.54	22.62	18.22	6.79	0.20
	5	2.37	3.08	27.18	21.29	6.95	0.22
	3	1.02	0.36	49.46	4.80	4.80	1.00
Migr	4	1.38	0.41	128.26	5.67	5.67	1.00
	5	2.28	0.57	646.86	9.40	9.40	1.00
	3	1.09	0.86	58.02	5.00	5.00	1.00
Migrr	4	1.49	0.85	144.62	5.91	5.91	1.00
	5	2.32	0.83	684.81	9.60	9.60	1.00
	3	0.63	1.68	21.01	4.13	4.13	1.00
Orch	4	0.65	2.43	30.42	4.11	4.11	1.00
	5	0.81	3.04	38.51	5.55	5.55	1.00

Experiments	
000000	

Alg.	$ \mathcal{C} $	δ	#Msgs	Data	#S	#S/Mon	Conv
	3	2.37	2.02	18.05	15.27	6.63	0.18
Chor	4	2.49	2.54	22.62	18.22	6.79	0.20
	5	2.37	3.08	27.18	21.29	6.95	0.22
	3	1.02	0.36	49.46	4.80	4.80	1.00
Migr	4	1.38	0.41	128.26	5.67	5.67	1.00
	5	2.28	0.57	646.86	9.40	9.40	1.00
	3	1.09	0.86	58.02	5.00	5.00	1.00
Migrr	4	1.49	0.85	144.62	5.91	5.91	1.00
	5	2.32	0.83	684.81	9.60	9.60	1.00
	3	0.63	1.68	21.01	4.13	4.13	1.00
Orch	4	0.65	2.43	30.42	4.11	4.11	1.00
	5	0.81	3.04	38.51	5.55	5.55	1.00

Experiments	
000000	

Alg.	$ \mathcal{C} $	δ	#Msgs	Data	#S	#S/Mon	Conv
	3	2.37	2.02	18.05	15.27	6.63	0.18
Chor	4	2.49	2.54	22.62	18.22	6.79	0.20
	5	2.37	3.08	27.18	21.29	6.95	0.22
	3	1.02	0.36	49.46	4.80	4.80	1.00
Migr	4	1.38	0.41	128.26	5.67	5.67	1.00
	5	2.28	0.57	646.86	9.40	9.40	1.00
	3	1.09	0.86	58.02	5.00	5.00	1.00
Migrr	4	1.49	0.85	144.62	5.91	5.91	1.00
	5	2.32	0.83	684.81	9.60	9.60	1.00
	3	0.63	1.68	21.01	4.13	4.13	1.00
Orch	4	0.65	2.43	30.42	4.11	4.11	1.00
	5	0.81	3.04	38.51	5.55	5.55	1.00

Experiments	
000000	

Alg.	$ \mathcal{C} $	δ	#Msgs	Data	#S	#S/Mon	Conv
	3	2.37	2.02	18.05	15.27	6.63	0.18
Chor	4	2.49	2.54	22.62	18.22	6.79	0.20
	5	2.37	3.08	27.18	21.29	6.95	0.22
	3	1.02	0.36	49.46	4.80	4.80	1.00
Migr	4	1.38	0.41	128.26	5.67	5.67	1.00
	5	2.28	0.57	646.86	9.40	9.40	1.00
	3	1.09	0.86	58.02	5.00	5.00	1.00
Migrr	4	1.49	0.85	144.62	5.91	5.91	1.00
	5	2.32	0.83	684.81	9.60	9.60	1.00
	3	0.63	1.68	21.01	4.13	4.13	1.00
Orch	4	0.65	2.43	30.42	4.11	4.11	1.00
	5	0.81	3.04	38.51	5.55	5.55	1.00

Experiments 000000

Soundness

Given a decentralized trace tr of length n, we reconstruct the global trace $\overline{e} = \rho(\text{tr}) = e_0 \cdot \ldots \cdot e_n$, we have: $\Delta^*(q_0, \overline{e}) = \text{sel}(\mathcal{I}^n, \mathcal{M}^n, n)$, with: $\mathcal{I}^n = \text{mov}([0 \mapsto q_0 \mapsto \top], 0, n)$, and $\mathcal{M}^n = \biguplus_{t \in [1,n]}^2 \{\text{memc}(e_t, \text{ts}_t)\}.$

	More Formal Details
	000

Convergence

$$\text{convergence} = \frac{1}{n} \sum_{t=1}^{n} \left(\sum_{c \in \mathcal{C}} \left(\frac{s_c^t}{\overline{s}^t} - \frac{1}{|\mathcal{C}|} \right)^2 \right) \text{ , with } \overline{s}^t = \sum_{c \in \mathcal{C}} s_c^t$$

A. El-Hokayem, Y. Falcone, Monitoring Decentralized Specifications

Experiments 000000 More Formal Details

STUDYING EXISTING ALGORITHMS

 $\cdot\,$ Example Algorithms
- $\cdot\,$ Example Algorithms
 - + Orchestration: Central monitor + forwarding monitors

- $\cdot\,$ Example Algorithms
 - Orchestration: Central monitor + forwarding monitors
 - Migration: Specification hops from one component to another

- $\cdot\,$ Example Algorithms
 - Orchestration: Central monitor + forwarding monitors
 - Migration: Specification hops from one component to another
 - Choreography: Monitors are organized in a tree

- $\cdot\,$ Example Algorithms
 - Orchestration: Central monitor + forwarding monitors
 - Migration: Specification hops from one component to another
 - Choreography: Monitors are organized in a tree
- Expected behavior of algorithms

Algorithm	δ	# Msg	Msg
Orchestration	$\Theta(1)$	$\Theta(\mathcal{C})$	$O(AP_c)$
Migration	$O(\mathcal{C})$	O(m)	$O(m \mathcal{C} ^2)$
Choreography	$O(\text{depth}(\mathbf{m}_{\text{root}}))$	$\Theta(E)$	$\Theta(1)$