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ABSTRACT
THEMIS is a tool to facilitate the design, development, and anal-
ysis of decentralized monitoring algorithms; developed using
Java and AspectJ. It consists of a library and command-line
tools. THEMIS provides an API, data structures and measures
for decentralized monitoring. These building blocks can be
reused or extended to modify existing algorithms, design new
more intricate algorithms, and elaborate new approaches to
assess existing algorithms. We illustrate the usage of THEMIS
by comparing two variants of a monitoring algorithm.
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1 INTRODUCTION
Runtime Verification. Runtime Verification (RV) [9, 11] is a

lightweight formal method which consists in verifying that a
run of a system is correct with respect to a user-provided spec-
ification. The specification formalizes the expected behavior of
the system. Typically, the system is considered as a blackbox
that feeds events to a monitor. An event usually consists of a
set of atomic propositions describing abstract operations or
states in the system. A sequence of such events is referred to as
a trace. When receiving a trace, the monitor will emit verdicts
in a truth domain that indicate the compliance of the system
to the specification. We focus on methods to monitor decen-
tralized systems, that is, systems with multiple components
having no central observation point. In decentralized systems,
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the monitors have a partial view of the system and need to
account for communication [5] in addition to computation.

Existing Approaches. Several algorithms have been designed
tomonitor decentralized systems, they are detailed in [7]. They
can be summarized into two different approaches. The first
approach consists in monitoring by formula rewriting such
as rewriting Linear Temporal Logic (LTL) [5, 12]. Typically a
formula is rewritten and simplified until it is equivalent to ⊤
(true) or⊥ (false) at which point the algorithm terminates. The
second approach [4] is concerned with consensus on the ver-
dict with fault-tolerance. Monitors may fail to receive correct
observations or communicate state with other monitors. This
approach determines the necessary verdict domain needed
to be able to reach a consensus. Algorithms are primarily
designed to address one issue at a time and are typically ex-
perimentally evaluated by considering runtime and memory
overheads. However, such algorithms are difficult to compare
as they may combine multiple approaches at once. For exam-
ple, algorithms that use rewriting not only exhibit variable
runtime behavior due to the rewriting, but also incorporate
different monitor synthesis approaches that separate the spec-
ification into multiple smaller specifications depending on
the monitor. DecentMon [2, 5] was developed and extended
to study the behavior of three decentralized monitoring al-
gorithms that rely on LTL rewriting. DecentMon uses various
measures to assess the algorithms both on computation and
communication overhead. The measures presented are related
to the delay, representing an extra time imposed by communi-
cation to generate the verdict, number and size of messages
transferred across the system components and the number of
progressions, representing the rewrites done to the formula.
DecentMon runs the benchmarks on the three algorithms, gen-
erates the necessary synthetic traces and reports the measures.
However it does not easily allow for flexibility to tune the ex-
isting algorithms, experiment with different measures, develop
new variants, and it only supports LTL specifications.

2 THE THEMIS APPROACH
Methodology. THEMIS [8] is written in Java, uses AspectJ [10]

and is provided as a library with a set of command-line tools.
The primary goal of THEMIS is to design and analyze decen-
tralized monitoring algorithms. It is addressed mostly for re-
searchers to experiment, tune, and compare decentralizedmon-
itoring algorithms. To assess the behavior of an algorithm, we
identify four phases (Figure 1): design, instrument, execute,
and analyze. The design phase consists in elaborating a mon-
itoring algorithm. THEMIS generalizes the monitoring steps
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Figure 1: Using the THEMIS Framework

and provides an API to describe the operations. These oper-
ations are used as building-blocks to assemble an algorithm.
The instrument phase consists in the definition of measures.
Measures are instrumented into THEMIS and the algorithms
at run-time and operate on the API and data structures. The
execute phase consists in using the THEMIS set of tools to
run simulations of the monitoring algorithms and record the
measures. The analyze phase consists in using the recorded
measures to study, compare, and refine the algorithm. In this
paper, simulations are executed on synthetic traces of pro-
grams. Effectively, an instrumented program can feed THEMIS
a stream of events (by implementing the interface Trace).

Design Goals. The main design goal of THEMIS is to provide
a general API for decentralized monitoring. That is, to pro-
vide an environment that accounts for changes at all levels:
traces, specification, monitoring logic. By doing so, we allow
for new approaches implementing the API to benefit from all
existing metrics and analysis. Additionally, this allows metrics
to be assessed at the abstract level, for example the metric
messages sent could be simply reused if new algorithms
exchange messages. Following this goal, we also aimed that
our measures be stored per run in a database. This allows for
analysis and benchmarking to be reduced to querying and
analysis of the database. This effectively separates the analysis
from the monitoring. Third-party tools can be used to explore
and analyze the data. Another important design goal is repro-
ducibility. We wanted to minimize the effort of re-running
older simulations or comparing new approaches with older
ones. This is reflected with the Experiment command-line
tool which, in short, allows users to bundle all traces, speci-
fications and algorithms. Since metrics are designed to work
at the API level and data structures, any algorithm using the
same building blocks can be measured similarly without added
effort. This allows for new algorithms or variants of older algo-
rithms to be easily compared against older ones with the same
data and measures. By accomplishing these two primary goals,
we minimize the overhead needed to design new algorithms
and study them, and let researchers focus on the algorithm
and the monitoring itself. Finally, THEMIS is designed to intro-
duce decentralized specifications [7]. That is, having different
specifications for different components in the system. While
some approaches [1, 5] do in effect introduce a decentralized

specification, they primarily focus on presenting one global
formula of the system from which they derive multiple speci-
fications. THEMIS encompasses [1, 5] and in addition supports
any decentralized specification.

3 THE THEMIS FRAMEWORK
Monitoring. We begin by explaining the basic layout of

a generalized decentralized monitoring algorithm. A moni-
toring algorithm has two phases: setup and monitor. In the
first phase, the algorithm creates and initializes the monitors,
connects them to each other so they can communicate, and
attaches them to components so they receive the observa-
tions generated by components. In the second phase, each
monitor receives observations at a timestamp based on the
component it is attached to. The monitor can then perform
some computation, communicate with other monitors, abort
monitoring or report a verdict. To accomplish this we use the
two interfaces MonitoringAlgorithm and Monitor. In the
basic use case, MonitoringAlgorithm is expected to provide
the setup() method, which does the setup phase of the algo-
rithm, and returns a map specifying monitors and their ids. A
monitor has to implement the monitor()method for the mon-
itoring logic, and the reset() method to reset its state when
executing multiple runs. The method monitor() provides the
monitor with a timestamp and a memory of observations at
that timestamp based on the monitored component. The pro-
vided flow of the base MonitoringAlgorithm is similar to the
Bulk Synchronous Parallel (BSP) [13] model. In the BSP model,
all processes execute a computation phase, then, they commu-
nicate and finally synchronize. The timestamp is associated
with the round number. The monitoring phase begins by set-
ting up the monitor network. Then, for each timestamp, the
observations are gathered from the trace, then all monitors
execute their monitor() method.

Listing 1Main InstrumentationMethods
public void setupRun(MonitoringAlgorithm alg);
protected void runBegin();
protected void stepBegin(int t);
protected void stepEnd(int t);
protected void stepReport(int t, ReportVerdict rep);
protected void runEnd();

Measuring. THEMIS uses AspectJ to record measures of a
metric for a given algorithm. Writing a metric for an algorithm
consists in using AspectJ’s aspects to intercept the points
in the execution. To simplify the task, THEMIS provides the
base aspect Instrumentation along with the classes Measure
and MeasureFunction. The Instrumentation aspect already
defines basic pointcuts and triggers simple methods upon
reaching them, they are shown in Listing 1. When running
THEMIS tools to execute the monitoring algorithms, metrics
are instrumented into the code at load-time using AspectJ’s
Load-Time Weaving (LTW) configuration. This is found in
aop.xml, the file configures the AspectJ agent that weaves
the aspects during load-time. Thus, by pre-loading aop.xml
measures can be enabled or disabled for a specific run.

Traces. The provided tools and algorithms use a simple
format to represent components and the traces of events they
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receive. The components are named alphabetically starting
with a (for example: a, b, c). The observations bound to the
components are prefixed by the component and followed with
a number starting from 0 (for example: a0, a1, a2, b0, b1). The
trace consists of multiple files, prefixed by the trace ID and
suffixed by the component name. A trace for two components
a and b consists of two files: 1-a.trace and 1-b.trace. Each
line in the file consists of an event.

Specifications. A top level specification is by default a decen-
tralized specification. A decentralized specification is a collec-
tion of specifications. Specifications are passed to a monitoring
algorithm as a Map, where each specification is identified by a
key. Each specification must provide two attributes: an id and
a class name. The id is a string name for the specification, it is
used by the algorithm during the setup phase. The provided
algorithms use the id root to denote the main specification.
The class name is a string representing a full class name of the
specification class. Listing 2 shows an example of LTL speci-
fication. It is given the name root and is loaded by the class
SpecLTL. THEMISwill instantiate a SpecLTL object and invoke
the setLTL(String) method with the LTL formula passed
as string. THEMIS currently handles both LTL and Automata
specifications and supports loading from dot files similar to
those exported by ltl2mon [3].

Listing 2 An LTL Specification
<specifications>
<specification id="root"

class="uga.corse.themis.monitoring.SpecLTL">
<setLTL><![CDATA[XXXX(!a0 | (b1 U G(a0 & b0 & c0)))]]></setLTL>

</specification>
</specifications>

Execution History Encoding (EHE). For the demonstration,
we focus on specifications formalized using automata. The
execution of the specification automaton, is in fact, the pro-
cess of monitoring, upon running the trace, the reached state
determines the verdict. In a decentralized system, a compo-
nent receives only local observations, it generally does not
have enough information to determine the state at a given
timestamp. Typically, when sufficient information is shared
between various components, it is possible to know the state
reached in the automaton. The EHE is a data structure that
encodes the execution of the automaton using boolean expres-
sions and ensures strong eventual consistency in determining
the state reached in the execution. Formal details are in [7].

Command-line Tools. The THEMIS framework is bundled
with several tools to execute monitoring. The Run tool takes as
input the name of a monitoring algorithm class, a specification
file, the number of components, the length of a trace (in order
to timeout), a traces directory, and one or more traces to read
and simulate the run of the algorithm on the given trace and
specification. Upon finishing the execution, the measures will
be printed. The Experiment tool is designed to execute a set
of runs packaged as an experiment. Experiments are used
to define sets of parameters, traces and specifications. An
experiment is effectively a folder containing all necessary files.
After running a single run or an experiment, the measures are

stored in a database for postmortem analysis. These can be
queried, merged, or plotted easily using third-party tools.

4 THE MIGRATION ALGORITHM
The migration algorithm is a decentralized monitoring algo-
rithmwhere information is passed throughout the components
to eventually verify the specification. In our setup, the migra-
tion algorithm will assign a monitor per component. These
monitors are strongly connected; each monitor is connected
to all other monitors. The monitors are either active or inac-
tive. Active monitors are monitors that seek to find a verdict
while inactive monitors are idle, waiting for other monitors to
send them their EHE. Both active and inactive monitors store
the observations they receive in their memory. However, only
active monitors will update the expressions in their EHE. After
expressions are updated, active monitors will determine which
other monitors should be sent the EHE to continue monitoring
using a method getNext. In this demonstration, we use two
different implementations of getNext. The first chooses the
next monitor by cycling through all monitors in a round-robin
fashion. The second chooses the monitor based on the earliest
observation missing to evaluate the EHE [5].

Setup. Listing 3 shows the setup phase. We first make sure
to convert the main specification (identified by root) to an au-
tomaton specification (line 2-3). Next, we create the monitors
map, and generate as many monitors as components, giving
them ids starting from zero. Each monitor is then attached to a
component (line 8) to receive observations on that component.
We note that in the default implementation of communication,
all monitors are connected to each other, therefore there is no
need to connect monitors to each other.

Listing 3Migration Setup Phase
1 protected Map<Integer, ? extends Monitor> setup() {
2 config.getSpec().put("root",
3 Convert.makeAutomataSpec(config.getSpec().get("root")));
4 Map<Integer, Monitor> mons = new HashMap<Integer, Monitor>();
5 Integer i = 0;
6 for(Component comp : config.getComponents()) {
7 MonMigrate mon = new MonMigrate(i);
8 attachMonitor(comp, mon);
9 mons.put(i, mon);
10 i++;
11 }
12 return mons;
13 }

Monitor. The monitoring logic of the monitor is shown in
Listing 4. First, the monitor updates its memory by adding
the new observations (line 3). Then, the monitor checks if it
received anything and merges the received EHE. If the monitor
receives anything then they become active. Upon receiving
observations the monitor then updates its EHE and checks
for a verdict. If a verdict has changed (line 9) and the verdict
reached is a final verdict (line 11), then we report it and remove
unnecessary entries in the EHE (line 13). We then determine
the id of the new monitor to send the EHE to (line 15). The
two implementations of the method getNext() determine the
variants of Migration. If it is a different monitor id, then we
must migrate, the EHE is sent to the next monitor (line 18) and
the current monitor is rendered inactive (line 19).
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Listing 4Migration Monitor
1 public void monitor(int t, Memory<Atom> observations)
2 throws ReportVerdict, ExceptionStopMonitoring {
3 m.merge(observations);
4 if(receive()) isMonitoring = true;
5 if(isMonitoring) {
6 if(!observations.isEmpty())
7 autRep.tick();
8 boolean b = autRep.update(m, -1);
9 if(b) {
10 VerdictTimed v = autRep.scanVerdict();
11 if(v.isFinal())
12 throw new ReportVerdict(v.getVerdict(), t);
13 autRep.dropResolved();
14 }
15 int next = getNext();
16 if(next != getID()) {
17 Representation toSend = autRep.sliceLive();
18 send(next, new RepresentationPacket(toSend));
19 isMonitoring = false;
20 }
21 }
22 }

Measures. To evaluate the behavior of the migration algo-
rithm we use the communication as an example metric. We
measure the number of messages sent and the size of the
messages. The number of messages indicates the number of
migrations performed, while the size of the messages indicates
how big the EHE is. The number of messages is shown in List-
ing 5. We begin by adding the measure and initializing with
zero (line 2). We intercept the message sending using AspectJ
(line 4) and update our measure (line 5).

Listing 5Measuring Communication
1 protected void setupRun(MonitoringAlgorithm alg) {
2 addMeasure(new Measure("msg_num", "Msgs", 0L, Measures.addLong));
3 }
4 after(Integer to, Message m) : Commons.sendMessage(to, m) {
5 update("msg_num" , 1L);
6 }

Analyze. We aim to compare the communication patterns of
the two variants. To do so, we execute 2,934,400 runs to gener-
ate a database of the measures. We use 200 traces of 100 events
per component, we associate with each component 2 observa-
tions. We vary the number of components between 3 and 5,
and ensure that for each number we have at least 1,000 formu-
lae that reference all components. Specifications are generated
as random LTL formulae using randltl from Spot [6], then
converted to automata using ltl2mon [3]. Figure 2 displays
our example query on the database to retrieve the communica-
tion measures, where column alg (resp. comps, avg(msg_num),
avg(msg_data), count) indicates the algorithm (resp. number
of components, average number of messages, average size of
messages, the number of runs). MigrationRR stands for Migra-
tion with round robin. We can see that the naive round-robin
variant has both a higher number of messages and more com-
munication. The smaller number of messages indicates that
less migrations are performed overall.

5 CONCLUSION
We present THEMIS, a tool for designing and analyzing de-
centralized monitoring algorithms. THEMIS is an extensible

Figure 2: Example Database Querying

framework for analyzing current algorithms, designing new
ones, and experimenting with variants of existing algorithms.
In addition, THEMIS provides common metrics for communi-
cation and computation overheads. THEMIS allows for re-use
of both algorithms and measures so as to allow for easier com-
parison between algorithms. We provide an example of the
methodology by applying it to themigration algorithm. Finally,
it is possible to check the tool, more examples, usage tutorial,
technical documentation, and the (reproducible) experiments
conducted with THEMIS on its website [8].
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